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In this paper we propose a novel detail-enhancing exposure fusion approach using nonlinear translation-variant filter (NTF). With
the captured Standard Dynamic Range (SDR) images under different exposure settings, first the fine details are extracted based
on guided filter. Next, the base layers (i.e., images obtained from NTF) across all input images are fused using multiresolution
pyramid. Exposure, contrast, and saturation measures are considered to generate a mask that guides the fusion process of the base
layers. Finally, the fused base layer is combined with the extracted fine details to obtain detail-enhanced fused image.The goal is to
preserve details in both very dark and extremely bright regions without High Dynamic Range Image (HDRI) representation and
tone mapping step. Moreover, we have demonstrated that the proposed method is also suitable for the multifocus image fusion
without introducing artifacts.

1. Introduction

In single exposure, normal digital camera can collect limited
luminance variations from the real world scene, which is
termed as low dynamic range (LDR) image. To circumvent
this problem, modern digital photography offers the concept
of exposure time variation to capture details in very dark
or extremely bright regions, which control the amount of
light allowed to fall on the sensor. Different LDR images are
captured to collect complete luminance variations in rapid
successions at different exposure settings known as exposure
bracketing. However, each exposure will handle the small
portion of the luminance variation in the entire scene. Short
exposure can capture details from the bright regions (i.e.,
highlights) and long exposure can capture details from dark
regions (i.e., shadows) (see Figure 1).

In the past decade, two solutions have been proposed
to handle large luminance variations present in the natural

scenes. The first option is the HDR representation. To date,
many HDRI representation [1, 2] techniques have been
proposed, which extend dynamic range by compositing dif-
ferently exposed images of the same scene. HDR images gen-
erally encode intensity variations with more than 8-bits and
pixel values that are proportional to the true scene radiance,
transformed by a nonlinear mapping called the camera
response function. Four bytes “hdr” format was developed to
encode radiancemaps.The second option to encode radiance
map is “floating point tiff,” which uses 12 bytes to encode 79
orders of magnitude approximately. Currently used standard
display devices have smaller contrast ratio (i.e., 1 : 100) and
the contrast ratio of LCDmonitors can reach 1 : 400. Recently
developed HDR display device prototypes [3] can represent
high contrast ratio (i.e., 1 : 25,000), which are still not available
in the market for the routine customers. Therefore, the HDR
image needs to be tone-mapped first to appear on stan-
dard display device. Various local and global tone mapping
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(a) Input images captured at different exposure settings

(b) Our detail enhanced fusion results

Figure 1: Results of proposed detail-enhanced exposure fusion framework using edge preserving filter.
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Figure 2: Proposed detail-enhanced exposure fusion framework.

methods [2] have been proposed to display HDR images on
standard display devices. Local light adaption property of
human visual system (HVS) is adopted in the local operators
to correspond to the visual impression that an observer had
when watching the original scene, while the global operators
are spatially invariant and are less effective than the local
operators.

The recently proposed second option is the “exposure
fusion.”The fundamental goal of the exposure fusion is to pre-
serve details in both very dark and extremely bright regions
without HDRI representation and tone mapping step. The
underlying idea of various exposure fusion approaches [4–7]
is based on the utilization of different local measures to gen-
erate weight map to preserve details present in the different
exposures.

The present work draws inspiration from imaging tech-
niques that combine information from two or more images
captured at different exposure settings but with different

goals. The block diagrammatic representation of the present
detail enhanced framework is shown in Figure 2. We seek to
enhance fine details in the fused image by using edge preserv-
ing filter [8]. Edge preserving filters have been utilized in sev-
eral image processing applications such as edge detection [9],
image enhancement, and noise reduction [10]. Recently, joint
bilateral filter [11] has been proposed which is effective for
detecting and reducing large artifacts such as reflections using
gradient projections. More recently, anisotropic diffusion [9]
has been utilized for detail enhancement in exposure fusion
[12], in which texture features are used to control the contri-
bution of pixels from the input exposures. In our approach,
the guided filter is preferred over other existing approaches
because the gradients present near the edges are preserved
accurately. We use guided filter [8] for base layer and detail
layer extractions which is more effective for enhancing
texture details and reducing gradient reversal artifacts near
the strong edges in the fused image.Multiresolution approach
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(a) Mertens (b) Burt (c) Shen (d) Proposed

Figure 3: Comparison results to other recent exposure fusion techniques. (a) Mertens et al. [4], (b) Burt and Adelson [13], (c) Shen et al. [7],
and (d) results of our new exposure fusion method. Note that our method yields enhanced texture and edge features. Input image sequence
is courtesy of TomMertens.

(a) (b) (c)

Figure 4: Our results for differentmultiexposure sequences. (a) Hermes (two input exposures), (b) Chairs (five exposures), and (c) Syn (seven
input exposures).

is used to fuse computed base layers across all of the input
images. The detail layers extracted from input exposures are
manipulated and fused separately. The final detail enhanced
fused image (see Figures 3 and 4) is obtained by integrating
the fused base layer and the fused detail layer. The detailed
description of the proposed approach is given in the forth-
coming section. It is worth pointing out that our method
essentially differs from [4], which aims at enhancing the
texture and contrast details in the fused image with a nonlin-
ear edge preserving filter (i.e., the guided filter). Moreover, it
is demonstrated that the proposed approach fuses the multi-
focus images effectively and produces the result of rich visual
details.

2. Guided Image Filtering for
Base Layer Computation

2.1. Edge Preserving Guided Filter. In this section, we first
describe the ability of the guided filter [8] derived from local
linear model to preserve edges, and then show how it avoids
gradient reversal artifacts near the strong edges that may
appear in fused image after detail layer enhancement.We seek
to maintain the shape of strong edges in the fused image that
appears due to exposure time variation across input images.

Guided filter was developed by He et al. [8] in 2010 as an
alternative to bilateral filter [11]. It is an edge-preserving filter
where the filtering output is a local linear model between the
guidance 𝐼 and the filter output 𝑞. The selection of guidance

image 𝐼will depend on the application [11]. In our implemen-
tation, an input image 𝑝 and guidance image 𝐼 are identical.
The output of the guided filter for a pixel 𝑖 is computed as a
weighted averages as follows:

𝑞
𝑖
= ∑

𝑗

𝑊
𝑖𝑗 (𝐼) 𝑝𝑖, (1)

where (𝑖𝑗) are pixel indexes and𝑊
𝑖𝑗
is the filter kernel that is a

function of guidance image 𝐼 and independent of input image
𝑝. Let 𝑞 be a linear transform of 𝐼 in a window centered at the
pixel 𝑘 as follows:

𝑞
𝑖
= 𝑎
𝑘
𝐼
𝑖
+ 𝑏
𝑘
, ∀𝑖 ∈ 𝜔

𝑘
, (2)

where (𝑎
𝑘
, 𝑏
𝑘
) are the linear coefficients assumed to be

constant in𝜔
𝑘
and calculated in a small square image window

of a radius (2𝑟+1)×(2𝑟+1).The local linearmodel (2) ensures
that 𝑞 has an edge (i.e., discontinuities) only if 𝐼 has an edge,
because ∇𝑞 = 𝑎∇𝐼. Here, 𝑎

𝑘
and 𝑏
𝑘
are computed within to

minimize the following cost function:

𝐸 (𝑎
𝑘
, 𝑏
𝑘
) = ∑

𝑖∈𝜔𝑘

((𝑎
𝑘
𝐼
𝑖
+ 𝑏
𝑘
− 𝑝
𝑖
)
2
+ 𝜀𝑎
2

𝑘
) , (3)

where 𝜀 is the regularization term on linear coefficient a for
numerical stability.The significance and relation of 𝜀with the
bilateral kernel [11] are given in [8]. In our implementation,
we use 𝑟 = 2 (i.e., 5 × 5 square window) and 𝜀 = 0.01.
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The linear coefficients used to minimize the cost function
in (3) are determined by linear regression [15] as follows:

𝑎
𝑘
=

(1/ |𝜔|) ∑
𝑖∈𝜔𝑘
𝐼
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𝑘

𝜎
2
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+ 𝜀

,

𝑏
𝑘
= 𝑝
𝑘
− 𝑎
𝑘
𝜇
𝑘
,

𝑝
𝑘
=
1

|𝜔|
∑

𝑖∈𝜔𝑘

𝑝
𝑖
,

(4)

where 𝜇
𝑘
and 𝜎2

𝑘
are the mean and variance of 𝐼 in 𝜔

𝑘
, |𝜔| is

the number of pixels in 𝜔
𝑘
, and 𝑝

𝑘
is the mean of 𝑝 in 𝜔

𝑘
.

The linear coefficients 𝑎
𝑘
and 𝑏

𝑘
are computed for all

patches 𝜔
𝑘
in the entire image. However, a pixel 𝑖 is involved

in all windows 𝜔
𝑘
that contains 𝑖 so the value of 𝑞

𝑖
in (2) will

be different for different windows. So, after taking the average
of all the possible value of 𝑞

𝑖
, the filtered output is determined

as

𝑞
𝑖
=
1

|𝜔|
∑

𝑘:𝑖∈𝜔𝑘

(𝑎
𝑘
𝐼
𝑖
+ 𝑏
𝑘
) (5)

= (𝑎
𝑖
𝐼
𝑖
+ 𝑏
𝑖
) . (6)

Here, 𝑎
𝑖
and 𝑏
𝑖
are computed as

𝑎
𝑖
=
1

|𝜔|
∑

𝑘∈𝜔𝑖

𝑎
𝑘
, 𝑏

𝑖
=
1

|𝜔|
∑

𝑘∈𝜔𝑖

𝑏
𝑘
. (7)

In practice, it is found that 𝑎
𝑖
and 𝑏

𝑖
in (7) are varying

spatially to preserve strong edges of 𝐼 in 𝑞, that is, ∇𝑞 ≈ 𝑎
𝑖
∇𝐼.

Therefore, 𝑞
𝑖
computed in (6) preserves the strongest edges in

𝐼 while smoothing small changes in intensity.
Let 𝑏
𝐾
(𝑖

, 𝑗

) be the base layer computed from (6) (i.e.,

𝑏
𝐾
(𝑖

, 𝑗

) = 𝑞
𝑖
and 1 ≤ 𝐾 ≤ 𝑁) for 𝐾th input image denoted

by 𝐼
𝐾
(𝑖

, 𝑗

). The detail layer is defined as the difference

between the guided filter output and the input image, which
is defined as

𝑑
𝐾
(𝑖

, 𝑗

) = 𝐼
𝐾
(𝑖

, 𝑗

) − 𝑏
𝐾
(𝑖

, 𝑗

) . (8)

2.2. Computation of Laplacian and Gaussian Pyramid.
Researchers have attempted to synthesize and manipulate
the features at several spatial resolutions that avoid the
introduction of seam and artifacts such as contrast reversal
or black halos. In the proposed algorithm, the band-pass [13]
components at different resolutions aremanipulated based on
weight map that determine the pixel value in the recon-
structed fused base layer. The pyramid representation
expresses an image as a sum of spatially band-passed images
while retaining local spatial information in each band. A
pyramid is created by lowpass-filtering an image 𝐺

0
with a

compact two-dimensional filter. The filtered image is then
subsampled by removing every other pixel and every other
row to obtain a reduced image 𝐺

1
. This process is repeated to

form a Gaussian pyramid 𝐺
0
, 𝐺
1
, 𝐺
2
, 𝐺
3
, . . . , 𝐺

𝑑
:

𝐺
𝑙
(𝑖, 𝑗) = ∑

𝑚

∑

𝑛

𝐺
𝑙−1
(2𝑖 + 𝑚, 2𝑗 + 𝑛) , 𝑙 = 1, . . . , 𝑑, (9)

where 𝑙 (0 < 𝑙 < 𝑑) refers to the number of levels in the
pyramid.

Expanding 𝐺
1
to the same size as 𝐺

0
and subtracting

yields the band-passed image 𝐿
0
. A Laplacian pyramid

𝐿
0
, 𝐿
1
, 𝐿
2
, . . . , 𝐿

𝑑−1
, can be built containing band-passed

images of decreasing size and spatial frequency.

𝐿
𝑙
= 𝐺
𝑙
− 𝐺
𝑙+1
, 𝑙 = 1, . . . , 𝑑 − 1, (10)

where the expanded image 𝐺
𝑙+1

is given by

𝐺
𝑙+1
= 4∑

𝑚

∑

𝑛

𝑤 (𝑚, 𝑛) [𝐺𝑙 (2𝑖 +
𝑚

2
, 2𝑗 +

𝑛

2
)] . (11)

The original image can be reconstructed from the expanded
band-pass images:

𝐺
0
= 𝐿
0
+ 𝐿
1
+ 𝐿
2
+ ⋅ ⋅ ⋅ + 𝐿

𝑑−1
+ 𝐺
𝑑
. (12)

The Gaussian pyramid contains low-passed versions of the
original 𝐺

0
, at progressively lower spatial frequencies. This

effect is clearly seen when the Gaussian pyramid “levels” are
expanded to the same size as𝐺

0
. The Laplacian pyramid con-

sists of band-passed copies of 𝐺
0
. Each Laplacian level con-

tains the “edges” of a certain size and spans approximately an
octave in spatial frequency.

2.3. Base Layer Fusion Based on Multiresolution Pyramid. In
our framework, the fused base layer 𝑏

𝑓
(𝑖

, 𝑗

) is computed

as the weighted sum of the base layers 𝑏
1
(𝑖

, 𝑗

), 𝑏
2
(𝑖

, 𝑗

), . . . ,

𝑏
𝑁
(𝑖

, 𝑗

) obtained across 𝑁 input exposures. We use the

pyramid approach proposed by Burt and Adelson [13], which
generates Laplacian pyramid of the base layers 𝐿{𝑏

𝐾
(𝑖

, 𝑗

)}
𝑙

andGaussian pyramid of weightmap functions𝐺{𝑊
𝐾
(𝑖

, 𝑗

)}
𝑙

estimated from three quality measures (i.e., saturation
𝑆
𝐾
(𝑖

, 𝑗

), contrast 𝐶

𝐾
(𝑖

, 𝑗

), and exposure 𝐸

𝐾
(𝑖

, 𝑗

)). Here,

𝑙 (0 < 𝑙 < 𝑑) refers to the number of levels in the pyramid
and𝐾 (1 < 𝐾 < 𝑁) refers to the number of input images.The
weight map is computed as the product of these three quality
metrics (i.e.,𝑊

𝐾
(𝑖

, 𝑗

) = 𝑆
𝐾
(𝑖

, 𝑗

) ⋅ 𝐶
𝐾
(𝑖
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) ⋅ 𝐸
𝐾
(𝑖

, 𝑗

)). The

𝐿{𝑏
𝐾
(𝑖

, 𝑗

)}
𝑙multipliedwith the corresponding𝐺{𝑊

𝐾
(𝑖

, 𝑗

)}
𝑙

and summing over 𝐾 yield modified Laplacian pyramid
𝐿
𝑙
(𝑖

, 𝑗

) as follows:

𝐿
𝑙
(𝑖

, 𝑗

) =

𝑁

∑

𝐾=1

𝐿 {𝑏
𝑙

𝐾
(𝑖

, 𝑗

)}𝐺 {𝑊

𝑙

𝐾
(𝑖

, 𝑗

)} . (13)

The 𝑏
𝑓
(𝑖

, 𝑗

) that contains well exposed pixels is recon-

structed by expanding each level and then summing all the
levels of the Laplacian pyramid:

𝑏
𝑓
(𝑖

, 𝑗

) =

𝑑

∑

𝑙=0

𝐿
𝑙
(𝑖

, 𝑗

) . (14)

2.4. Detail Layer Fusion and Manipulation. The detail layers
computed in (8) across all the input exposures are linearly
combined to produce fused detail layer 𝑑

𝑓
(𝑖

, 𝑗

) that yields

combined texture information as follows:

𝑑
𝑓
(𝑖

, 𝑗

) =

∑
𝑁

𝐾=0
𝛾𝑓
𝐾
(𝑑
𝐾
(𝑖

, 𝑗

))

𝑁
, (15)
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(a) (b) (c)

Figure 5: ((a), (b)) Two partially focused images (focused on different targets), (c) image generated by the proposed approach, which
illustrates that the fused image extracts more information from the original images. Input sequence is courtesy of Adu and Wang.

(a) In1 (b) In2 (c) ANI (d) BLT (e) WLS (f) Mertens (g) Proposed

Figure 6: Color-coded map comparison (dark blue color indicates overexposed region and pure white indicates underexposed region).
Comparison results to other classic edge preserving and exposure fusion techniques. (a) Source exposure 1; (b) source exposure 2; (c)
anisotropic filter [9]; (d) bilateral filter [11]; (e) weighted least square filter [14]; (f) Mertens [4]; (g) results of our new exposure fusionmethod
based on guided filter. Note that our method yields enhanced texture and edge features. Input image sequence courtesy of TomMertens.

where 𝛾 is the user defined parameter to control amplification
of texture details (typically set to 5) and 𝑓

𝐾
(⋅) is the nonlinear

function to achieve detail enhancement while reducing noise
and artifacts near strong edges due to overenhancement. We
follow the approach of [10] to reduce noise across all detail
layers. The nonlinear function 𝑓

𝐾
(⋅) is defined as

𝑓
𝐾
(𝑖

, 𝑗

) = 𝜏(𝑑

𝐾
(𝑖

, 𝑗

))
𝛼

+ (1 − 𝜏) 𝑑𝐾 (𝑖

, 𝑗

) , (16)

where 𝜏 is a smooth step function equal to 0 if 𝑑
𝐾
(𝑖

, 𝑗

) is

less than 1% of the maximum intensity, 1 if it is more than 2%,
with a smooth transition in between, and the parameter 𝛼 is
used to control contrast in the detail layers. We have found
that 𝛼 = 0.2 is a good default setting for all experiments.

Finally, the detail enhanced fused image 𝑔(𝑖, 𝑗) is easily
computed by simply adding up the fused base layer 𝑏

𝑓
(𝑖

, 𝑗

)

computed in (14) and the manipulated fused detail layer
𝑑
𝑓
(𝑖

, 𝑗

) in (15) as follows:

𝑔 (𝑖

, 𝑗

) = 𝑑
𝑓
(𝑖

, 𝑗

) + 𝑏
𝑓
(𝑖

, 𝑗

) . (17)

3. Experimental Results and Analysis

3.1. Comparison with Other Exposure Fusion Methods. Fig-
ures 1, 3, and 4 depict examples of fused images from themul-
tiexposure images. It is noticed that the proposed approach
enhances texture details while preventing halos near strong
edges. As shown in Figure 1(b), the details from all of the
input images are perfectly combined and none of the four
input exposures (see Figure 1(a)) reveals fine textures on the
chair that are present in the fused image. In Figures 3(a)–3(d),
we compare our results to the recently proposed approaches.
Figures 3(a) and 3(b) show the fusion results using the mul-
tiresolution pyramid based approach. The result of Mertens
et al. [4] (see Figure 3(a)) appears blurry and loses texture
details while in our results (see Figure 3(d)) the wall texture
and painting on the window glass are emphasized which are
difficult to be visible in Figure 3(a). Clearly, this is suboptimal
as it removes Pixel-to-pixel correlations by subtracting a
low-pass filtered copy of the image from the image itself to
generate a Laplacian pyramid and the result is a texture and
edge details reduction in the fused image. Figure 3(b) shows
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Figure 7: Analysis of different free parameters used in the algorithm. Maximum quality score and entropy are only observed when 𝜀 = 0.01,
𝛾 = 5, and 𝑟 = 2 (which are set as default parameters). It is observed that VIFF increases as 𝜀, 𝛾, and 𝑟 increases but the larger values are
responsible for overenhancement. (a) Effectiveness of 𝜀 on metrics, (b) effectiveness of 𝑟 on metrics, (c) effectiveness of 𝛾 on metrics.

the results using pyramid approach [13] which reveals many
details but losses contrast and color information. Generalized
random walks based exposure fusion is shown in Figure 3(c)
which depicts less texture and color details in brightly
illuminated regions (i.e., lamp and window glass). Note that
Figure 3(d) retains colors, sharp edges, and details while also
maintaining an overall reduction in high frequency artifacts
near strong edges.

Figure 4 shows our results for different image sequences
captured at variable exposure settings (see Figure 4(a), Her-
mes; Figure 4(b), Chairs; and Figure 4(c), Syn (input images

are courtesy of Jacques Joffre and ShreeNayar)).Note that, the
strong edges and fine texture details are accurately preserved
in the fused image without introducing halo artifacts. The
halo artifacts will stand out if the detail layer undergoes a
substantial boost.

Moreover, in Figure 5, it is demonstrated that the pro-
posed method is also suitable for multifocus image fusion
to yield rich contrast. As illustrated in Figure 5(c), the edges
and textures are relatively better than those of input images.
Because our approach excludes fine textures from the base
layers, we can significantly preserve and enhance fine details
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(a) (b) (c)

Figure 8: Visual inspection: the effect of free parameter 𝑟 on detail enhancement. We have found that 𝑟 = 2 is sufficient for fine details
extraction and gives better results for most cases. Higher value of 𝑟 brings in artifacts near strong edges. (a) 𝑟 = 1; (b) 𝑟 = 3; and (c) 𝑟 = 6.

separately. However, multiresolution pyramid approach can
be accurately used for retaining strong edges and texture
details enhancement in multifocus image fusion problem.

3.2. Implementation and Comparison of Various Classic Edge-
Preserving Filters. Figures 6(a) and 6(b) depict the color-
coded maps of underexposed and overexposed images,
respectively. Dark blue color indicates overexposed region
and pure white color indicates underexposed region. Fig-
ures 6(c)–6(f) illustrate the comparisons of color-codedmaps
of three edge preserving filters based detail enhancement
and the results obtained by Mertens et al. [4] on the Cathe-
dral sequence. We accepted the default parameter settings
suggested by the different edge preserving filters [9, 11, 14].
Figures 6(c) and 6(f) show, respectively, the fusion results
using the anisotropic diffusion [9] based approach and the
multiresolution pyramid based exposure fusion approach [4],
which are both clearly close to the results obtained using
guided filter (see Figure 6(g)), but overall, they yield less tex-
ture and edge details. The texture detail enhancement using
bilateral filter [11] and weighted least square filter [14] shown
in Figures 6(d) and 6(e), respectively, depicts overenhance-
ment near strong edges and less color details. As shown in the
close-up view in Figure 6(g), the proposed method based on
guided filter can enhance the image texture details while
preserving the strong edges without over enhancement.

3.3. Analysis of Free Parameters and Fusion Performance
Metrics. To analyze the effect of epsilon, gamma, andwindow
size on quality score (Qabf) [16], entropy, and visual informa-
tion fidelity for fusion (VIFF) [17], we have illustrated three
plots (see Figures 7(a)–7(c), resp.) for input image sequence
of “Cathedral.” To assess the effect of epsilon, gamma, and
window size on fusion performance, the Qabf, entropy, and
VIFF were adopted in all experiments executed on a PC
with 2.2GHz i5 processor and 2GB of RAM. VIFF [17] first

decomposes the source and fused images into blocks. Then,
VIFF utilizes the models in VIF (GSM model, distortion
model, and HVS model) to capture visual information from
the two source-fused pairs.With the help of an effective visual
information index, VIFF measures the effective visual infor-
mation of the fusion in all blocks in each subband. Finally,
the assessment result is calculated by integrating all the infor-
mation in each subband. Qabf [16] evaluates the amount of
edge information transferred from input images to the fused
image. A Sobel operator is applied to yield the edge strength
and orientation information for each pixel.

First, to analyze the effect of 𝜀 onQabf, entropy, andVIFF,
the square window parameter (𝑟) and texture amplification
parameter (𝛾) were set to 2 and 5, respectively. As shown
in Figure 7(a), the quality score and entropy decreases as
𝜀 increases and VIFF increases as 𝜀 increases. It should be
noticed in Figure 7(b) that the VIFF and entropy increase as 𝑟
increases and Qabf decreases as 𝑟 increases. It is preferred to
have a small filter size (𝑟) to reduce computational time. In
the analysis of 𝑟, the other parameters are set to 𝜀 = 0.01
and 𝛾 = 5. The visual inspection of effect of 𝑟 on “Cathedral”
sequence is depicted in Figure 8. It can easily be noticed (see
Figures 8(a)–8(c)) that as 𝑟 increases, the strong edges and
textures get overenhanced and therefore leads to artifacts. To
analyze the influence of 𝛾, it should be noticed that entropy
and Qabf decrease as 𝛾 increases and VIFF increases as 𝛾
increases. In order to obtain optimal detail enhancement and
low computational time, we have concluded that the best
results were obtained with 𝜀 = 0.01, 𝛾 = 5, and 𝑟 = 2, which
yield reasonably good results for all cases.

4. Conclusions

We proposed a method to construct a detail enhanced image
from a set ofmultiexposure images by using amultiresolution
decomposition technique. When compared with the existing
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techniques which use multiresolution and single resolution
analysis for exposure fusion, the current proposed method
performs better in terms of enhancement of texture details
in the fused image. The framework is inspired by the edge-
preserving property of guided filter that has better response
near strong edges. The two layer decomposition based on
guided filter is used to extract fine textures for detail enhance-
ment. Moreover, we have demonstrated that the present
method can also be applied to fuse multifocus images (i.e.,
images focused on different targets). More importantly, the
information in the resultant image can be controlled with the
help of the proposed free parameters.
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