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The theme of this paper is to analyze and compare the pulse compression with classical orthogonal poly-
nomials (Chebyshev, Laguerre, Legendre and Hermite polynomials) of different orders. Pulse compression
is used in radar systems to improve the range resolution by increasing the time-bandwidth product of the
transmitted pulse. It is done by modulating the instantaneous angle of the transmitted pulse. Three types
of angle modulations are considered in this paper. Initially, the angle is varied in proportional to the orig-
inal polynomials. Secondly, the angle is proportional to integral of the polynomial and thirdly, the angle is
proportional to derivative the polynomial. The main purpose of this analysis is to obtain and use the best
of all these polynomials in pulse compression. This is done by comparing the quantitative parameter of
pulse compression - time-bandwidth product. Optimization to maximize the time-bandwidth product is
also considered in the analysis.
� 2017 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction width in the time domain and small signal strength [2]. To avoid
In radar systems, for the determination of range and velocity of
the target, a narrow pulse is transmitted into the space and then
the reflected signal from the target is captured [1–3]. The time dif-
ference between the instant at which the initial pulse is transmit-
ted and reflected pulse has arrived is used in the determination of
the range of the target. If the transmitted pulse is having any car-
rier frequency which is the general mode of carrier transmission by
modulation of the carrier, there will be a change in the frequency
of the pulse that is being transmitted due to relative velocity
between radar receiver and target. The change in the frequency
which is called as Dopplershift is proportional to the relative veloc-
ity between the observing system and the moving target. This Dop-
pler shift will be used in determination of the velocity of the target.

If the pulse transmitted is very narrow in time domain, there is
a possibility that the reflected signal will be having small signal
strength and in the detection process it may fall into the noise floor
of the system giving a chance to miss the target due to narrow
this problem, the peak power of the signal has to be increased. This
is not practically a viable solution as most of the radar transmitters
operate in the saturation level of the high power amplifier before
the antenna [3]. To balance this, a long pulse has to be transmitted
which reasonably avoids the missing of target due to narrow pulse
width and small signal strength. But the longer pulse has a limita-
tion in determining the very closely spaced two targets in a colli-
near orientation [3]. This happens due to the overlapping of the
reflected pulse from the first target by the reflected pulse from
the second target there by giving scope for the ambiguity in iden-
tifying them as two different targets. The ability of the radar sys-
tem to identify two closely spaced objects is defined as the range
resolution and for sophisticated radar systems this must be as
small as possible. Hence very short pulses are to be transmitted
for high range resolution radar systems.

In summary, for good radar system which has the better capa-
bility of resolving the range should have a narrow pulse in time
domain and wideband signal in frequency domain. These two
requirements cannot be attained with a simple single tone pulse;
hence the modulation has been incorporated into the pulse which
alters the spectral distribution without changing the duration of
the pulse in time domain. The objective of the pulse compression
is to de-spread the spectral content of the fixed duration pulse with
some modulation [4].

The block diagram for a radar system thatuses thepulse compres-
sion is shown in Fig. 1. Initially a continuous carrier signal is gener-
ated by a microwave source and this continuous carrier is
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Fig. 1. Simplified block diagram of the radar system with pulse compression.
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modulated by a pulse modulator in order to transmit the pulses at
regular intervals of timewhich is also called as pulse repetitive inter-
val. In the absence of the pulse compression, this pulse is directly
applied to the high power amplifier and then to the transmitting
antenna. If the pulse compression is required, then the carrier ismod-
ulated in angle and then applied to the highpower amplifier and then
to the transmitting antenna. Pulse compression is done bymodulat-
ing the angle of the transmitted pulse in different ways. The figure of
merit of the pulse compression is the time-bandwidth product [5,6].
It is a known fact that timedurationof thepulse andbandwidthof the
same pulse are inversely proportional. Hence it is not possible to
improve the time-bandwidth product by simply stretching the pulse
in time domain. This has to be done only with the modulation of the
carrier pulse which leads to pulse compression.

Many pulse compression techniques have been developed in the
literature [7–10]. Baghel and Panda [7], have proposed a hybrid
model for the phase coded waveforms in which matched filter out-
put is modulated by the output of radial function for different Barker
codes. In addition to this, the hardware requirement is also signifi-
cantly less to implement this hybridmodel without any training iter-
ations as in the neural network. In [8], the authors have developed a
model in which a mismatched filter, comprised of a matched filter is
cascaded with a parameterized multiplicative finite-duration
impulse response filter. For a given main lobe to sidelobe ratio, the
proposed filter is longer than the length-optimal filters but uses
fewer multipliers and adders. Vizitiu [9] has produced a technique
to overcome the problems of linear frequency modulated signal that
is stretching of the main lobe width which disturb the range resolu-
tion by using nonlinear laws and recently developedWoo filters [10]
are much better choices for the pulse compression if the hardware
requirements are of no constraint.

In the literature there is little comparative analysis on pulse com-
pression with classical orthogonal polynomials [11–13] and this
paper addresses the pulse compression with classical orthogonal
polynomials for different orders and a detailed analysis is carried out.

This paper has been organized as follows. The section II gives the
problem formulation while section III gives the simulation and
results. Section IV gives the conclusion based on the detailed study.

2. Problem formulation

The range resolution can be expressed as

R ¼ cs=2 ð1Þ
where c is the propagation velocity of the pulse and s is the dura-
tion of the pulse. In practice, rather than sending a single pulse,
multiple pulses will be sent at some intervals of time. This interval
sometimes can be regular or irregular depending on the application.
If it is regular interval, then it is called as pulse repetitive interval (p.
r.i). For a better range resolution, s must be as small as possible. A
rectangular pulse with duration s has resolution bandwidth (BW) as
1=s. Hence the range resolution can be expressed in terms of band-
width as

R ¼ C
2BW

ð2Þ

For better resolution in range, the bandwidth of the pulse has to
be very large which indicates a shorter pulse. This shorter pulse
makes difficulty in decision of the target. Hence the BW of the
pulse has to be increased as much as possible while maintaining
the duration of the pulse fixed. To satisfy this constraint, modula-
tion can be applied on the pulse with the equation

x ðtÞ ¼ A ¼ cos ðhðtÞÞ � Rect
t
s

� �
¼ A cos 2pft þuðtÞð Þ � Rect

t
s

� �

ð3Þ
where Rect(t/s) is a rectangular pulse of duration s. Here s has been
fixed and the search has to be conducted for the best possible func-
tion uðtÞ, such that the spectrum of xðtÞ has to spread flatly over the
large band of frequencies.

There are many functions possible for u(t), but in this paper, the
functions are confined to the classical polynomials due to the wide
area applications of these classical polynomials in engineering
domain [12]. This paper presents the detailed analysis of the pulse
compression with respect to classical orthogonal polynomials. In
order to observe time-bandwidth product, spectrum of different
classical orthogonal polynomials has been obtained. Depending
on the values of a (optimizing factor), the spectrum is expanding
smoothly up to a certain value after that spectrum get distorted.
Hence this variable a has to be selected such that the time-
bandwidth can be improved without any distortion in the signal
spectrum.

3. Simulations and results

The transmitted pulse can be expressed in mathematical as x(t).
This precisely represents a carrier of duration s seconds whose
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angle is varied in accordance with uðtÞ. Variations in the function
uðtÞ give the modulation in the transmitted pulse. In this paper,
three types of variations are considered. Firstly, uðtÞ is varied in
proportion to the classical orthogonal polynomial pn(t). Here pnðtÞ
can be any orthogonal polynomial of order n. Secondly, uðtÞ is var-
ied in proportion to the integral of the classical orthogonal polyno-
mial and finally uðtÞ is varied in proportion to the derivative of the
classical orthogonal polynomial. First case is considered as the
phase modulation of the carrier with uðtÞ

hðtÞ ¼ 2pft þ apnðtÞ ð4Þ
Second case is considered as frequency modulation.

hðtÞ ¼ 2pft þ a
Z

pnðtÞdt ð5Þ

Third case can be treated as general angle modulation of carrier
with uðtÞ.

hðtÞ ¼ 2pft þ adpnðtÞ=dt ð6Þ
The maximum variations in the instantaneous frequency and

the maximum phase deviation for the transmitted pulse can be
controlled with the parameter a and after the analysis is carried
out, it is possible to come up with the maximization of time-
bandwidth product. Hence a is considered as optimizing parameter
for maximum bandwidth.
Table 1
Recursive equations for classical orthogonal polynomials of order n; ðn P 0Þ with
T0 ¼ P0 ¼ L0 ¼ H0 ¼ 1.

Chebyshev (Tn) Tnþ1 ¼ 2xTn � Tn�1

Legendre (Pn) Pnþ1 ¼ 1
nþ1 ðð2nþ 1ÞxPn � nPn�1Þ

Laguerre (Ln) Lnþ1 ¼ 1
nþ1 ðð2nþ 1� xÞLn � nLn�1Þ

Hermite (Hn) Hnþ1 ¼ 2xHn � 2nHn�1
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Fig. 2. Classical orthogonal polynomials of different orders. (Black, Blue, Red and M
In the simulations, the above mentioned three variations are
considered with first four order polynomials of all classical orthog-
onal polynomials. The duration of the pulse has been fixed con-
stant for all simulations and the carrier frequency f has been
taken as 61 Hz. This is arbitrary and the conclusions are not going
to change because of this choice, as the frequency can be scaled up
according to the requirements in practical applications. All four
types of the classical polynomials are given in Table 1. Fig. 2 repre-
sents the variation of the polynomials as a function of time. Fig. 3
represents the transmitted signals with different polynomials for
the same optimizing parameter a with uðtÞ proportional to pn(t)
With the help of FFT [14] the spectrum for the transmitted pulse
is obtained and Fig. 4 represents the frequency spectrum for differ-
ent optimizing parameters for all four types of polynomials. All
simulations are carried out in MATLAB [15]. The color of the traces
has been preserved in all the succeeding figures for comparison.

From Fig. 4 it is observed that by increasing the a from small
number to large number, the spectrum of the signal is spreading
smoothly from narrow band to large band and then there is a dis-
tortion in the spectrum distribution. This can be observed in the
column-wise plots. This indicates that there is an optimal value
of a which maximizes the time-bandwidth product which is the
main requirement in pulse compression. This has been calculated
for all types of polynomials and tabulated in Table 2.

The optimal value is possible for all the classical polynomials
except for the Laguerre polynomials which are deviated from the
rest of the polynomials. This can be attributed to the fact that
Laguerre polynomials are monotonic in the entire time duration
and the variations in the arguments are too fast (very high fre-
quency). If there is a practical device which can support such a
huge frequency variations with high accuracy in a short period of
time (restriction on the physical reliability of the source), the
Laguerre polynomials are a better choice as far as the pulse com-
pression is require. A comparative analysis on all the spectral prop-
erties of these transmitted pulses have been carried out with the
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Fig. 3. Transmitted signal with different classical orthogonal polynomials.
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Fig. 4. Spectrum for classical orthogonal polynomials having order one and different values of a. First, second, third and fourth columns are for Chebyshev, Legendre, Laguerre
and Hermite polynomials respectively.
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Table 2
Optimal values (a) and bandwidth for classical orthogonal polynomials in phase
modulation.

Polynomials 2nd order 4th order

a B.W. a B.W.

Chebyshev 85 110 21 82*

Legendre 130 117 50 116*

Laguerre 600** 178** 21 35
Hermite 48 117 3 50*
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three abovementioned cases. Figs. 5–7 represent the spectral vari-
ations of different order classical polynomials in phase modulation
(first case), frequency modulation (second case) and finally the
general case of angle modulation. The spectrums are observed for
orders two, three and four for proportional, derivative and integral
variations and the results are tabulated in Tables 2–4 for phase, fre-
quency and general angle modulations.

From the tables and figures, it is observed that, when the order
of the polynomial is increased, the spectral distribution is not
smooth and the first order polynomials are giving better properties
in case of frequency modulation compared to all other polynomi-
als. At the same time, it is also observed that the frequency modu-
lation with first order is similar to phase modulation with second
order which is a known fact that the frequency modulation and
phase modulations are inter-related. Even though they appear to
be almost same in spectrum, there is a slight difference in the spec-
trum due to the difference in the functions in the arguments. Of
these two options, frequency modulation is better than the phase
modulation.

In frequency modulation, by comparing time-bandwidth pro-
duct in polynomials to polynomials, Except Laguerre, all other
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Fig. 5. Spectrum for classical orthogonal polynomia
polynomials have good bandwidth in first order. Second ordered
Laguerre polynomial has good bandwidth of 500 Hz when a is
equal to 760. Polynomials having order three, Laguerre and Her-
mite gives flat spectrum but Laguerre have better result that is
bandwidth of 560 Hz at a is equal to 570. Laguerre polynomial hav-
ing order four gives better bandwidth than other order polynomi-
als that is 880 Hz at a is equal to 610. So Laguerre polynomials are
better in order to improve time-bandwidth product than other
polynomials. It is also observed that when the value of a is
increased then spectrum of the signal is spreading but there are
some ripples in the response along with attenuation in the spec-
trum. These ripples can be averaged in order to make the response
smooth. In phase modulation, polynomials having order one have
not any optimal bandwidth. For order two, all the polynomials
have good bandwidth for different a values. Polynomials having
order four, Hermite have better bandwidth that is 50 Hz at a is
equal to 3.

Finally, the spectral contents are observed for higher order poly-
nomials and they are not suitable for the pulse compression as the
spectral distribution is highly non-uniform as represented in Fig. 8.
Here the orders of the polynomials (for Chebyshev) are taken as 2
and 31. Similar kind of non-uniform spectral distribution is hap-
pening for other higher order classical polynomials.
4. Conclusions

The complete detailed analysis on pulse compression with the
classical orthogonal polynomials is carried out and it is concluded
that the Laguerre polynomials are a better choice for pulse com-
pression if there is no restrictions on the physical implementation
of the source. After Laguerre polynomials, Legendre polynomials
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Fig. 6. Spectrum for classical orthogonal polynomials having different order in frequency modulation.
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Fig. 7. Spectrum for differentiated classical orthogonal polynomials having different order.
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Table 3
Optimal values (a) and bandwidth for classical orthogonal polynomials in frequency modulation.

Polynomials 1st order 2nd order 3rd order 4th order

a B.W. a B.W. a B.W. a B.W.

Chebyshev 400 120 – – – – – –
Legendre 400 120 – – – – – –
Laguerre 200** 55** 760 471 570 560 610 880
Hermite 200 120 – – 70 120 – –

Table 4
Optimal values (a) and bandwidth for differentiated classical orthogonal polynomials.

Polynomials 3rd order derivative 5th order derivative

a B.W. a B.W.

Chebyshev 16 118 2 115*

Legendre 27 118 5 135*

Laguerre 120** 35** 40** 120**

Hermite 8 118 0.8 120*

* Represents averaging the spectrum is required.
** Laguerre polynomials whose spectrum is increasing up to any optimising value.
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Fig. 8. Spectrum for Chebyshev polynomial of n ¼ 2 (Black) and n ¼ 31 (Blue).
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are giving better time-bandwidth product for frequency modula-
tion with orderone. It is also observed that frequency modulation
gives better time-bandwidth product for these polynomials than
phase modulation and higher order polynomials are not suitable
for pulse compression.
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