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Abstract This paper presents a cat swarm optimization
(CSO) algorithm for solving global optimization problems.
In CSO algorithm, some modifications are incorporated to
improve its performance and balance between global and
local search. In tracing mode of the CSO algorithm, a new
search equation is proposed to guide the search toward a
global optimal solution. A local search method is incorpo-
rated to improve the quality of solution and overcome the
local optima problem. The proposed algorithm is named as
Improved CSO (ICSO) and the performance of the ICSO
algorithm is tested on twelve benchmark test functions.
These test functions are widely used to evaluate the perfor-
mance of new optimization algorithms. The experimental
results confirm that the proposed algorithm gives better
results than the other algorithms. In addition, the proposed
ICSO algorithm is also applied for solving the clustering
problems. The performance of the ICSOalgorithm is evaluated
on five datasets taken from the UCI repository. The simulation
results show that ICSO-based clustering algorithm gives bet-
ter performance than other existing clustering algorithms.

Keywords Cat swarm optimization · Clustering ·
Meta-heuristics · Numerical functions · Improved CSO

� Yugal Kumar
yugalkumar.14@gmail.com

Pradeep Kumar Singh
pradeep 84cs@yahoo.com

1 Department of Computer Science and Engineering,
Jaypee University of Information Technology, Waknaghat,
Solan, Himachal Pradesh, India

1 Introduction

There are many optimization problems, including unimodal
and multimodal, in the fields of engineering and science.
These optimization problems can be further categorized
into unimodal separable and inseparable problems, and
multimodal separable and inseparable problems. In litera-
ture, many methods have been reported for solving these
problems; these methods either maximize or minimize the
objective function. Moreover, these methods have also been
applied for solving real-life problems such as clustering,
classification, scheduling, path planning, resource alloca-
tion, and many other problems. In recent years, large num-
bers of optimization algorithms have been developed by
researchers to find the solution for the above-mentioned
optimization problems. These algorithms are divided into
two categories, i.e., exact algorithms and approximation
algorithms [1]. Exact algorithms find the optimal solution
within the bounded time but have exponential compu-
tational time, whereas approximation algorithms provide
better results both in time and solution using heuristics.
Meta-heuristic algorithms are the sub-branch of approxi-
mation algorithms which have been applied for solving a
wide range of optimization problems. Most of these algo-
rithms are inspired by natural phenomena. Some examples
of these algorithms are simulated annealing (SA) algorithm
[2], genetic algorithm (GA) [3], particle swarm optimiza-
tion (PSO) [4], ant colony optimization (ACO) [5], har-
mony search (HS) [6], artificial bee colony (ABC) [7],
firefly algorithm (FA) [8], league championship algorithm
(LCA) [9], water cycle algorithm (WCA) [10], charge sys-
tem search (CSS) algorithm [11, 12], magnetic charge
system search (MCSS) [13–15], teaching learning based
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optimization (TLBO) [16, 17], and mine blast algorithm
(MBA) [18].

Recently, the CSO algorithm has gained popularity
among the scientific community due to its strong explo-
ration ability and effective solving of complex optimiza-
tion problems [19]. Due to its simple and straightforward
implementation, this algorithm has been applied in diverse
fields. Initially, Chu et al. presented the CSO algorithm for
optimizing numerical test functions [19]. This algorithm
is characterized by the behavior of cats, and each cat is
described in terms of position and velocity. This algorithm
measures the behavior of a cat in two modes – seeking
mode and tracing mode. In the optimization process, the
position of a cat is optimized by using its own experience
(especially, in seeking mode) and velocity. However in trac-
ing mode, the CSO algorithm can trap in local optima for
some complex and intricate optimization problems, and also
can have low convergence rate in last iterations. The CSO
algorithm has weak diversity problem for a few benchmark
functions.

Contribution of this work The main contribution of this
study is that it handles the aforementioned shortcomings of
the CSO algorithm. The aim of this research work is to pro-
pose some modifications in the CSO algorithm in order to
overcome the problems of weak diversity and convergence
rate. To make the CSO algorithm more efficient, reliable
and robust, these modifications are incorporated into indi-
vidual cat memory and experience. The main contribution
of this work is to deal with the following issues of CSO
algorithm.

• Lack of balance between exploration (seeking mode)
and exploitation (tracing mode) processes.

• Lack of diversity for fewer benchmark functions, espe-
cially in tracing mode.

• Slow convergence problem in the last generations of the
iterative process.

The following amendments are integrated in the CSO
algorithm to deal with the above-mentioned issues. These
amendments are as follows.

• A new enhanced and accelerated velocity equation is
proposed for the CSO algorithm, especially for tracing
mode.

• A new position update equation is proposed both for
tracing and seeking modes.

• A local search method is incorporated to improve the
quality of solution and handle local the optima problem.

The proposed algorithm is tested on several benchmark
test functions for analyzing its performance and accuracy.

The experimental results showed that the performance of the
proposed algorithm is improved in terms of global search
and convergence rate.

The rest of the paper is organized as follows.
Section 2 summarizes related works on CSO algorithm. The
description of CSO algorithm is illustrated in Section 3.
Section 4 presents the proposed ICSO algorithm and its
steps for solving benchmark test functions. The experimen-
tal results of the proposed algorithm and other state-of-the-
art algorithms are given in Section 5. Section 6 explores
the applicability of the proposed ICSO algorithm for solv-
ing the real-world clustering problems. Section 7 reports the
conclusion of the work done.

2 Related works

This section describes the related works in the direction of
CSO algorithm for solving different optimization problems.
Mohapatra et al. [20] developed a modified cat swarm opti-
mization algorithm for improving the searching ability of
cats. In this work, a mutation operator was applied to mutate
the position of the best cat for achieving good results. The
gene data analysis and classification tests showed that the
modified CSO algorithm has better performance in compar-
ison to other algorithms. To investigate the parallel structure
of CSO algorithm, Tasi et al. [21] presented a parallel CSO
algorithm and tested its performance on several benchmark
functions. It was reported that the parallel CSO algorithm
has better performance to PSO and CSO algorithms. In
continuation of their work, Tasi et al. [22] developed an
enhanced parallel cat swarm optimization (EPSO) algorithm
to obtain higher accuracy and less computational time. In
the EPSO algorithm, the Taguchi method was incorporated
for achieving higher accuracy rate and optimal solutions.
The performance of the EPSO algorithm was tested on
five benchmark functions, and it was found that the EPSO
algorithm has a higher accuracy rate. Orouskhani et al. intro-
duced the concept of inertia weight in CSO algorithm for
better convergence rate. The simulation results showed that
the proposed algorithm achieves better convergence results
in comparison to the original CSO algorithm [23]. For opti-
mal design of the circular and concentric circular antenna
arrays, Ram et al. [24] applied the CSO algorithm. Yang
et al. [25] adopted the CSO algorithm for processing and
analyzing the medical image. In their work, CSO algorithm
was combined with limited memory Broyden–Fletcher–
Goldfarb–Shanno with boundaries (L-BFGS-B) and called
it HLCSO. The simulation results showed that the HLCSO
method gives better accuracy and less computational times.
To improve the performance of the CSO algorithm, Lin et al.
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[26] incorporated two improvements in CSO algorithm and
called the resultant algorithm an improved CSO (ICSO).
Results stated that the ICSO algorithm has higher accuracy
rate in comparison to the traditional CSO algorithm. Guo
et al. [27] applied the CSO algorithm to estimate the param-
eters of solar cell model. Simulation results showed that
the CSO is an effective tool for identification of parameters
of solar cell model. To optimize the design of a channel
cross-section, Liu et al. [28] applied the CSO algorithm
for safety and stability of side walls in a hydraulic design.
The CSO algorithm provides better results in comparison
to GA and PSO algorithms. In continuation of their work,
Ram et al. [29] also applied CSO algorithm for reducing
the side lobe level of the concentric circular antenna and
satisfactory results. To determine the location and control-
ling parameters of SVC and TCSC, Nireekshana et al. [30]
applied CSO algorithm and claimed that the CSO algo-
rithm provides better results. Wang et al. [31] proposed a
new algorithm based on CSO and called it NCSO. In their
work, a new mechanism was introduced to make the MR
parameter dynamic. Further, the Cauchy mutation operator
was applied to enhance the global search of CSO algo-
rithm. The performance of the NCSO algorithm was tested
on twelve benchmark functions, and it was found that the
NCSO is an effective and efficient algorithm. Kotekar and
Kamath applied the CSO algorithm for clustering the web
documents, and their results showed that the CSO algorithm
enhances the web service process [32]. Yusiong applied the
CSO algorithm to optimize the parameters of the artificial
neural network (ANN). It was reported that the CSO is an
effective tool for optimizing the parameters of ANN. Sharafi
et al. [33] developed a binary version of CSO algorithm and
tested it on several benchmark optimization functions. The
results showed that the proposed algorithm obtains better
quality results in comparison to the GA and Binary PSO
algorithms. Pappula and Ghosh applied CSO algorithm for
the synthesis of linear antenna arrays. The simulation results
showed that the CSO algorithm gives better results than
the PSO and ACO algorithms [34]. To improve the accu-
racy rate, Orouskhani et al. [35] developed a new adaptive
dynamic CSO algorithm, which was tested on six bench-
mark test functions. It was revealed that it takes less time
to converge. In literature, the CSO algorithm has also been
applied for solving clustering problems [36–38].

3 Cat swarm optimization

Chu and Tasi developed CSO algorithm based on the two
key characteristics of cats [19], i.e., hunting and resting
skills. According to the hunting skill, a cat has strong

curiosity toward moving objects. In the resting skill, a cat
spends most of its time in the resting position, even though
it remains alert and slowly moves to different positions.
But, if a target is identified, then cat quickly captures the
target spending a lot of energy. So, on the behalf of these
two key characteristics of cats, a mathematical model was
formed to solve complex optimization problems and was
named cat swarm optimization. In this model, two modes,
i.e., seeking and tracing modes, are described to measure the
behavior of cats. The working of these modes is explained
in Sections 3.1 and 3.2.

3.1 Seeking mode

The seeking mode describes the resting skill of cats. In seek-
ing mode, a cat moves to different positions in the search
space, but remains alert. It can be interpreted as local search
for the solutions. The following notations are used in this
mode.

• SeekingMemory Pool (SMP): This parameter describes
the number of copies of a cat to be replicated.

• Seeking Range of selected Dimension (SRD): It denotes
the difference between new and old dimensions of cat
selected for mutation.

• Counts of Dimension to Change (CDC): It represents
the number of dimensions a cat position undergone for
mutation.

The steps of seeking mode of CSO algorithm are given as
follows.

1. Define the number of copies (T) of ith cat.
2. According to CDC parameter, do the following

i. Randomly add or subtract SRD values from current
position of cats.

ii. Replace the old values for all copies.

3. Compute the fitness for all copies
4. Choose the best candidate solution and deploy at the

position of ith cat.

3.2 Tracing mode

This mode reflects the hunting skill of cats. When a cat
hunts the prey, the position and velocity of cat are updated.
So, a large difference occurs between new and old posi-
tions of cats. The position (Xd

j ) and velocity (Vd
j ) of the

jth cat in the D-dimensional space can be defined as Xd
j ={

X1
j ,X

2
j , . . . . . . .X

D
j

}
; Vd

j =
{
V1
j ,V

2
j , . . . . . . .V

D
j

}
; where

d = 1, 2, . . .D.
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The best position of the cat is represented using Xd
best ={

X1
best,X

2
best, . . . . . . .X

D
best

}
.

The velocity and position of the jth cat are computed
using (1) and (2).

Vd
j new = w ∗ Vd

j + c ∗ r ∗
(
Xd
jbest − Xd

j

)
(1)

where, Vd
j new represents the updated velocity of jth cat in the

dth dimension, w denotes a weight factor in the range of 0
and 1, Vd

j represents the old velocity of the j
th cat, c is a user

defined constant, r denotes a random number in the range
of 0 and 1, Xd

jbest represents the best position achieved by j
th

cat in dth dimension, and Xd
j denotes the current position of

the jth cat in dth dimension where d = 1, 2, . . .D.

Xd
j new = Xd

j + Vd
j (2)

where, Xd
j new denotes the updated position of the jth cat in

dth dimension, Xd
j denotes the current position of the jth cat

in dth dimension and Vd
j represents the velocity of the j

th cat.
Mixture Ratio (MR) is used to combine the seeking and

tracing modes of the CSO algorithm. MR is designed to
determine the number of cats in seeking and tracing modes.
The steps of the CSO algorithm are as follows.

1. Initialize the population of cats.
2. Define the user-defined parameters and numbers of cats

in seeking mode and tracing mode according to MR
parameter value.

3. Compute the fitness function for each cat and memorize
the best position.

4. According to flag:

• If cat is in seeking mode, apply the seeking mode
process.

• Otherwise, apply tracing mode process.

5. Again set the number of cats in tracing and seeking
modes according to the MR parameter.

6. Repeat steps 3–5 until the termination condition is
satisfied.

4 Proposed ICSO algorithm

According to Orouskhani et al., the CSO algorithm suffers
from premature convergence due to its weak diversity and
introduced the concept of inertia weight to overcome this
issue [23]. Moreover, it is also stated that in CSO algo-
rithm, positions of cats are updated by using the current

positions and velocities of cats. Sometime, the algorithm
fails to explore promising solutions due to the lack of infor-
mation regarding global best position of cat. Hence, to deal
with these issues, the following amendments are proposed
in the CSO algorithm.

• To explore more promising solution and enhance the
convergence rate, the global best position of cat is used
to guide the positions of cats in tracing mode. Hence,
a new modified search equation is proposed for tracing
mode of CSO algorithm which includes the global best
position of cat.

Xd+1
j new = (1 − β) ∗ Xd

j + β ∗ Pg + Vd
j (3)

• The CSO algorithm uses a velocity vector and previ-
ous position of cat to update the position of a cat in
tracing mode. The updated position of a cat is only
influenced by velocity vector. Hence, to improve the
diversity of CSO algorithm, especially in tracing mode,
a new velocity updated equation is proposed, which is
inspired from [39].

Vd+1
j new = Vd

j + β
(
Pg − Xd

j

)
+ α ∗ ε (4)

• where, ε is a random vector uniformly distributed in the
range [0, 1]; α and β are acceleration parameters used
to direct the position of a cat toward local and global
best positions and Pg presents the global best position
of a cat

• To make the balance between the exploration and
exploitation processes, both of acceleration parameters
α and β act as control parameters. The α parameter
acts as decreasing function, whereas β parameter serves
as an increasing function. In this work, the values of
both the parameters are adaptive and computed using
the following equations.

α (t) = αmax −
{

αmax − αmin

tmax

}
∗ t (5)

In (5), αmax and αmin present the upper and lower lim-
its, tmax denotes the maximum number of iterations and
t denotes the current iteration number. Hence, α (t) is
a step function whose value ranges between upper and
lower limits. The larger value of α supports exploration
whereas small values support exploitation. The aim of
α (t) parameter is to control the exploration process of
cats in search space.

β (t) = βmin + (βmax − βmin) sin

{
π t

tmax

}
(6)

In (6), βmin and βmax denote the minimum and max-
imum values of first and last iterations respectively



Improved cat swarm optimization algorithm for solving global optimization problems... 2685

tmax presents the maximum number of iterations and t
denotes the current iteration number. The reason behind
the incorporation of β (t) parameter is to influence the
global exploration ability of the proposed algorithm.
A large value of parameter strengthens the global best
position of cat and also tends to the solution refinement.

4.1 Local search method

In this subsection, a local search method is summarized to
improve the quality of solution. The proposed method is
applied to the tracing phase of ICSO algorithm. The aim of
this method is to guide the search direction and achieve the
optimum solution. The need for local search method can be
summarized as follows:

• To guide the search direction and obtain the optimum
solution in search space

• To overcome the local optima problem through neigh-
borhoods information

This search mechanism is applied to the current global best
solution (Xgbest), and the neighborhood of best solution can
be defined using (7).

Neighbor of
[
Xgb

] = [
Xgbest − r,Xgbest + r

]n (7)

where, “r” describes the boundary of neighborhood, Xgb

presents the current best solution and can be denoted as
Xgb (0), and n presents the number of population. The con-
cept of neighborhood can be explained with the help of
Fig. 1 as depicted below.

In ICSO, the candidate solution is defined as{
X1
j (k),X

2
j (k), . . . . . . .X

L
j (k), . . . . . . . . . ,XN

j (k)
}
, where

k = 1, 2, . . . . . . ,P. Here, p denotes the number of
iterations in the local search method. The local search
method can visit N number of population in every itera-
tion such as XL

j (k) (L = 1, 2, . . . . . . ,N). It is assumed

that XL
gbest (k) =

{
x1j (k), . . . x

L
j (k), . . . , xNj (k)

}
and is

determined using (8).

XL
gb (k) =

{
XL
gb (k − 1) d �= L

XL
gb (k − 1) + r ∗ cxd d = L

(8)

where, XL
gb (k) denotes the global best position of cat

in kth iteration where k = 1, 2, . . . . . . ,P and L =
1, 2, . . . ,N; cxd can be computed using

[
1 − cxd (k − 1)

]

and d = 1, 2, . . . . . . ,N. In each iteration, the best agent
during the search can be selected using (9).

Xgb (k) = MIN
{
x1gb(k), . . . x

L
gb(k), . . . , x

n
gb(k)

}
(9)

The above steps are repeated until a better solution is
obtained. The procedure of the local search method is
illustrated in Algorithm 1.

Algorithm 1 Local search method

For L 1 : n

Initialize the variables 0 1

End For

While(termination criteria not met), do the following

For L 1 : n

Determine candidate solution using (8).

End For

Pick local best candidate solution using (9).

End While

4.2 Steps of ICSO algorithm

In this subsection, the main steps of the proposed CSO
algorithm are summarized.
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Fig. 1 Illustration of the local search method incorporated into ICSO
algorithm
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Steps of ICSO algorithm

Step 1: Initialize the different parameters of the pro-
posed algorithm like number of cats (N), SMP,
SRD, neighborhood structure, β, α and C and
randomly placed N number of cats in random
space search.

Step 2: Initialize position and velocity of each cat into
the D-dimensional search space.

Step 3: Compute the fitness function of cats and store
the best position of cat into memory.

Step 4: While(i < maximumiteration)

Step 5: According to the value of Flag, randomly dis-
tribute cats into tracing and seeking modes

Step 6: If (Flag==1); Cat in seeking mode
Step 7: For each cat, apply seeking mode process

Step 7.1: Make j copies of each cat.
Step 7.2: Compute shifting bit value for each cat
using SRD.
Step 7.3: Add or subtract each cat to shifting
value.
Step 7.4: Compute the fitness function for each
new position of cats.
Step 7.5: Compare the value of fitness function
and keep the best position of cat into memory.
Step 7.6: End for

Step 8: Else, Cat in tracing mode
Step 9: For each cat, apply tracing mode process

Step 9.1: Update the velocity of each cat using
(3).
Step 9.2: Update the position of each cat using
(4).
Step 9.3: Compute the fitness function for newly
generated position of cat.
Step 9.4: Compare the fitness function value and
keep the best position of cat in memory.
Step 9.5: End for

Step 10: Update the position of cats and also determine
the best position of cat.

Step 11: IF (rand(0, 1) ≤ Fiti ) then
Step 12: Apply Local Search Method (Algorithm 1).
Step 13: Update the position of cats and global best

position.
Step 14: End if
Step 15: i = i + +
Step 16: End while
Step 17: Obtain the final solution.

5 Experimental settings

This section describes the experimental results of the pro-
posed CSO algorithm. In this work, two types of problems

are considered to evaluate the efficiency of ICSO algorithm;
first is standard benchmark test functions and another is
clustering problems. In order to test the performance of
ICSO algorithm, twelve bench mark test functions are con-
sidered. These are the well-known test functions reported in
the literature and widely used to assess the performance of
algorithms. In this work, both the separable and inseparable
unimodal and multimodal functions are taken to examine
the performance of ICSO algorithm. The detailed descrip-
tion of these test functions is given in Table 1. The proposed
algorithm is implemented in Matlab 2010a environment
using windows 7 operating system, Intel corei5 processor,
3.4 GHz and 8 GB RAM. The results are taken on an aver-
age of 30 independent runs for each function. Further, the
results of the proposed algorithm are compared with several
other meta-heuristic algorithms.

5.1 Results and discussion

To start the experiment, it is necessary to set the different
parameter values. The parameters of ICSO are as follows:
SMP = 10, MR = 0.5, C = 2, β ∈ 0.1 ∼ 0.7, α ∈
0.1 ∼ 0.5, the size of population is 100 and ε in the range
[01]. These parameters are kept constant throughout the exe-
cution of the program. The results are taken on average
of 30 independent runs. The average and standard devi-
ation parameters are considered as performance measures
to evaluate the performances of algorithms. The average
parameter indicates the efficiency of algorithms, whereas
robustness is computed using the standard deviation param-
eter. The performance of ICSO is also compared with
several popular meta-heuristic algorithms like PSO, GA,
ABC, BBO, BAFA, FPA, HS, DE, SFLP, TLBO, DE, and
CSO.

The performance of the proposed algorithm is also com-
pared with several variants of GA, DE, HS, SFLP, and
TLBO algorithms. Apart from these, the performance of
the proposed ICSO algorithm is also compared with some
CSO variants like CSO, BCSO, AICSO, and EPCSO. The
parameter configurations of above-mentioned algorithms
are taken as reported in the corresponding literature [40–47].
Table 2 demonstrates the results of CSO, BCSO, AICSO,
EPCSO, and ICSO algorithms with twelve benchmark func-
tions. The average and standard deviation parameters are
taken to evaluate the performances of these algorithms. It is
observed that ICSO algorithm provides better performance
with all of benchmark functions in comparison to other CSO
variants. For F1 and F6 functions, the proposed algorithm
obtains optimum minimum value i.e. 0. For the rest of the
functions, it is also seen that ICSO algorithm achieves a
minimum value lower than that of the CSO variants.

Table 3 illustrates the results of the proposed ICSO
and several popular meta-heuristic algorithms such as PSO,
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Table 1 List of test functions
used for experimentation No. Function name Definition Parameter

F1 Sphere F1 (x) =
D∑
i=0

x2i [− 100, 100]

F2 Rosenbrock F2 (x) =
D∑
i=1

100
(
xi+1 − x2i

)2 + (xi − 1)2 [− 30, 30]

F3 Rastrigin F3 (x) =
D∑
i=1

(
x2i − 10 cos (2πxi) + 10

)
[− 5.12, 5.12]

F4 Griewank F4 (x) = 1
4000

D∑
i=1

x2i −
D∏
i=1

cos
(

xi√
i

)
+ 1 [− 600, 600]

F5 Ackley F5 (x)=20+e − 20 exp

(
−0.2

√
1
D

D∑
i=1

x2i

)
−exp

(
1
D

D∑
i=1

cos (2πxi)

)
[− 32, 32]

F6 Step F6 (x) =
D∑
i=0

(xi + 0.5)2 [− 100, 100]

F7 Powell F10 (x) =
D/4∑
i=1

(x4i−3 + 10x4i−2)
2 + 5(x4i−1 − 10x4i)2 [− 4, 5]

+(x4i−2 + 10x4i−1)
4 + 10(x4i−3 + 10x4i)4

F8 Schwefel F8 (x) = 418.9828D −
D∑
i=1

(
xi sin

(√|xi|
))

[− 500, 500]

F9 Schaffer F9 (x) = 0.5 + sin2
(
x21−x22

)−0.5[
1+0.001

(
x21−x22

)]2 [− 100, 100]

F10 Zakharov’s F10 (x) =
D∑
i=0

(xi)2 +
(

1
2

D∑
i=0

ixi

)2

+
(

1
2

D∑
i=0

ixi

)4

[− 5, 10]

F11 Michalewicz F11 (x) =
D∑
i=1

Sinx1
(
sin

(
ixi2

/
π

))20
[0, π ]

F12 Quartic F12 (x) =
D∑
i=1

ix4i + rand(0, 1) [− 1.28, 1.28]

Table 2 Comparison of results
of CSO and proposed CSO
algorithms for benchmark
functions (using D=30)

Function Parameters CSO BCSO AICSO EPCSO ICSO

F1 Average 2.00E-04 1.05E-05 7.01E-05 4.42E-06 0.00E+00

SD 2.00E-04 1.48E-04 1.31E-04 3.32E-05 0.00E+00

F2 Average 2.96E+01 2.68E+01 2.54E+01 2.15E+01 1.65E+01

SD 1.84E+01 1.49E+01 1.33E+01 2.01E+01 1.35E+01

F3 Average 1.83E-01 1.73E-01 6.63E-02 1.64E-02 5.36E-03

SD 1.10E-01 1.12E-01 5.45E-02 1.19E-01 4.09E-02

F4 Average 1.19E-01 9.77E-02 6.91E-02 3.76E-02 3.93E-04

SD 1.38E-02 6.79E-02 3.17E-02 2.47E-02 2.66E-05

F5 Average 2.46E-01 2.38E-01 1.98E-01 3.78E-03 6.48E-05

SD 1.56E-02 2.01E-01 1.47E-02 8.72E-02 4.28E-04

F6 Average 4.00E-04 5.98E-05 4.91E-05 8.46E-06 0.00E+00

SD 2.00E-04 9.74E-06 3.86E-05 7.24E-06 0.00E+00

F7 Average 2.29E+02 2.20E+02 2.15E+02 1.05E+02 7.84E+01

SD 8.92E+01 6.55E+01 2.15E+01 1.68E+01 4.16E+00

F8 Average 7.96E-02 6.13E-02 9.63E-03 5.35E-03 5.49E-05

SD 2.46E-02 5.80E-02 3.57E-03 2.78E-03 1.94E-06

F9 Average 2.09E+02 1.95E+02 1.84E+02 1.65E+02 7.30E+01

SD 1.96E+02 6.90E+01 9.63E+01 5.60E+01 1.63E+01

F10 Average 9.22E-13 3.37E-13 5.36E-13 8.56E-14 2.68E-16

SD 5.32E-14 1.42E-14 1.08E-13 5.21E-14 4.24E-17

F11 Average − 5.76E+00 4.56E+00 4.67E+00 7.30E-01 − 6.33E-02

SD 4.16E-01 9.12E-01 3.35E+00 4.33E-01 4.96E−3

F12 Average 3.46E-05 3.18E-05 1.43E-05 3.09E-06 7.84E-08

SD 2.63E-05 1.77E-06 1.32E-05 2.99E-06 3.41E-07
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Table 3 Comparison of ICSO
and other meta-heuristic
algorithms for standard
benchmark functions (using
D=30)

Function No. Parameters PSO ABC BA FPA FA ICSO

F1 Average 0.0003 5.92E-04 1 0.4283 3.79E-02 0

SD 0.0015 5.33E-05 1 0.0826 5.35E-02 0

F2 Average 25.8537 2.35E+01 38.9874 36.9146 1.72E+02 16.4721

SD 16.2698 1.36E+01 15.6428 17.578 1.30E+02 13.4716

F3 Average 0.3582 3.29E-01 0.4266 0.8916 2.29E+01 0.0536

SD 0.6975 4.25E-02 1 0.7538 7.14E+00 0.0409

F4 Average 0.1045 1.51E-02 0.8205 1 1.05E-01 0.0393

SD 0.0462 1.24E-02 0.0814 0.0209 5.45E-02 0.0266

F5 Average 0.521 9.63E-02 1 0.3168 2.05E+00 0.0648

SD 0.0406 7.86E-02 1 0.0736 3.57E-01 0.0428

F6 Average 0.0004 1.46E-02 1 0.2764 3.11E-01 0

SD 0.0026 3.53E-03 1 0.1967 1.18E-01 0

F7 Average 385.901 1.38E+02 113.897 86.1969 2.49E+03 78.3548

SD 161.14 7.64E+01 86.0515 80.7233 2.36E+02 41.562

F8 Average 0.5126 7.44E-01 0.08245 0.07916 6.33E-02 0.005493

SD 0.0034 5.47E-01 0.0183 0.03816 1.82E-02 0.1938

F9 Average 9.82E+03 2.43E+02 2.76E+02 3.53E+02 2.86E+02 1.43E+02

SD 6. 412E+02 3.61E+01 1.12E+02 1.26E+03 4.50E+01 3.25E+01

F10 Average 6.14E-10 8.54E-14 9.83E-14 5.22E-14 5.34E-11 2.68E-16

SD 1.35E-11 6.84E-15 4.86E-14 4.80E-14 3.96E-12 4.24E-17

F11 Average − 2. 96847 − 1.44E+01 − 4.538246 − 3.861285 − 9.63E+00 − 1.8123

SD 0.65249 3.75E-01 0.71593 0.83529 2.42E-02 4.96E−2

F12 Average 0.004357 5.34E-04 0.0041326 0.0038632 8.55E-04 7.84E-06

SD 0.000571 2.36E-04 0.007865 0.001547 2.13E-04 3.41E-07

ABC, BA, FPA, and FA. It is seen that the proposed algo-
rithm provides better results for most of benchmark test
functions using average and SD parameters. It is stated that
the ICSO have good exploration capability to search the
optimum solutions. Tables 4 and 5 depict the results of ICSO
algorithm and some recent meta-heuristic algorithms like
BBO, BBBO, HS, MHS, HSDE, SFLP, MSFLA, TLBO,
ITLBO, DE, HSDE, GA, QGA-MPC, and GA-MPC. It is
observed that the performance of ICSO algorithm is bet-
ter than other algorithms being compared with most of
benchmark functions. It is stated that the proposed algo-
rithm obtains highly precise results due to enhanced solution
search equations and also explore solution search space
effectively due to local search method.

Figure 2a–f shows the convergence behavior of CSO and
ICSO algorithms for six benchmark functions, i.e., F1–F6.
It is seen that the proposed ICSO algorithm provides better
results in terms of cost and number of iterations. Further, it
is observed that the ICSO algorithm converges faster than
the CSO algorithm. It is also seen that the local search
method improves the efficiency of ICSO algorithm. The
problem of trapping in local optima in last iterations is also
solved.

5.2 Statistical test

In order to illustrate the efficacy of the proposed ICSO
algorithm, some statistical tests are also applied to vali-
date the performance of proposed algorithm. In this work,
Friedman test is applied for statistical analysis. The Fried-
man test is a nonparametric statistical test. In Friedman
test, two hypotheses are created, i.e., null hypothesis (H0)

and hypothesis (H1). The null hypothesis (H0) stands for
no significant difference occurs between the performances
of proposed algorithm and other algorithms. In contrast,
hypothesis (H1) claimed that a significant difference occurs
between the performances of algorithms [12]. Another
important parameter of Friedman test is p-value, which is
a probability value that shows whether a statistical test is
significant or not; the smaller the p-value, the stronger is
the evidence against H0. Table 6 presents the results of
Friedman test and average ranking of algorithms. It is seen
that the proposed algorithm obtains minimum rank, i.e., 1
among all other algorithms, whereas CSO algorithm has
the worst rank, i.e., 5. The degree of freedom is 4. The
p-value obtained from Friedman test is 1.354E-6, which
strongly rejects the null hypothesis (H0). It can be seen that
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Table 4 Comparison of ICSO and other meta-heuristic algorithms for standard benchmark functions (using D=30)

Function Parameter BBO BBBO HS MHS HSDE SFLP MSFLA ICSO

F1 Average 2.40E-03 1.97E-4 5.22E-4 1.63E-4 6.08E-5 1.09E-3 5.79E-5 0
SD 4.56E-04 2.56E-5 3.2945E-5 2.18E-5 5.33E-5 2.90E-21 3.88E-6 0

F2 Average 5.79E+00 1.79E+01 1.90E+02 2.73E+01 5.33E+02 3.69E+01 2.73E-02 16.4721
SD 1.27E+00 5.63E+00 5.16E+01 1.33E+01 3.90E+02 2.23E+01 1.94E-02 13.4716

F3 Average 7.08E-02 3.07E-03 1.69E+01 8.01E-01 0.00E+00 2.44E+01 2.55E+01 0.0536
SD 5.56E-02 6.20E-04 2.66E+00 8.30E-01 0.00E+00 5.36E+00 1.03E+01 0.0409

F4 Average 1.89E-01 1.08E-01 1.60E-01 1.43E-01 1.22E-02 3.52E-02 1.64E-02 3.93E-02
SD 3.36E-02 2.68E-02 5.34E-02 2.93E-02 8.30E-03 3.79E-03 1.99E-02 2.66E-03

F5 Average 1.01E-01 4.04E-02 1.09E+00 7.71E-14 4.70E+01 9.76E-03 6.67E+01 6.48E-02
SD 5.13E-02 4.24E-03 1.36E-01 2.37E-14 1.16E+01 5.21E-02 1.15E+01 0.0428

F6 Average 1.71E+00 3.67E-01 4.37E+00 0.00E+00 1.59E-01 2.36E-06 5.70E-01 0
SD 3.71E-01 1.66E-01 9.83E-01 0.00E+00 7.97E-01 3.29E-06 1.88E-01 0

F7 Average 1.38E+02 8.71E+01 4.59E+02 1.17E+02 9.47E+01 1.65E+02 8.95E+01 7.84E+01
SD 1.14E+02 1.16E+01 5.86E+01 3.40E+01 3.82E+01 4.38E+01 2.95E+01 4.16E+00

F8 Average 7.50E-01 6.61E-01 1.53E-01 3.63E-02 8.96E-02 9.76E-01 3.67E-03 5.49E-03
SD 3.86E-02 7.09E-02 3.10E-02 4.80E-03 2.14E-02 5.03E-01 3.18E-03 1.94E-03

F9 Average 2.46E+02 1.57E+02 2.83E+02 1.84E+02 1.65E+02 2.62E+02 1.77E+02 1.43E+02
SD 6.47E+01 3.01E+01 1.06E+02 7.42E+01 6.53E+01 1.12E+02 5.97E+01 3.25E+01

F10 Average 1.30E-03 2.34E-10 1.03E-11 4.93E-13 1.53E-15 3.29E-12 2.28E-15 2.68E-16
SD 1.85E-03 4.28E-11 1.31E-12 6.11E-14 1.06E-15 1.30E-12 5.16E-15 4.24E-17

F11 Average − 3.92E+00 − 2.16E+00 − 4.32E+00 − 1.72E+00 − 2.42E+00 − 2.95E+00 − 2.43E+00 − 1.8123
SD 1.31E+00 6.11E-01 1.06E+00 5.16E-01 1.23E+00 4.93E-01 9.28E-01 4.96E−2

F12 Average 2.00E-05 4.94E-06 8.44E-04 2.18E-44 2.27E-03 3.79E-03 2.84E-03 7.84E-06
SD 3.14E-06 1.03E-06 2.21E-05 6.08E-44 1.06E-03 7.45E-04 1.53E-04 3.41E-07

Table 5 Comparison of ICSO and other meta-heuristic algorithms for standard benchmark functions (using D=30)

Function Parameter TLBO ITLBO DE HSDE GA QGA-MPC GA-MPC ICSO

F1 Average 0 0 1.35E+02 6.08E–4 0.8378 1.43E+01 5.60E+06 0
SD 0 0 7.03E+00 8.33E-5 0.5138 2.25E+00 5.64E+05 0

F2 Average 26.6567 22.7934 5.87E+04 5.33E+02 45.2843 1.54E+04 1.59E+09 16.4721
SD 19.456 14.823 8.69E+03 3.90E+02 21.6284 1.36E+04 3.12E+08 13.4716

F3 Average 0.2178 0.1632 5.17E+02 0.00E+00 1 5.19E+02 1.55E+04 0.0536
SD 0.06325 0 1.32E+01 0.00E+00 0.6921 3.52E+01 1.55E+03 0.0409

F4 Average 0 0 1.03E+00 1.22E-02 0.8613 9.56E-01 1.39E+03 0.0393
SD 0 0 8.17E-02 8.30E-03 0.0648 8.53E-02 1.08E+02 0.0266

F5 Average 3.55E−01 1.42E−01 3.02E+02 4.70E+01 0.7934 2.12E+01 2.09E+01 0.0648
SD 0.0836 0.05618 5.20E+00 1.16E+01 0.3216 3.32E-02 3.32E-02 0.0428

F6 Average 2.74E−02 1.17E−4 1.15E-01 1.59E-01 0.7872 9.08E-03 1.47E-02 0
SD 5.36E−03 4.68E−5 1.66E-01 7.97E-01 0.5643 3.77E-02 1.58E-02 0

F7 Average 124.1484 83.7532 1.91E+04 9.47E+01 830.075 1.65E+04 2.83E+03 78.3548
SD 2.60E+02 1.35E+01 3.69E+03 3.82E+01 393.68 5.09E+02 5.12E+02 41.562

F8 Average 0.0066 0.0053 1.09E-01 8.96E-02 0.5397 7.83E-02 9.63E-01 0.005493
SD 4.50E-03 3.20E-03 9.85E-02 2.14E-02 0.0073 2.88E-02 5.33E-01 0.1938

F9 Average 2.17E+02 1.59E+02 1.29E+03 1.65E+02 4.62E+04 1.74E+02 1.32E+00 1.43E+02
SD 1.26E+02 6. 832E+01 4.27E+02 6.53E+01 1.59E+03 2.14E+01 5.37E+01 3.25E+01

F10 Average 4.64E-14 3.46E-16 2.60E-10 1.53E-15 5.50E-10 3.27E-15 5.13E-14 2.68E-16
SD 2.34E-14 1.89E-16 1.43E-11 1.06E-15 7.62E-10 2.33E-16 2.44E-14 4.24E-17

F11 Average − 4.352678 − 3.56815 − 1.80E+01 − 2.42E+00 − 5.86435 − 3.60E+00 − 5.86E+00 − 1.8123
SD 1.44E-02 1.53E−2 4.20E-01 1.23E+00 0.91578 6.72E-01 1.05E+00 4.96E−2

F12 Average 3.25E-04 2.19E-05 6.64E-03 2.27E-03 0.235416 4.56E-05 5.34E-05 7.84E-06
SD 1.59E-04 1.22E-05 4.72E-03 1.06E-03 0.067134 2.90E-05 3.87E-05 3.41E-07
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Fig. 2 a–f shows the convergence of CSO and ICSO algorithms for functions F1 – F6

a significant difference occurs between the performances
of algorithms. Multiple comparisons (N × N) of all algo-
rithms are also carried out for benchmark test functions.
Table 7 presents the results of (N × N) comparisons with
adjusted p-values and test statistics. It is noticed that the
proposed ICSO algorithm obtains minimum p-values than

other algorithms. Overall, it is concluded that the proposed
algorithm is an effective and efficient algorithm for solv-
ing the complex benchmark test functions than other CSO
variants.

Further, Wilcoxon signed-ranks test is applied on the
two best-performing algorithms. The two best-performing
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Table 6 Friedman test
statistics for all algorithm using
benchmark test functions

Algorithm Functions Overall rank Mean of rank

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

CSO 5 5 5 5 5 5 5 5 5 5 5 5 60 5

BCSO 3 4 4 4 4 4 4 4 4 3 3 4 45 3.75

AICSO 4 3 3 3 3 3 3 3 3 4 4 3 39 3.25

EPCSO 2 2 2 2 2 2 2 2 2 2 2 2 24 2

Proposed ICSO 1 1 1 1 1 1 1 1 1 1 1 1 12 1

Number of observation: 60 Number of problems: 12 Number of algorithms: 5

Sum of squares of ranks : 7462 Correction factor: 540 Friedman test statistic: 32.73

Degree of freedom: 4 p-value: 1.354E-6 Critical value: 9.4877

Friedman Test Hypothesis: (i) H0: Algorithms are equally effective. (ii) H1: There is a significant

difference in the performances of algorithms. (significance level = 0.05)

algorithms are EPCSO and proposed ICSO. Wilcoxon
signed-ranks test is a non-parametric test applied in hypo-
thetical testing involving two samples [13]. It is a pair-
wise test that can be used to detect significant differences
between the performance of EPCSO and ICSO algorithms.
This test is closely related to t-test. The results of this test
are mentioned in Tables 8-9. Table 8 provides the details of
rank and signed rank using Wilcoxon test, whereas Table 9
shows the statistics of test. The p-value obtained for this test
is 0.016113, and the median values for EPCSO and ICSO
algorithms are 0.0045653and 5.985E-05, respectively. The
statistics value (z) for Wilcoxon test is − 2.35. From the sta-
tistical results, it is stated that the hypothesis strongly rejects
the null hypothesis at the significance level of 0.05 and a
significant difference occurs between the median values of
EPCSO and ICSO algorithms.

6 Application of ICSO in data clustering

Data clustering is a powerful data analysis technique
that can be used to group the data objects in the form
of clusters using distance based similarity function [6].
The similarity function is used to compute the distance
between data objects and cluster centers. The data clus-
tering can be formulated as follows. Consider S =
{s1, s2, s3 . . . . . . sn} is a set of n objects and Tn×m is a data
matrix consisting of n rows and p columns, where n cor-
responds to data objects and m represents the attributes
or dimensions of a given dataset. In the given dataset,
each ith data object is described by using a real valued
m-dimensional vector xi {i = 1, 2, 3, . . . . . . n} where each
object xij denotes the jth feature (j = 1, 2, 3, . . . .m) of the
ith object (i = 1, 2, 3, . . . .n). The goal of the clustering

Table 7 Adjusted p-values and test statistics for multiple comparisons (N × N comparison) among all algorithms

Algorithm p value TS Algorithm p value TS Algorithm p value TS

CSO BCSO AICSO

BCSO 2.02E-02 2.4109 CSO 0.020159 2.4109 CSO 0.000143 4.1642

AICSO 0.000143 4.1642 AICSO 0.086507 1.7533 BCSO 8.65E-02 1.7533

EPCSO 4.81E-08 6.5751 EPCSO 0.000143 4.1642 EPCSO 0.020159 2.4109

Proposed ICSO 3.29E-11 8.7667 Proposed ICSO 1.01E-07 6.3559 Proposed ICSO 3.54E-05 4.6025

EPCSO Proposed ICSO

CSO 4.81E-08 6.58E+00 CSO 3.29E-11 8.7667

BCSO 0.000143 4.1642 BCSO 1.01E-07 6.3559

AICSO 0.020159 2.4109 AICSO 3.54E-05 4.6025

Proposed ICSO 3.37E-02 2.19E+00 EPCSO 0.033739 2.1917
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Table 8 Ranks of each
function using Wilcoxon test
for CSO and ICSO algorithms

Function CSO ICSO D Abs(D) Rank Signed-Rank

F1 4.42E-06 0 − 4.42E-06 4.42E-06 3 − 3

F2 21.49 16.4721 − 5.02 5.02 10 − 10

F3 0.0164 0.00536 − 0.01 0.01 7 − 7

F4 0.0376 0.000393 − 0.04 0.04 8 − 8

F5 0.0037813 6.48E-05 − 3.72E-03 3.72E-03 5 − 5

F6 8.46E-06 0 − 8.46E-06 8.46E-06 4 − 4

F7 104.72 78.4 − 26.32 26.32 11 − 11

F8 0.0053493 5.49E-05 − 0.01 0.01 6 − 6

F9 165 73 − 92 92 12 − 12

F10 8.56E-14 2.68E-16 − 8.53E-14 8.53E-14 1 − 1

F11 − 0.73 − 0.06328 0.67 0.67 9 9

F12 3.09E-06 7.84E-08 − 3.01E-06 3.01E-06 2 − 2

problem is to compute a set of optimal partitions z =
{z1, z2, . . . . . . .zk} for the given data matrix Tn×m and can
satisfy the following conditions.

i. ∀i�=jzi ∩ zj = ∅,
ii.

⋃k
i=1 zi = x,

iii. ∀izi = ∅
It is observed that the Euclidean distance can be used as sim-
ilarity function to compute the set of optimal partitions. It
can be defined as the distance between data objects and the
cluster centers. It is computed for every cluster center and
assigned to all data objects. The data is clustered on the basis
of minimum Euclidean distance. The objective function for
clustering problems can be described as follows.

minimize F(X,C) =
K∑

k=1

∑
x∈Di

min ‖Xi − Ck‖2 (10)

In (10), Xi denotes the ith data object, Ck represents the kth

and data objects are assigned to clusters according to the

Table 9 Results of Wilcoxon test (paired samples) on CSO and ICSO
algorithms

Test Statistics CSO ICSO

Mean 24.21 13.98

Median 0.0045653 5.985E-05

Significant value 0.05

p-value 0.016113

Sum of signed Rank (W) 60

E (W) 0.5

SD (W) 25.495098

Z 0.019607

Hypothesis- H0: Median 1 is equal to Median 2; H1:

Median 1 is not equal to Median 2.

Hypothesis (H0) is rejected at the significance level 0.05

minimum distance. After partitioning the data into differ-
ent clusters, a fitness function is applied to determine the
goodness of the partitions. In this work, sum of square error
(SSE) based fitness function is adopted to determine the fit-
ness of each cluster. This fitness function is described in
(11).

F (Ck) =
K∑
k∈1

SSE(Ck)∑K
k=1 SSE(CK)

(11)

Further, the proposed algorithm is also applied to solve
the clustering problems. The main motive of the ICSO
algorithm is to find optimal set of cluster for clustering
problems. To evaluate the performance of the proposed
algorithm, some benchmark datasets are taken from UCI
repository. The results of the ICSO algorithm is also com-
pared with well-known clustering algorithms reported in the
literature.

6.1 Steps of ICSO algorithm for clustering

This subsection describes the algorithmic steps of the ICSO
algorithm for solving clustering problems The main steps of
ICSO algorithm are as follows.

Table 10 Description of datasets used for experiment

Dataset Cluster (K) Features Total Data Items Data in each cluster

Iris 3 4 150 (50, 50, 50)

Wine 3 13 178 (59, 71, 48)

CMC 3 9 1473 (629,334, 510)

Cancer 2 9 683 (444, 239)

Glass 6 9 214 (70,17, 76, 13, 9, 29)
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Table 11 Comparison of performance of the proposed ICSO and other clustering algorithms

Dataset Parameters Algorithms

K-means PSO ACO CSO TLBO ICSO

Iris Best Case 97.12 96.48 96.89 96.94 96.56 95.78

Avg. Case 112.44 98.56 98.28 97.86 96.84 97.05

Worst Case 122.46 99.67 99.34 98.58 98.08 97.63

Standard Deviation 15.326 0.467 0.426 0.392 0.546 0.213

F-Measure 0.781 0.78 0.778 0.781 0.782 0.784

Cancer Best Case 2989.46 2978.68 2983.49 2985.16 2876.28 2943.24

Avg. Case 3248.25 3116.64 3178.09 3124.15 3084.74 3036.41

Worst Case 3566.94 3358.43 3292.41 3443.56 3215.83 3253.56

Standard Deviation 256.58 107.14 93.45 128.46 42.11 63.04

F-Measure 0.832 0.826 0.829 0.831 0.834 0.835

CMC Best Case 5828.25 5792.48 5756.42 5712.78 5778.61 5654.11

Avg. Case 5903.82 5846.63 5831.25 5804.52 5836.25 5761.48

Worst Case 5974.46 5936.14 5929.36 5921.28 5921.32 5896.25

Standard Deviation 49.62 48.86 44.34 43.29 38.96 45.16

F-Measure 0.337 0.333 0.332 0.334 0.331 0.339

Wine Best Case 16768.18 16483.61 16448.35 16431.76 16578.42 16296.44

Avg. Case 18061.24 16417.47 16530.53 16395.18 16360.04 16342.21

Worst Case 18764.49 16594.26 16616.36 16589.54 16917.26 16483.62

Standard Deviation 796.13 88.27 48.86 62.41 56.14 36.06

F-Measure 0.519 0.516 0.522 0.521 0.52 0.526

Glass Best Case 222.43 264.56 273.22 256.53 246.89 249.25

Avg. Case 246.51 278.71 281.46 264.44 256.44 268.45

Worst Case 258.38 283.52 286.08 282.27 287.52 281.73

Standard Deviation 18.32 8.59 6.58 15.43 15.29 10.34

F-Measure 0.426 0.412 0.402 0.416 0.422 0.427

6.2 Performance evaluation

To investigate the performance of the proposed algorithm,
the results of ICSObased clustering algorithm are compared
with well-known clustering algorithms such as K-Means,
GA, PSO, TLBO, ACO and CSO algorithms [38, 48–51]
Five real-life datasets are taken from the UCI database to
evaluate the performance of all abovementioned algorithms.
Table 10 presents the details of these datasets. The qual-
ity of clusters is measured in terms of intra cluster distance
(best, average and worst), standard deviation and f-measure
parameters. Large values of these measures are required for
better clustering. The parameters of the algorithms are the
same as reported in the literature. Table 11 shows the com-
parison between the proposed ICSO algorithm and the other
techniques in terms of cluster-quality measures. The results
are compared in terms of means and standard deviation over
1 independent runs in each case. For iris, cancer, CMC,
wine and glass datasets, it is found that the ICSO algo-
rithm provides better results than the other algorithms being

compared Figs. 3 and 4 show the clustering on iris data
using ICSO algorithm.
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7 Conclusion

In this paper, an improved version of CSO algorithm is
proposed using improved solution search equations for
exploring optimal solution. In addition, two parameters are
also introduced for better tradeoff between exploration and
exploitation processes. Further, a local search method is also
incorporated in the CSO algorithm for avoiding premature
convergence problem and handling local optima problem.
These improvements in CSO algorithm also improve the
precision of solutions. The performance of the proposed
algorithm is evaluated on twelve benchmark test functions
and real life clustering problems. It is observed that the
proposed algorithm gives better results in comparison to
other existing algorithms. The simulation results demon-
strate the ability and efficacy of the proposed algorithm for
solving benchmark test functions. Moreover, the proposed
algorithm is also implemented to solve some real life prob-
lems. Clustering is one of the reallife problems in which
determining the optimum cluster center is a tough task. In
clustering problems, the proposed ICSO algorithm is used
to determine optimum cluster centers. It is observed that
ICSO algorithm provides stateof-the-art results for cluster-
ing problems compared to other algorithms. The proposed
ICSO algorithm performs better clustering in terms of qual-
ity of clusters.
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