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Mroz’ Local Response Moduli as a Means for Comparing
Constitutive Equations in Plasticity

S. K. Jain
Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat, India

Linear and nonlinear relations of time independent plasticity
are compared and their local response for varying stress or strain
increment orientation is studied. The applicability of incremental
relations to stability and post-critical response analysis can be as-
sessed from such comparative study. In particular, the endochronic
model providing nonlinear incremental relations is considered.

Keywords constitutive equations, plasticity theory, non-associative
model, endochronic theory, flow localization, corner flow
rule

1. INTRODUCTION
The present note is devoted to a comparative analysis of some

incrementally linear and nonlinear constitutive equations used
in modeling elasto-plastic material response (of metals, soils,
concrete, rocks, etc.). Usually the model identification is per-
formed by means of experimental data for simple proportional
loading tests. In most cases subsequent verification is carried
out for a selected set of loading programs for which the data are
readily available in the literature. In general, the domain of ap-
plicability of any formulated constitutive model is not precisely
known. It should be expected, however, that this domain (speci-
fied by a class of loading programs for which the model should
provide reliable predictions) should increase with the number
of material parameters used in the model formulation.

An important class of problems is associated with plastic
buckling and postbuckling response of structures, plastic flow
localization in materials, or in general, with failure mode predic-
tions. The local material response under changing incremental
loading direction then acquires an unusual importance in an
accurate prediction of the critical stress. It is well known that
for plastic bifurcation analysis the critical flow theory predicts
higher critical stress than the deformation theory or the relations
provided by the corner flow rule. Similarly, in flow localization
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problems of thin metal sheets under biaxial stretching, flow the-
ory predictions of critical strain considerably exceed the exper-
imental observations and the predictions of the J2-deformation
theory. A variety of nonlinear incremental laws have been for-
mulated in the past in order to improve critical stress predictions
in bifurcation analyses. For example, Mroz and Zienkiewicz [1],
Darve et al. [2], Kolymbas [3], and Christofferson and Hutchin-
son [4] proposed nonlinear incremental formulations resulting
from the assumptions of yield corner existence along the pri-
mary loading path. On the other hand, the endochronic plasticity
model of Valanis [5] also provides an incrementally nonlinear
formulation. It is of considerable interest therefore to perform
a comparative study of various constitutive formulations from
the viewpoint of their directional properties under varying stress
increment orientations.

2. DIRECTIONAL MODULI
We shall limit our analysis to small strains, and thus neglect

configuration changes in specifying stress or strain increments
(or rates). For any specified stress increment dσ, consider the
predicted strain increment dε = dεe + dεp, and its projection
dεσ on dσ, so that a directional modulus Kσ can be constructed
as

1

Kσ

= dεσ

dσ
= dε · dσ

/
(dσ · dσ)1/2

(dσ · dσ)1/2

= dε · dσ

dσ · dσ
= dεe

σ

dσ
+ dε

p
σ

dσ
(1)

where a dot implies the inner-product and dσ = (dσ · dσ)1/2.
Likewise, for a specified strain increment dε, consider the
predicted stress increment, dσ = dσe − dσp and its projection
on dε. The corresponding directional modulus Kε can be
expressed as

Kε = dσε

dε
= dσ · dε

dε · dε
= dσe

ε

dε
− dσ

p
ε

dε
. (2)

Such directional moduli were introduced by Mroz [6] for
studying local properties of constitutive laws. Further studies
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FIG. 1. Diagrams used in establishing local directional properties of various plasticity models.

on these moduli have been made by Runesson and Mroz [7]
and Jain [8]. We note here that the product of the two moduli
produces the tangent modulus, Kt = KσKε = dσ/dε.

3. LINEAR INCREMENTAL RELATIONS
When Eq. (1) is referred to the deviatoric stress space and

the associated flow rule is applied, that is

dε = dεe + dεp = ds
2G

+ 1

Kp

nf (ds · nf) , (3)

then

1

Kσ

=

⎧⎪⎪⎨
⎪⎪⎩

1

2G
+ 1

Kp

cos2 α; 0 < α < π/2

1

2G
; π/2 ≤ α ≤ π.

(4)

Where s denotes the stress deviator, α is the angle between
the unit vector nf normal to the regular yield surface and the
stress increment vector dσ as shown in Figure 1a, and Kp is
the normalized plastic hardening modulus. Similarly, for the
non-associated flow rule

dεp = 1

Kp

ng

(
s · ng

)
. (5)

Where ng is the unit flow vector and nf is the unit vector normal
to the regular yield surface, Eq. (1) produces

1

Kσ

=

⎧⎪⎨
⎪⎩

1

2G
+ 1

Kp

cos α cos (α − β) ; β < α < π/2 + β

1

2G
; π/2 + β ≤ α ≤ π + β

(6)
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Where cos β = nf · ng is α denotes the angle between ng

and dσ, as shown in Figure 1b.
The constitutive equations of J2-deformation theory are ex-

pressed as,

e =

⎧⎪⎨
⎪⎩

s
2Gs

, for F = (3J2)1/2 − σp, s · ds > 0

s
2G

, for F ≤ 0 or F = 0, s · ds < 0
(7)

where e denotes the deviatoric strain tensor and Gs is the secant
modulus. Eqs. (7) can be differentiated to obtain the incremental
relations,

de =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ds
2Gs

+ 1

2

(
1

Gt

− 1

Gs

)
s · ds
s2

s, for F = 0,

s · ds > 0
ds
2G

, for F < 0 or

F = 0, s · ds < 0

(8)

where Gt is the tangent modulus of the uniaxial hardening curve.
This model does not satisfy the continuity condition for neutral
loading and its applicability is limited to admissible cones sat-
isfying local uniqueness condition [9]. The directional modulus
now becomes

1

Kσ

= 1

2Gs

+ 1

2

(
1

Gt

− 1

Gs

)
cos2 α (9)

where α is now the angle between s and ds.

4. NONLINEAR INCREMENTAL RELATIONS
Consider now a nonlinear relation following from the repre-

sentation discussed by Kolymbas [3]:

de = ds
A

+ 1

B
b (ds · ds)1/2 (10)

where b is the unit vector specifying the direction of plastic flow
and is a function of stress and actual state variables. Note that
there is no loading-unloading condition associated with Eq. (10)
and the second term predicts a strain increment always directed
along the vector b as shown in Figure 1c.

Consider the case when ds is directed along b or –b. Equation
(10) then provides, respectively

de = ds
A

+ 1

B
ds =

(
1

A
+ 1

B

)
ds, ds · b > 0 (11a)

de = ds
A

+ 1

B
ds =

(
1

A
− 1

B

)
ds, ds · b < 0. (11b)

Denoting the tangent moduli of loading and unloading shear
stress-strain curves by Gt and G, we have

1

2Gt

=
(

1

A
+ 1

B

)
,

1

2Gt

=
(

1

A
− 1

B

)
. (12)

Equation (12) can be used in determining A and B from local
loading-unloading tests along b-direction.

1

A
= 1

4

(
1

Gt

+ 1

G

)
,

1

B
= 1

4

(
1

Gt

− 1

G

)
(13)

The properties of similar nonlinear relations were discussed by
Mroz and Zienkiewicz [1] who indicated that for small stress
cycles there is always a progressive strain ratcheting when tan-
gent moduli take on the values Gt and G alternatingly. Relations
such as those of Eq. (11a) were earlier applied successfully to
soils by Duncan and Chang [10].

The constitutive relation Eq. (10) can be inverted to provide
nonlinear stress increment-strain increment relations as

ds = Adε − A

B
bds = Adε − A

B
bM (γ) dε (14)

where M(γ), providing a relation between ds and dε, can be
established from Eq. (10) as follows. Multiplying both sides of
Eq. (10) by b and squaring both sides, we obtain

b · dε = 1

A
(b · ds) + 1

B
ds

dε2 = dε · dε =
(

1

A2
+ 1

B2

)
ds2 + 2

AB
(b · ds)ds.

(15)

From Eq. (15) it follows that

ds = AB

B2 − A2

[
− (b · dε) +

√
(b · dε)2 + dε2

(
B2 − A2

)]

= AB

B2 − A2

(
− cos γ +

√
cos2 γ + B2 − A2

)
dε

= M (γ) dε

(16)

where γ is the angle between dε and b, and thus, cos γ =
dε . b.

The directional modulus is easily calculated from Eq. (10)

1

Kσ

= 1

A
+ 1

B
cos α (17)
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Similarly, from Eq. (14) it follows that

Kε = A − cos γ
A2

B2 − A2

(√
cos2 γ + B2 − A2 − cos γ

)
.

(18)

4.1. Endochronic Plasticity Model
We now consider the endochronic plasticity model providing

an integral relationship between stress and plastic strain, cf.
Valanis [5].

sij =
∫ z

0
ρ(z − z′)

de
p

ij

dz′ dz′ (19)

The incremental form associated with Eq. (19) is

dsij = ρ(0) de
p

ij − hij (z) dz (20)

where

hij (z) = −
∫ z

0

∂ρ(z − z′)
∂(z − z′)

de
p

ij (z′)

dz′ dz′ (21)

and

dz = dep

f (ζ)
, dζ = dep = (

de
p

ij de
p

ij

)1/2
. (22)

Equation (20) can be rewritten in the form

dep = ds
ρ(0)

+ 1

ρ(0)
h(z)dz = de

p

(1) + de
p

(2) (23)

It is seen that the plastic strain increment is composed of two
terms, one quasi-elastic following the orientation of ds, the other
of fixed direction of h as shown in Figure 1d. Also, the similarity
between Eq. (10) and Eq. (23) becomes evident if we add the
elastic term to relation (23) to have

de = dee + dep =
(

1

2µ
+ 1

ρo

)
ds + 1

ρo

h(z)dz (24)

where µ is the shear modulus and ρo = ρ(0).
To establish a relationship between stress and strain incre-

ments, we will need to express dz either in terms of ds or de
depending on whether a stress-controlled or a strain-controlled
scheme is desired [11]. Let us first express dz in terms of ds.

Squaring both sides of Eq. (23), we obtain

ρo(dep)2 = (ds)2 + h2 (dz)2 + 2 (ds · h) dz

or,

(ρ2
of

2 − h2)dz2 − 2(ds · h)dz − ds2 = 0 (25)

Solving this quadratic equation for dz, we obtain

dz = ds · h

ρ2
of

2 − h2
+

[
(ds · h)2 + ds2

(
ρ2

of
2 − h2

)] 1
2

ρ2
of

2 − h2
(26)

where h = (h · h)1/2 and ds = (ds · ds)1/2. Eq. (26) provides a
homogeneous relation between dz and ds. Keeping in confor-
mity to our treatment of forgoing models, we will define the
angle between ds and h as α, so the Eq. (26) can be written
as

dz = h cos α + [
h2 cos2 α + ρ2

of
2 − h2

] 1
2

ρ2
of

2 − h2
ds = K (α) ds.

(27)

In order to express dz in terms of de, let us present Eq. (23) in
the form

ρodep = 2µ (de − dep) − h dz (28)

or,

(ρo + 2µ)dep = 2µ de − h dz (29)

Squaring both sides of Eq. (29), one obtains the quadratic equa-
tion for dz:

(ρo + 2µ)2f 2dz2 = 4µ2de2 + h2dz2 − 4µ(de · h)dz (30)

which produces

dz =
−2µ (de · h) + 2µ{(de · h)2 + de2[

(
ρo + 2µ

)2
f 2 − h2] }1/2

(ρo + 2µ)2f 2 − h2
.

Denoting the angle between de and h as γ, we have

dz = − 2µ

(ρo + 2µ)2f 2 − h2

×{ h cos γ − [h2 cos γ + (ρo + 2µ)2f 2 − h2]1/2} de

= L (γ) de. (31)
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In view of Eqs. (27) and (31), the incremental relations of Eqs.
(23) and (20) take the form

deij =
(

1

ρo

+ 1

2µ

)
dsij + 1

ρo

hij K (α) ds (32)

dsij = 2µρo

2µ + ρo

deij − 2µ

2µ + ρo

hij L(γ)de (33)

where

K (α) ds = L (γ) de. (34)

It is seen that the endochronic relations (32) and (33) are anal-
ogous in form to the relations (10) and (14).

If the kernel function ρ(z) is assumed to be of the
form

ρ (z) =
n∑

r=1

Are
−αr z, ρ(z − z′) =

n∑
r=1

Are
−αr(z−z′) (35)

then

ρo = ρ (0) =
n∑

r=1

Ar =A1 +A2 +A3 +−−−−−+An (36)

and

hij =
∑

r

Arαr

∫
e−αr(z−z′) de

p

ij (z′)

dz′ dz′ =
n∑

r=1

αr s
(r)
ij (37)

and the incremental relations can be written in an alternative
form as

deij =
(

1

ρo

+ 1

2µ

)
dsij + 1

ρo

n∑
r=1

αr s
(r)
ij K (α) ds (38)

dsij = 2µρo

2µ + ρo

deij − 2µ

2µ + ρo

n∑
r=1

αr s
(r)
ij L (γ) de (39)

where

s
(r)
ij =

∫ z

o

Are
−αr(z−z′) de

p

ij (z′)

dz′ dz′ (40)

Equations (38) and (39) help us visualize the basic nature of
the endochronic relations. In Eq. (38), the total strain increment
is seen to be composed of an elastic strain increment (the first
term) and a plastic strain increment (the second term) resulting

from n slip mechanisms at the microscopic level. The term s
(r)
ij

is an internal variable corresponding to the rth slip mechanism.
Likewise, Eq. (39) is composed of an elastic stress increment
and n relaxation mechanisms.

The directional moduli can be determined from relations (32)
and (33) as follows.

1

Kσ

= 1

ρo

+ 1

2µ
+ 1

ρo

h cos α K (α) (41)

Kε = 2µρo

2µ + ρo

− 2µ

2µ + ρo

h cos γ L (γ) (42)

4.2. Nonlinear Corner Flow Rule
Referring to Figure 1e, assume that at the loading point the

normals to the yield surface πf constitute a cone of the ver-
tex angle θ0. The symmetry axis of this cone is specified by
the vector b. For a stress increment dσ inclined at an angle
α to b, the corresponding plastic strain increment dεp is ori-
ented at an angle δ to b. The increment dεp vanishes when
the stress increment is directed either tangentially to πf or
is in the interior of the elastic domain. It can generally be
written

dε
p

ij =
(

1

K
dsij + 1

L
bij ds cos α

)
f (α) , 0 < α ≤ θ0 + π

2
(43)

where K and L are material parameters and the function f(α)
is chosen such that f(α) = 1 for α = 0 (proportional loading
paths) and f(α) = 0 whenever α = θ0 + π/2 (neutral loading
paths). For instance, we can assume

f (α) = cos
π

2

(
α

π
2 + θ0

)
. (44)

A similar flow rule was considered by Christoffersen and
Hutchinson [4]. Adding the elastic strain, Eq. (43) can be written
as

dεij =
(

1

M
dsij + 1

L
bij ds cos α

)
f (α) (45)

where 1
M = 1

2G + 1
K .

Just as for Eq. (10), the material parameters for Eq. (45) are
identified from a uniaxial test, and the directional modulus is
expressed as

1

Kσ

=
(

1

M
+ 1

L
cos2 α

)
f (α) . (46)
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5. DIRECTIONAL MODULI VARIATION:
A COMPARATIVE STUDY

For comparing the variations of direction moduli for differ-
ent models, we selected the uniaxial stress-strain curve of cycli-
cally stabilized OFHC copper, given in Lamba and Sidebottom
[12], mainly because for a stabilized material the endochronic
equations can be directly integrated, and thus, the computa-
tion and the determination of material parameters become a
simple matter.

For a monotonic uniaxial test on a stabilized material

σx =
√

3

2

n∑
r=1

Ar

αr

(1 − e−αr z); z =
√

3
/

2
∣∣εp

X

∣∣ (47)

whence

dσx

dε
p
x

= E
p
t = 3

2

n∑
r=1

Are
−αr z = 3

2
ρ (z). (48)

The following material parameters generate a stress-strain re-
sponse shown in Figure 2 which is very close to the experimental
one.

A1 = 8 × 105 ksi; A2 = 1.604 × 104 ksi,

A3 = 1.206 × 103 ksi, A4 = 0; α1 = 1 × 105,

α2 = 1.38 × 103, α3 = 2.05 × 102, α4 = 0;

E = 15300 ksi, υ = 0.33, G = 5752 ksi (49)

FIG. 2. Uniaxial stress-strain curve of stabilized OFHC copper.

Nearly the same values of the parameters are reported in Hsu
et al. [13, 14] for the cyclic stress-strain curve of OFHC copper.

For the uniaxial case, Eq. (21) leads to

h11 = −2h22 = −2h33 =
√

2

3

n∑
r=1

Ar (1 − e−αr z)

therefore

h = (hijhij )
1
2 =

n∑
r=1

Ar

(
1 − e−

√
3/2αrε

p
x
)
. (50)

The variation of the directional modulus Kσ, Eq. (37), is
shown in Figure 3 for different values of uniaxial strain, εx . As
seen in the figure, Kσ is nearly equal to the elastic modulus in
the beginning of the uniaxial test for all values of α. For large
values of εx , during the final stages of the test, Kσ nearly remains
zero until α = π/2, whereupon it experiences a jump to attain
a value of the elastic modulus and stays at that constant value
until α = π. We found this to be true for strains as high as 24%.
Such a variation, in the sense of plasticity theory, corresponds
to an elastic-perfectly plastic behavior.

What is striking in Figure 3 is the fact that the behavior of
the model is nearly elastic for α = π/2 to π and that there is
a smooth transition between the elastic and the elastic-plastic
domains.

We will now use the stress-strain curve of Figure 2 to compute
the variation of the direction modulus K for various models.
Utilizing a kinematically hardening von-Mises yield surface,
the associated flow rule, Eq. (3), gives for the uniaxial test

Kp = 2

3

dσX

dε
p

X

= 2

3
E

p
t . (51)

The expression of E
p
t in Eq. (48) can again be used with the

parameters of Eq. (49) provided the first term of the series with
A1 and α1is dropped. (This term gives rise to an apparent elastic
domain in the endochronic theory.) Thus,

Kp =
n∑

r=2

Are
−αr z (52)

Such an expression for Kp is also obtained if a hereditary hard-
ening rule [15, 16] is used in the associated flow theory, as shown
in Appendix A. Also to be noted is the fact that the formulation
of the endochronic theory with a yield surface as discussed in
Valanis [5] and in Watanabe and Atluri [17] gives rise to an iden-
tical associated flow model discussed above. This is shown in
Appendix B by a direct application of the consistency condition.



638 S. K. JAIN

FIG. 3. Diagram illustrating the variation of normalized directional modulus with the direction of stress increment vector.

Let us compare different models for a strain level, εx = 0.003
with ε

p
x = 0.00139.

E
p
t = 3

2

(
A2e

−α2z + A3e
−α3z

) = 3

2
(1531 + 850.7) = 3573 ksi,

Kp = 2381.7 ksi, G
p
t = E

p
t

/
3 = 1191 ksi, Gt = 986.7 ksi;

Ep
x = 17, 840 ksi, Gp

s = 5947 ksi, Gs = 2924 ksi;

Et = 2986.6 ksi, A = 3368.9 ksi, B = 4764 ksi;

K = L = 4764 ksi.

For the corner flow rule, we computed the value of θ utilizing
the following expression of βe given in Mroz [9].

βe = sin−1

⎡
⎣ 2

√
G

/
Gs

1 + G
/
Gs

⎤
⎦ = 71◦ (53)

θo = 180◦ − (
90◦ + βe

) = 19◦

The variation of K for different models is shown in Figure
4. The figure demonstrates the extent of plasticity present in
a model for different directions of stress-increment vector. In
the associative theory of plasticity (or the endochronic theory
with a yield surface) no plastic deformations are possible for
α = π/2 to π. This is clearly seen in the figure. What is surprising
is that the endochronic theory with no distinct yield domain
shows similar characteristics to those of associated flow model.
The deformation theory model indicates plasticity for all values
of α.

The corner flow rule appears very attractive inasmuch as
the relative magnitude of the plastic deformations, indicated
by the ratio Kσ/2G, can be adjusted at will for different di-
rections of stress increment vector. The non-linear incremental
relation, Eq. (10), which appears to be a limiting case of cor-
ner flow rule, generates a decreasing amount of plasticity for
increasing values of α · An elastic response is obtained only
for the completely reversed loading directions indicated by α =
1800.

FIG. 4. Variation of normalized directional modulus for various plasticity models.
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6. CONCLUSIONS
Local directional properties of some incrementally linear and

nonlinear constitutive equations of time independent plasticity
are explored. It is shown that Mroz’ local response moduli pro-
vide us with a tool for comparing different models at a funda-
mental level. Especially, a use of the moduli shows the amount
of plasticity present in a model for tangential loading directions
(in the sense of associative theory of plasticity) which can be
a decisive factor in the suitability of a constitutive model for a
boundary value problem at hand.

A model which can be tailored so as to extract a desired
amount of plasticity for varying orientations of the stress incre-
ment vector, is stated to be a superior model.

It is proven that the J2-flow theory of plasticity is a limiting
case of the endochronic theory, but it is not clear if the small
amount of plasticity that is ever present in the endochronic the-
ory for all directions of stress increment vector, is its limitation
or a blessing. The success of the endochronic theory [8] may
be due to an infinitesimal amount of plasticity, discovered in
this investigation, for tangential loading direction. Whatever the
case may be, the finding brings out a fundamental difference
between the J2-flow theory and the endochronic theory.

ACKNOWLEDGEMENTS
Some very useful discussions the author has had with Pro-

fessor Z. Mroz, Professor Emeritus at the Institute of Funda-
mental Technological Research, Warsaw, Poland, are gratefully
acknowledged. Without his kind assistance, this work would not
have been in existence.

REFERENCES
1. Z. Mroz and O.C. Zienkiewicz, Uniform Formulation of Constitutive Equa-

tions for Clays and Sands, Mechanics of Engineering Materials, John Wiley,
1984.

2. F. Darve, M. Boulong and R. Chambon, Loi Rehologique Incrementale des
Sols, J. de Mecanique, vol. 17, pp. 679–716, 1978.

3. D.A. Kolymbas, A Rate-dependent Constitutive Equation for Soils, Mech.
Res. Comm.,vol. 4, pp. 367–372, 1977.

4. J. Christoffersen and J.W. Hutchinson, A Class of Phenomenological Cor-
ner Theories of Plasticity, J. Mech. Phys. Solids, vol. 27, pp. 465–487,
1979.

5. K.C. Valanis, Fundamental Consequences of a New Intrinsic Time Measure:
Plasticity as a Limit of the Endochronic Theory, Arch. Mech., vol. 32, pp.
171–191, 1980.

6. Z. Mroz, On Forms of Constitutive Laws for Elastic-Plastic Solids, Arch.
Mech. Stos., vol. 18, pp. 3–33, 1966.

7. K. Runesson and Z. Mroz, A Note on Nonassociated Plastic Flow Rules,
Int. J. Plast., vol. 5, pp. 639–658, 1989.

8. S.K. Jain, Five Parameter Endochronic Solid, Mech. Adv. Matl. Struct., vol.
14(6), pp. 453–463, 2007.

9. Z. Mroz, Admissible Loading Paths in the Deformation Theories of Plas-
ticity, Arch. Mech. Stos., vol. 16, pp. 1091–1102, 1964.

10. J.M. Duncan and C.Y. Chang, Nonlinear Analysis of Stress and Strain in
Soils, J. Soil Mech. Fdn. Div., ASCE, vol. 96, pp. 1629–1653,1970.

11. H. Murakami and H.E. Read, A Second Order Numerical Scheme for Inte-
grating the Endochronic Plasticity Equations, Comput. Struct., vol. 31(5),
pp. 663–672, 1989.

12. H.S. Lamba and O.M. Sidebottom, Biaxial Cyclic Hardening of An-
nealed Copper Cylinder Evaluated by Deformation Plasticity The-
ories, T&A.M. Report No. 406, University of Illinois, Urbana,
1976.

13. S.Y. Hsu, S.K. Jain, and O.H. Griffin, A Procedure for Determining En-
dochronic Material Functions and Verification of Endochronic Theory for
Nonproportional Loading Paths, Tech. Rep. VPI-E89-25, Coll. Engrg., Vir-
ginia Tech, Blacksburg, 1989.

14. S.Y. Hsu, S.K. Jain, and O.H. Griffin, Verification of Endochronic Theory
for Nonproportional Loading Paths, J. Engrg. Mech., ASCE, vol. 117, pp.
110–131, 1991.

15. Z. Mroz and S.K. Jain, On Incremental and Hereditary Descrip-
tions of Hardening Evolutions of Plasticity, Constitutive Laws for
Engineering Materials: Theory and Applications (Eds. C.S. Desai
et al.), Proc. 3rd Int. Conf., Tucson AZ, ASME Press, NY, 147–152,
1991.

16. S.P. Engelstad, S.K. Jain, and J.N. Reddy, On the Application of the In-
cremental Theory of Plasticity with Endochronic Hardening Rule, Compu-
tational Plasticity: Fundamentals and Applications, Proc. 3rd Intl. Conf.,
Barcelona, Spain, 271-282, 1992.

17. O. Watanbe and S.N. Atluri, Constitutive Modeling of Cyclic Plastic-
ity and Creep using an Internal Time Concept, Int. J. Plast., vol. 2,
1986.

18. G. Backhaus, ZAMM, vol. 56, pp. 337–348, 1976.

APPENDIX A
Consider the following formalism of the associative theory

of plasticity for a kinematically hardening material.

Yield function, f
(
σij − αij

) = σ0 (i)

flow rule, de
p

ij = 1

Kp

nij (nkldσkl) (ii)

consistency condition, (dσij − dαij )nij = 0 (iii)

translation rule, αij =
∫ z

0
ρ1(z − z′)

de
p

ij

dz′ dz′ (iv)

where, z = (de
p

ij de
p

ij )
1
2 . Differentiating Eq. (iv) we obtain,

dαij = ρ(0)de
p

ij − hijdz (v)

where, hij = −
∫ z

0

∂p1(z − z′)
∂z

de
p

ij (z′)

dz′ dz′ (vi)

Substituting Eqs. (ii) and (v) into Eq. (iii), we obtain,

Kp = ρ (0) − nijhij (vii)

Assuming a von-Mises yield function, this equation reduces to,
for a monotonic uniaxial test,

Kp =
n∑

r=2

Are
−αr z = ρ1 (z) = 2

3

dσx

dε
p
x

(viii)
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Integrating this equation beyond initial yield, we obtain the
expression for the stress-plastic strain curve.

σX = σ0 +
√

3
/

2
n∑

r=2

Ar

αr

[
1 − exp

(
−

√
3
/

2αrε
p

X

)]
(ix)

The hereditary translation rule, Eq. (iv) appears to have been
first used by Backhaus [18] within the formalism of associative
theory of plasticity.

APPENDIX B
Considering the endochronic equation

sij =
∫ z

0
ρ(z − z′)

de
p

ij

dz′ dz′ (x)

and assuming the kernel ρ(z) to be of the form

ρ(z) = A0δ(z) + ρ1(z) (xi)

where δ(z) represents a dirac-delta function, we obtain

sij = A0

de
p

ij

dz
+ αij (xii)

where αij is as given in Eq. (iv).
From Eq. (xi) we can obtain the following function

which has been interpreted by Valanis [5] to form an elastic
domain:

[
3

2
(sij − αij )(sij − αij )

] 1
2

=
√

3
/

2A0 = σ0 (xiii)

Eq. (xi) can be rearranged to have

de
p

ij = nij dz; nij = (sij − αij )

/√
2
/

3σ0 (xiv)

Applying the consistency condition, Eq. (iii), it is easily found
that

dz = nij dσij

ρ (0) − hijnij

. (xv)

Thus, we find that, for the von-Mises yield function, Appendices
A and B provide identical answers.

APPENDIX C. NOMENCLATURE
Bold faced small letters and bold faced Greek letters are

vector quantities. Superscripts “e” and “p” respectively denote
elastic and plastic components. Subscript “s” implies secant
and “t” implies tangent. Prefix “d” stands for an infinitesimal
increment.

A, B material parameters, Eq. (13)
b or bij unit vector denoting the direction

of plastic flow or the direction of
stress deviator

eij strain deviator

dep = ds = (
de

p

ij de
p

ij

) 1
2 , norm of plastic strain increment

vector
f hardening function in endochronic

theory, Eq. 19
µ or G shear modulus
h or hij defined in Eq. (22)
h = (hijhij )

1
2 , the norm of h

L, M material functions
Kσ,Kε directional modulii defined in Eq.

(1) and (2)
Kp normalized plastic hardening

modulus, Eq. (3)
nf or nij unit vector normal to the yield sur-

face
s or sij stress deviator
z intrinsic or endochronic time

scale, Eq. (22)
α angle between the stress increment

vector and the direction of plastic
flow (the plastic strain increment
vector or the stress deviator vec-
tor).

γ angle between the strain increment
vector and the direction of plastic
flow.

ε or εij strain deviator
σ or σij stress tensor
dεσ component of strain increment

vector in the direction of stress in-
crement vector, Eq. (1)

ρ1 (z) , ρ(z) material functions in endochronic
theories with and without a yield
surface, respectively.


