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Abstract: Magnetic resonance imaging is a powerful, ubiquitous imaging technique that provides detailed high-contrast images
differentiating soft tissues. The low radio-frequency bias field creates intensity inhomogeneity generating low contrast that often
creates difficulty for quantitative and qualitative analyses. Segmentation aids in analysis of changes occurring in brain, where
bias effect severely affects performance. The graph-cut (GC) segmentation provides supervised computer-assisted diagnosis
and treatment. GC's interactive nature requires manual selection of kernels for initialisation. The shrinkage behaviour of GC
creates inaccurate and fallacious extraction. On the basis of these problems, this study proposes gradient-based kernel
selection GC method that simultaneously removes shrinkage problem and locates tumour in image, eliminating human
interaction with accurate segmentation for even bias field images. The proposed method addresses these problems by
emphasising on directive inclination of intensity scales of symmetrical halves of images. The proposed method is evaluated for
high-grade glioma and low-grade glioma images with and without bias field. The average performance metrics evaluated for
these images depict remarkable improvement in comparison with existing techniques. The proposed technique is validated by
applying on real-time dataset of tumour images obtained from State Government Hospital, Shimla, India.

1 Introduction
Magnetic resonance imaging (MRI) is the standard technique used
for brain tumour diagnosis. This technique is widely used in clinics
as it provides a different type of tissue contrast by varying the
excitation and repetition times [1]. The analysis and study of brain
tumour MRI images are considered to be complex and challenging.
This is due to the tumour's heterogeneous structure that generates
difficulty in locating the boundary. Also, tumour growth and
formation are integrally unpredictable.

Consequently, the shape and different textural properties do not
fall into a standard set of shape or size. Besides these difficulties, a
bias field effect corrupts MR images by creating the intensity
inhomogeneity [2]. Bias field is a low-frequency undesirable signal
that has varying intensity distribution with multiplicative nature.
These invariabilities are biggest hurdle in medical analysis. The
intensity inhomogeneity is particularly severe in MRI at ultra-high
field strengths (e.g. 3 and 7 T) and sometimes makes it difficult
even for expert human observers to view the images.

To provide an efficient and impartial evaluation medical image
analysis is gaining attention. With the huge on-going research in
this field, many methods reported are closer to the routine clinical
application. One of the methods in image analysis is segmentation
technique that allows the extraction of the abnormal tissue from the
normal. This extraction is helpful for the feature and texture
analyses of the tumour. There has been an enormous work in the
field of image segmentation. Among various segmentation
techniques, the automatic image segmentation is an active area of
research work, which has attracted significant attention. To fully
automate the method, user interaction must be completely
terminated. The accurate knowledge of prior information is critical
and depends on the preferences of the segmented region for the
ultimate goal of segmentation. Owing to the intensity dependence
of the selection of these a priori information from the images with
bias effect becomes much difficult.

One of the popularly used segmentation technique in image
analysis is the graph-cut (GC) method [3]. The energy function
used in this method consists spatial coherency term and data term.
The former term evaluates the abrupt changes in the boundary. The

latter is the likelihood energy that defines the Gaussian intensity
distribution of the MR brain image. This distribution is formed if
the kernel value obtained from the selected markers, indicating the
highest resemblance with the object and the background region, are
known (which are the prior information). The kernels are key
values that are used to localise the tumour in the brain MR image
and initialise the subsequent steps of the segmentation process. The
domain priors can be empirically or randomly selected [4] with the
help of radiologist for the breast tumour. Researchers have also
initialised the algorithm with random pixel values and detected the
texture feature and spatial characteristics of the object region for
automating the segmentation method [5, 6].

1.1 Our contribution

With the variant application-driven advantages provided by the GC
method, on the one hand, it partakes the limitation of small cuts or
shrinkage behaviour [7, 8]. There is an occurrence of the erroneous
pixel regions, which mainly occur due to more than one tumour
settlements comprising high affinity with the tumour region. In this
work, the focus is on estimating the kernels that serve important
purposes of segmentation for all images, with and without bias
field. The proposed gradient-based kernel selection GC (GBKS
GC) technique focuses on the abrupt changes caused due to the
glioma-affected areas. These abrupt changes are evaluated, and
pixel location forms the initial markers providing the essential
kernel values. It eliminates user interaction and creates a fully
automatic algorithm. The selection of accurate kernels aids in
obtaining single-connected region and removal of shrinkage
problem. On applying the proposed method on MR images affected
by the bias field, accurate segmentation of the tumour region
achieved. Moreover, the proposed technique gave accurate
segmentation results when applied on the real-time images of the
brain obtained from Government Hospital, Indra Gandhi Medical
Hospital (IGMC), Shimla, Himachal Pradesh (India). The brief
description of the achieved objectives is discussed below:

• Automatic marker selection for the GC algorithm: The GC
algorithm depends on the intensity values of the brain image and
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requires markers for its initialisation. In this paper, we have
provided the kernel values by using the pixel intensity and
exploiting the symmetrical nature of brain structure. Also, the
selection of markers is done without any human intervention
achieving automatic initialisation.

• Removing shrinkage problem: To detect a complete tumour
region excluding any extra or erroneous region, the kernel
values are extracted with their site of the existence to eliminate
these regions. By including these sites during segmentation, an
effective extraction of the homogeneous single-connected region
is achieved. This results in the removal of the shrinkage problem
caused in the conventional GC method.

• Removing effect of bias field: The bias field creates abrupt
intensity changes that may affect the marker selection and
consequently the segmentation. The segmented tumour region
contains abrupt boundaries and the inherent intensity
inhomogeneity causes due to the bias field inside the object
region. This abruptness and non-uniformity in the segmented
tumour are removed by applying the proposed GBKS GC
technique.

1.2 Related work

Among the various interactive methods, GC segmentation employs
Gaussian mixture models (GMMs) for intensity distribution, and its
energy equation formulates the cut for partitioning the foreground
[9]. The GrabCut uses an iterative energy minimisation by utilising
two GMMs providing intensity distribution for both the object and
foreground regions [10]. Owing to its interactive nature, a
bounding box is required, drawn by the user that encloses the
object. The intelligent scissor technique [11] uses the user-defined
points and crops the nearest object region boundary. The extraction
is done via graph search methods for its automatic execution. In
this research work, automatic GC segmentation is employed by
removing this interactive nature and providing the most accurate
markers to perform good object segmentation.

Even if the interactive nature of this technique is removed still
some unwanted region is segmented along the object region due to
the shrinkage bias. These are formed for the region with the shorter
boundary as there are intensity discontinuities at the boundary of
the segmented region. This problem presents a difficulty for
segmenting a single-connected object region. The normal brain MR
image region is disguised as the infected tumour region. To address
this, issues of some methods are reported to remove this problem.
Jermyn and Ishikawa [12], Sinop and Grady [13], Kimmel and
Bruckstein [14] and Kolmogorov and Boykov [15] demonstrated a
flux of a vector field to overcome the shrinkage problem. Mostly
this technique is applied on thin objects, for example, blood vessel
grey-scale image of the human body. In these images, the object
and background regions are represented by intensity values varying
from white till grey. The vector fields are created by observing the
image gradients. However, these methods lack two major aspects:
first, this approach does not work on the colour image, and second,
it faces the issue of choosing the initial vector field. In GC
technique, Boykov et al. [16] demonstrated an approximate
solution for multiple labelling. The terminal and non-terminal links
obtained from the normalised cuts described by Shi and Malik [17]
partitions the graph forming the disconnected and connected avoids
the problem. Hao et al. [18], Gao et al. [19], Alemán-Flores et al.
[20] and Liu et al. [21] applied this approach for segmenting
lesions in the breast ultrasound images. A necessary requirement of
the initial markers is critical for the initialisation of an automatic
algorithm. These initial markers are given by Hanaoka et al. [3] by
proposing a Riemannian metric for the three-dimensional (3D)
image by enhancing the GC segmentation and consequently
solving the shrinking problem. This Riemannian metric provides
prior knowledge of the predefined shape or initial contour.
However, this method remains limited while segmenting the thin-
elongated object.

Besides, the different approaches discussed above for
segmentation, a major issue also lies in partitioning the tumour
from a bias field affected image. To reduce this effect many
researchers have reported literature on the removal of the bias

effect on MR images [22, 23]. Sled et al. [22] proposed an iterative
and automatic non-parametric non-uniform intensity normalisation
(N3) approach, in which no a priori information was used. Wells et
al. [23] presented an adaptive estimation method by employing
expectation maximisation. This method is able to segment each
brain tissue, but accurate knowledge of a priori information is
required. Li et al. [24] used the coherent local intensity clustering
for estimating the bias field and segmenting the object region.
Image denoising is done by Bilenia et al. [25] for removing the
bias field from the T1 modality of the brain MRI images with skull
stripping at the initial phase.

Many researchers introduce many semi-automatic and
automatic approaches regarding GC technique are in the past few
years. In semi-automatic approach, some of the clustering
techniques are developed by researchers [26–28]. The region
growing method is combined with two clustering method: k-mean
and fuzzy c-mean (FCM) to provide a multi-stage approach [26].
This technique aided in segmented following regions: peritumoural
region and enhancing tumour region. Also, a multidimensional
feature set is constructed that comprise texture characteristics of
different MRI modalities (T1, T1ce and T2) [27]. The k-mean
clustering method is used on these feature sets and a Dirichlet a
priori segmentation is easily performed as normal brain region
intensity clusters are completely omitted from the feature set
framed. Another hybrid technique for multi-stage segmentation
Kanas et al. [28] used random walks and FCM approach.

Jiang et al. [29] proposed a semi-automatic approach that
included training through learning with the help of some feature
sets. This method is applied on all the modalities (i.e. T1, T1ce, T2
and flair). In this approach, classifier is trained through learning by
providing the population feature sets. The segmentation is
performed using a GC technique considering the probability maps
formed by the classifiers. Zhao et al. [30] used Markov random
field for extraction with good accuracy. This proposed method is
applied to the complete set of modalities, except for T1. The
technique presented by Ilunga-Mbuyamba et al. [31] employs a
hybrid form of active contour model and k-mean. This technique of
using active contour model enhances the speed for the process of
segmentation.

Mostly, the fully automatic approaches use the neural network
as it extracts high-level information from the dataset to provide the
learning. These methods are highly accurate and fully automatic
requiring a large amount of data for the learning process. The
neural network approaches developed by the researchers [32–35]
collect the key prior information required for the segmentation.
Havaei et al. [32] presented a deep neural network that uses global
and local contextual features. This network comprises training at a
two-phase level to remove any imbalance that occurs in the tumour
labels. A toolkit named ilastik is also used for extraction [33] that
does not employ any human interaction. Zikic et al. [34] applied
convolutional neural network with all likelihood to directly apply
segmentation to the brain tumour tissues. The labelling to all the
surrounding tissue is provided with respect to the information
generated by the network. A classification within the tumour
region is also done by Havaei et al. [35] by employing a neural
network. Li et al. [36] have provided a likelihood estimation using
a machine learning method that gave the best estimation and good
accuracy value for the segmentation using GCs. Wu and Yizhou
[37] proposed an automatic method for fine quality extraction of
objects from photographs. The foreground pixels are extracted to
form texture feature using classifiers and convolution features are
generated using a deep neural network. These feature aids in the
extraction of the objects.

This paper is organised in the following sections: Section 2
contains the problem formulation. Section 3 comprises the
materials and methodology. In Section 4, the experimental results
obtained are tabulated and the output images obtained are depicted.
Also, a comparison of our result with the existing method is
tabulated in this section. Finally, in Section 5, the conclusion and
future work are formulated.
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2 Problem formulation
The general structure of graph G = ν, ε  consists of ν nodes
which represents the pixels and ε edges formed by the
neighbouring pixels. For bi-object segmentation, the source s and
sink terminals t are required for partitioning the graph in the object
and the background region. The connectedness of these terminals
with the graph is shown by an arc known as ‘t-link’ (terminal link).
The second type of arc is the ‘n-link’ (non-terminal link), which
connects the neighbouring pixels. The s/t cut in the graph is a
partitioning of ν into two disjoint sets of s and t. A cut with
minimal cost is the best cut applied. This cut is obtained by
minimising the energy function. The energy equation comprises of
the summation of data and spatial coherency term. The standard
energy function for GC-based image segmentation approaches [9,
10] in the equation below:

E x = ∑
pϵν

Ep xp + ∑
p, q ϵε

Epq xp, xq (1)

Our goal is to obtain kernels for the initialisation of the algorithm
without any user interaction and remove the shrinkage problem in
the GC method. These goals are obtained under certain
connectivity constraints. These constrained assume that an
undirected graph with defined connectivity between the nodes is

provided. In our experiment, a 2D grid graph with energy equation
given in (1) is considered.

To perform segmentation, complete image must be partitioned
as: xϵ xO, xB , where xO and xB are the sets of pixels belonging to
the object and background region, respectively. These sets
associate high resemblance with the selected kernel (s and t) that
even aids in the initialisation of the GC methodology. The path
formed between s and t must consist of connected nodes xO. One
way for the marker selection is to provide a user interface by
clicking on image. These markers help in creating the kernels.
Unfortunately, this user interaction employs multiple clicks and it
becomes a non-deterministic polynomial hard problem. Once the
segmentation is performed, it is difficult to obtain a single-
connected component due to problem of shrinkage. As the object
pixel set is labelled as 1, xO = xOϵx xO = 1  and the small area
formed due to small cuts, the extra regions are obtained. In an
interactive environment, it is possible that inaccurate prior
information is considered and structures are incorrectly segmented.
Even the bias field MR images that portray non-uniformity of the
intensity scale creates even bigger challenge for selecting the
markers. This intensity inhomogeneity in the MR images can be
observed from Fig. 1. 

3 Material and methodology
The dataset for conducting the experiment for this research work
are taken from the Brain Tumour Segmentation Challenge, a part
of MICCAI challenges [38–40]. This dataset consists of different
types of glioma images comprising high-grade glioma (HGG) and
low-grade glioma (LGG). There are four modalities of size 240 × 
240 which are co-registered and low-intensity tumour images [41],
namely T1, T1ce, T2 and flair. For our research work, 70 and 70
LGG flair images without any bias field effect and with bias field
effect are utilised and the evaluated results are reported. To validate
the experimental results, the ground truth (GT) provided by the
expert radiologists is used.

The real-time dataset comprising meningioma and glioblastoma
multiforme (GBM) MR images are obtained from the radiology
department of State Government Hospital, IGMC, Shimla,
Himachal Pradesh (India).

The proposed method consists of five main steps: intensity
normalisation, marker selection, GC segmentation, post-processing
and parameter evaluation. The proposed technique using GBKS
GC is depicted in Fig. 2. 

The steps involved in the proposed algorithm are detailed in the
following section.

3.1 Intensity normalisation

The brain MR images have intensity values in the range 0–255 × 
255, leading to bad estimates of mean/variance and increases the
memory space. The obtained dataset provides MR image of size
240 × 240 containing pixel value ranging from 0 to 65,025. By
applying intensity normalisation, the size of image is reduced from
16 to 8 bit and the intensity range is converted to a scale of 0–255.
Fig. 3 illustrates the effect of intensity normalisation on one of the
flair image. 

3.2 Proposed GBKS

The pictorial illustration of the proposed GBKS methodology is
depicted in Fig. 4. The process is entirely intensity dependent, less
iterative with low mathematical complexity. It principally depends
on the gradient calculation and inclination of these gradients. Both
the positive and negative inclinations represent the abrupt changes
in two halves of the images.

Fig. 4 depicts a two-level division of the input MR image, and
the extraction of the markers with their location after converting
the grey image into a binary form. The workflow of the proposed
GBKS technique for marker selection is provided in Fig. 5. The
pixel values in the main image ℐ and both horizontal half (ℐ1/2

−1

and ℐ1/2) of the image are used to calculate the gradient. Among
these images, the inverse represents tumour region. Initially,

Fig. 1  Bias field MR images
(a) HGG, (b) LGG

 

Fig. 2  Proposed GBKS GC segmentation technique
 

Fig. 3  Effect of intensity normalisation on one of the flair image
(a) Original MR flair image, (b) Intensity normalised image
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random weights are assigned to each image and the gradients are
calculated. These gradients help in obtaining the majorly affected
tumour region of the brain. In a normal brain image, symmetrical
intensity distribution is present and the gradients do not show any
inclination (negative or positive)

Δℐ1/2 = Δ μIK ∼ μI11K ≅ 0 (2)

Δℐ1/2
−1 = Δ μIK ∼ μI12K ≅ 0 (3)

At both the levels, gradients and the amount of negative slope
are calculated

amount NS =
Σ negative Δℐ1/2

Σ negative Δℐ1/2
−1 (4)

where NS is the negative inclination.
Large amount of NS implies the presence of the tumour region

in one of the horizontal half of the MR image, which is generated
for the second level. The gradients and their inclination are again
calculated at this level

IL2 =
NS > NS−1 → I12: I12, I12

−1 → tumor presence in I12

NS < NS−1 → I11: I11, I11
−1 → tumor presence in I11

(5)

where IL2 image generated for the second level of the algorithm.
No further division is done after image size ≥ (m/4) × (n/4).

After the second-level division, final image with size
(m/4) × (n/4) is converted into binary form and location of tumour
and markers are calculated. These two important key points aid in
the automatic initialisation and in obtaining single-connected
region by removing the shrinkage problem.

The kernels that are calculated using the detected markers and
their location provide an accurate tumour segmentation. The GBKS
terminates any manual or interactive kernel selection, removing the
inaccuracy and false segmentation. Even the problem of shrinkage
is removed. The proposed method not only provides the markers,
but also their location hence providing a single-connected object
region. Different techniques are employed before for the selection
of these kernels. Rosenfled and Pfaltz [42] segmented the image
using distance transform operator that is viable for only single local
maxima in target regions. Distance transform along with global
thresholding is able to distinguish various regions. Park et al. [43]
provided ultimate erosion for convex sets that is an iterative
morphological algorithm required to extract the seed points from
overlapping regions limited to the nanoparticles and their
morphological analysis.

3.3 GC segmentation

The object and background kernels are evaluated from the markers
obtained from the proposed GBKS method. These kernel values
execute the segmentation of the tumour region by an algorithm

developed by authors Dogra et al. [44]. Even after segmentation,
the obtained image may contain some erroneous regions that occur
due to the limitation of the GC method known as shrinkage
problem.

The location obtained from the flowchart given in Fig. 5 create
a single-connected tumour region. These location are further used
for removing the shrinkage problem by the following stepwise
procedure explained in Algorithm 1 (Fig. 6). All the pixels
showing high similarity with these location form a single-
connected tumour region resulting in the extraction of the
segmented output.

3.4 Post-processing: bias field correction

Bias field is a multiplicative noise causing intensity inhomogeneity

pi = pi
,bi; i = 1, 2, 3, …, m × n (6)

where pi
, is the pixel intensity at the ith position of the 2D image

and bi is the intensity variation of the bias field. This bias field has
Gaussian distribution

bGauss p = 1
σ√2π

exp − p − μ 2

2σ2 (7)

Fig. 4  Workflow of the proposed GBKS technique
 

Fig. 5  Flowchart of the proposed GBKS technique
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where p, σ and μ are the image intensity, standard deviation and
mean value, respectively.

The performance of segmentation method on bias field images
gets degraded due to intensity inhomogeneity. Therefore, removal
of this bias field from the segmented images is achieved by
applying post-processing technique using non-linear median filter.
Fig. 7 depicts the removal of the bias field while preserving the
edges of extracted region. 

3.5 Parameter evaluation

The complete evaluation for the proposed GBKS GC is done on the
basis of various parameters as reported in the literature review.
Parameters calculated for the accuracy of the selected kernel are:
mean square error (MSE) and correlation coefficient (CC). The
MSE value quantifies the difference between the mask obtained
and the GT. The strength between the variables and relationships is
calculated by the CC parameter. For the validation of mask area,
perimeter, major axis length (MAL) and minor axis length (MiAL)
parameters of the obtained tumour region with the GT are
measured. These properties give the confirmation of the shape of
the obtained tumour region. To evaluate the performance of the
proposed GBKS method, Jaccard index (JI), dice similarity
coefficient (DSC), positive predictive value (PPV), sensitivity and
specificity are calculated. The performance metrics are calculated
using the parameters: true positive (TP), false positive, true
negative and false negative (FN).

DSC: It measures the overlap or the amount of similarity in the
pixel between the GT and the affected region obtained after
automatic segmentation

DSC = 2 ET ∩ GT
ET ∩ GT + 2 ET ∩ GT + ET ∩ GT (8)

where ET is the extracted tumour and GT is the ground truth
available.

Sensitivity: This parameter measures the number of TP and FN
detections, which means it calculates the fraction of positives that
are correctly detected by the experiment.

JI: It is the measured amount of similarity between the two
samples obtained from the GT and the segmented result

JI = ET ∩ GT
ET ∩ GT (9)

Specificity: This parameter calculates the fraction of negatives that
are correctly detected. It covers all those pixels that were not be
detected and the experiments does not detect them.

PPV: It predicts the amount of segmented region that are
oversegmented or the pixel region that gets segmented even though
it is the part of the normal brain tissue region.

4 Results and discussion
This research work addresses three major issues of automatic
extraction of glioma-affected portion from MR images. The first
section evaluates the effectiveness of the selected kernels in
removing the shrinkage problem [7, 8]. The results are
quantitatively and qualitatively validated by extracting the portion
affected with bias field.

4.1 Automated segmentation

The proposed GBKS GC method focuses on the issues of kernel
selection for the initialisation of the algorithm and removal of the
shrinkage problem [7, 8].

Owing to intensity-based nature of the GC method, it is difficult
to obtain a single extracted region. Small cuts and leakages are
formed due to similar intensity regions in the normal part of the
brain. These extra regions get extracted by the GC method, which
is a limitation of this method. Figs. 8b and e show the results
obtained from conventional GC for HGG and LGG brain tumour
MRIs clearly indicating the fallacious segmentation regions. 

Figs. 9b and e show the similar results for bias field MR images. 
For Figs. 8c and f, it is observed that by employing the proposed
GBKS GC method, the shrinkage problem is completely removed
as erroneous pixels are not obtained. Also, a single-connected
component is obtained at the output implying accuracy in the
selected kernels that initialise the algorithm. Similarly, accurate
outputs are also obtained for bias field images as shown in Figs. 9c
and f.

To prove the effectiveness of the proposed method in removing
the shrinkage problem, MSE and CC values are obtained. The
results for 20 HGG and 20 LGG MR images are illustrated in
Table 1. The results reported are of GBKS GC method applied on
images with and without bias field effect for both the HGG and
LGG MRI images.

The average mean obtained for all 35 HGG and LGG MR
images for bias field and without bias field is tabulated in Table 2. 
For the proposed technique, it is observed from Table 2 that the
average MSE value is very low as all the extra pixels are removed.
The CC value obtained by the proposed technique is higher in

Fig. 6  Algorithm 1: algorithm for extraction of single-connected tumour
region using the proposed GBKS GC technique

 

Fig. 7  Removal of the bias field
(a), (b) Segmented bias field HGG image by the proposed algorithm and post-
processing, (c), (d) Segmented bias field LGG image by the proposed algorithm and
post-processing
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comparison with the bias field images due to the presence of the
noise. The result thus proves the selected kernels from the
proposed technique GBKS GC are highly accurate for all the
images (whether HGG or LGG) and with or without bias field
which aid in the removal of shrinkage problem.

4.2 Real-time dataset

The proposed GBKS GC method is applied on some real-time
dataset with flair modality under the expert guidance of radiologist.
Figs. 10a, c and e depict MRI brain tumour images diagnosed with
meningioma, GBM and cystic acoustic schwannoma, respectively. 
In these figures, tumour affected portion of the brain is marked by
the radiologist. The results obtained after applying the proposed
technique are depicted in Figs. 10b, d and f. It is observed that the
tumour regions are clearly identified and no fallacious
segmentation is obtained.

These results are verified by the expert radiologist and the
difficulty that occurs in having the clear vision of abnormal
structures of human brain is removed by the proposed GBKS GC
method.

4.3 Performance metrics

The validation of the proposed GBKS GC technique is further done
by evaluating the performance metrics applied on the obtained
tumour region. The parameters are calculated for the ET region

with no shrinkage problem for without and with bias field MR
images. It is observed from Fig. 11 that tumour is accurately
extracted from the HGG MR images, with and without bias field
affecting the images. Post-processing is employed on the extracted
regions of the tumour to achieve the segmented glioma portion.
Similarly, Fig. 12 depicts the results obtained for the LGG images. 
From these results, it is clear enough that the proposed algorithm
successfully executes the segmentation in the presence or the
absence of bias field effect.

In Tables 3 and 4, a qualitative analysis is provided for 20 HGG
and 20 LGG MRI images (with and without bias effect images). 
All the values obtained confirm the accuracy of the segmented
results. All the parameters are evaluated on scale of 0-1, values
closer to 1 are perceived as good segmentation and the opposite is
true for poor segmentation. The values depicted in Tables 3 and 4
for JI, DSC, PPV, sensitivity and specificity are high for images
with and without bias field emphasising better segmentation.
Higher DSC value represents dice overlap and from Tables 3 and 4,
it is observed that the values obtain higher value inferring high
similarity with the GT.

Observing the PPV value from Tables 3 and 4, low fallacious
segmentation is achieved by the proposed algorithm. Also, a high
sensitivity value is observed from these tables which correspond to
all positives in the original image are correctly detected. Same is
true for specificity parameter, where all the negatives of the
original pixels are also correctly detected.

Fig. 8  Automated segmentation
(a), (d) Original HGG and LGG MR images, (b), (e) Segmentation showing shrinkage
problem, (c), (f) Removal of shrinkage by the proposed GBKS GC

 

Fig. 9  Similar results for bias field MR images
(a), (d) Original bias field HGG and LGG MR images, (b), (e) Segmentation showing
shrinkage problem, (c), (f) Segmentation by the proposed GBKS GC

 
Table 1 Results obtained for 10 HGG and 10 LGG MRI images comparing the GBKS GC technique
MSE (HGG) CC (HGG) MSE (LGG) CC (LGG)
Without bias field With bias field Without bias field With bias field Without bias field With bias field Without bias field With bias field
0.014 0.003 0.903 0.938 0.011 0.011 0.935 0.934
0.007 0.007 0.923 0.924 0.002 0.001 0.889 0.909
0.002 0.009 0.950 0.869 0.004 0.001 0.904 0.936
0.001 0.030 0.890 0.784 0.008 0.005 0.899 0.869
0.005 0.008 0.936 0.910 0.001 0.008 0.958 0.848
0.011 0.019 0.904 0.857 0.002 0.005 0.949 0.720
0.008 0.015 0.905 0.867 0.008 0.002 0.849 0.937
0.007 0.011 0.844 0.871 0.009 0.009 0.903 0.915
0.005 0.016 0.950 0.871 0.002 0.002 0.888 0.841
0.005 0.009 0.930 0.842 0.002 0.021 0.959 0.701

 

Table 2 Average MSE and CC error for GBKS GC technique (mean±std)
MSE CC

Without bias field With bias field Without bias field With bias field
HGG 0.008 ± 0.004 0.013 ± 0.001 0.899 ± 0.031 0.877 ± 0.04
LGG 0.006 ± 0.005 0.006 ± 0.005 0.919 ± 0.044 0.861 ± 0.079
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4.4 Regional parameter validation

For validating the obtained tumour region from the proposed
technique, regional properties of the segmented tumour are
calculated as described in Section 3.5. Same regional properties are
calculated for the mask of the GT of corresponding images. To
validate the accuracy of ET region, the mean error for these
properties is calculated and tabulated in Table 5. 

To generalise the error obtained, the mean values for all the
HGG and LGG images are calculated. It is observed that the mean
errors obtained for HGG and LGG images are 0.11 and 0.02 for
area, 0.10 and 0.01 for perimeter, 0.04 and 0.02 for maximum axis
length and 0.05 and 0.05 for minimum area length, respectively.

The tabulated results signify high perimeter error for both the
images, as edges formed in the output image are not smooth,
whereas the boundary edges of the GT are smoother. The MAL and
the MiAL infer the shape of the tumour. The result obtained by the
proposed technique show occurrence of small error, hence
conserving and validating the accuracy of the obtained tumour
shape.

4.5 Comparison to existing techniques

The average value calculated for complete dataset used for the
simulation is illustrated in Table 6. The values obtained for the
evaluated parameters present good result for accurate and better
performance of the proposed GBKS GC technique. These results
are also compared with some of the existing GC technique. The
comparison is shown in Table 7. Jiang et al. [29] constructed a
graph with the help of a priori information that is obtained from the
feature sets of the multimodal magnetic resonance of population
and patient specific. Although the segmentation is done by using

GC technique, the seeds are manually selected. Hence, this method
involves user interaction compelling it to be prone to human error.
A comparison of the proposed technique with the conventional GC
method [45] and random walk technique [46] is also provided in
Table 7. The a priori information of the feature set is unknown in
GC technique, and this information is important as this technique is
intensity dependent. Also, decisions in random walk technique are
based on the information derived from the pixel intensity as they
form the probability distribution of the image graph. Besides, both
these techniques comprise human interactions for providing the
initial a priori information. These technique pose difficulties in
case of shrinkage problem as the parameter values obtained are
low. The comparative results are also shown graphically in Fig. 13.

5 Conclusion
The proposed GBKS GC method removes the hurdles involved in
the interactive GC technique. The automatic selection of the
proposed method eliminates the interactive nature and selected
markers provide the most effective and accurate segmentation of
the tumour region. This research work has addressed the open
research challenge of the shrinkage problem. Even for images that
have intensity inhomogeneity due to the bias field, the proposed
method is successfully able to extract the targeted tumour region.

Fig. 10  Real-time dataset
(a), (c), (e) Axial (flair) MR image diagnosed as meningioma, GBM and cystic
acoustic schwannoma, (b), (d), (f) Segmented tumour region obtained by the proposed
GBKS GC method

 

Fig. 11  Extraction of tumour region by the proposed GBKS GC
segmentation technique on brain HGG MR images with and without bias
field effect

 

Fig. 12  Extraction of tumour by the proposed GBKS GC segmentation
technique applied on brain LGG MR images with and without bias field
effect
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Table 3 Evaluation results of GBKS GC method for HGG MR images (without and with bias field effect)
JI DSC PPV Sensitivity Specificity

HGG 0.91 0.83 0.83 0.99 0.99
0.93 0.86 0.92 0.99 0.93
0.95 0.91 0.98 0.99 0.91
0.89 0.80 0.86 0.99 0.92
0.94 0.88 0.93 0.95 0.94
0.91 0.83 0.85 0.94 0.97
0.91 0.83 0.83 0.89 0.99
0.84 0.72 0.73 0.91 0.97
0.95 0.91 0.99 0.92 0.91
0.90 0.82 0.96 0.91 0.85

HGG with bias field 0.94 0.89 0.98 0.99 0.90
0.93 0.86 0.89 0.99 0.97
0.87 0.77 0.97 0.99 0.78
0.78 0.64 0.64 0.99 0.99
0.91 0.84 0.94 0.95 0.88
0.87 0.76 0.81 0.94 0.93
0.87 0.77 0.81 0.99 0.95
0.87 0.77 0.77 0.91 0.99
0.88 0.78 0.88 0.92 0.88
0.92 0.84 0.86 0.91 0.84

 

Table 4 Evaluation results of GBKS GC method for LGG MR images (without and with bias field effect)
JI DSC PPV Sensitivity Specificity

LGG 0.88 0.94 0.92 0.98 0.91
0.89 0.79 0.93 0.99 0.85
0.82 0.89 0.94 0.99 0.87
0.88 0.94 0.94 0.99 0.99
0.95 0.92 0.95 0.99 0.95
0.95 0.91 0.95 0.99 0.95
0.84 0.91 0.91 0.98 0.95
0.89 0.94 0.95 0.95 0.98
0.87 0.93 0.87 0.96 0.99
0.93 0.96 0.95 0.98 0.97

LGG with bias field 0.94 0.88 0.91 0.99 0.98
0.90 0.83 0.88 0.99 0.94
0.94 0.88 0.91 0.99 0.96
0.86 0.76 0.76 0.99 0.99
0.85 0.74 0.77 0.99 0.95
0.69 0.52 0.52 0.99 0.99
0.94 0.88 0.91 0.98 0.99
0.92 0.85 0.94 0.97 0.98
0.83 0.71 0.71 0.96 0.99
0.67 0.51 0.98 0.98 0.97

 

Table 5 Error calculation for validation of tumour shape obtained from the GBKS GC method for ten HGG and ten LGG MR
images
HGG LGG
Area Perimeter MAL MiAL Area Perimeter MAL MiAL
0.11 0.06 0.01 0.05 0.01 0.08 0.10 0.05
0.17 0.17 0.06 0.01 0.01 0.06 0.07 0.11
0.06 0.03 0.02 0.05 0.07 0.03 0.05 0.09
0.12 0.01 0.01 0.13 0.01 0.02 0.07 0.05
0.11 0.06 0.13 0.04 0.01 0.01 0.04 0.05
0.02 0.03 0.06 0.09 0.01 0.06 0.03 0.06
0.03 0.08 0.12 0.14 0.11 0.04 0.03 0.12
0.05 0.15 0.08 0.04 0.01 0.02 0.05 0.06
0.16 0.05 0.01 0.14 0.01 0.08 0.01 0.08
0.02 0.02 0.02 0.01 0.02 0.09 0.02 0.01
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The algorithm was validated by its application on the real-time
dataset of different brain tumours. The brain tumour segmentation
is a powerful ubiquitous clinical diagnostic tool, for detection and
diagnosis of normal and pathological tissue as abnormalities and
tumours. The removal of fallacious segmentation finds its
application even in neurological and psychiatric disorder.

For confirming the obtained shape of the segmented tumour, the
evaluated error for all the regional properties is very low. Even the
shrinkage problem that produces erroneous region in the
surrounding region is completely removed, and the evaluated MSE
and CC values provide this validation. The JI, DSC, PPV,
sensitivity and specificity performance metrics are calculated for
MR images with and without bias effect. The evaluated results
infer that a significant outperformance is observed for the proposed
technique in comparison with all the existing techniques.

In the future, we will perform multi-segmentation within the
tumour region through classification by employing neural network
and artificial intelligence.

6 Acknowledgments
We gratefully thank the radiology department of the Indra Gandhi
Medical Hospital (IGMC), Shimla, Himachal Pradesh, India, for
their assistance in providing us the real-time database. We have
benefitted from the expert guidance offered by the radiologist in
validating the obtained results.

7 References
[1] Bauer, S., Wiest, R., Nolte, L.-P., et al.: ‘A survey of MRI-based medical

image analysis for brain tumor studies’, Phys. Med. Biol., 2013, 58, p. R97
[2] Despotović, I., Goossens, B., Philips, W.: ‘MRI segmentation of the human

brain: challenges, methods, and applications’, Comput. Math. Meth. Med.,
2015, 2015, (450341), p. 23

[3] Hanaoka, S., Fritscher, K., Welk, M., et al.: ‘3D graph cut segmentation with
Riemannian metrics to avoid the shrinking problem’. Proc. Int. Conf. Medical
Image Computing and Computer-Assisted Intervention, Berlin, Germany,
2011, pp. 554–561

[4] Madabhushi, A., Metaxas, D.: ‘Automatic boundary extraction of ultrasonic
breast lesions’. Proc. Int. Conf. Biomedical Imaging, Washington DC, USA,
2002, pp. 601–604

[5] Shan, J., Cheng, H.-D., Wang, Y.: ‘A novel automatic seed point selection
algorithm for breast ultrasound images’. Proc. Int. Conf. Pattern Recognition,
Tampa, USA, 2008, pp. 1–4

[6] Shan, J., Cheng, H., Wang, Y.: ‘Completely automated segmentation approach
for breast ultrasound images using multiple-domain features’, Ultrasound
Med. Biol., 2012, 38, pp. 262–275

[7] Chen, X., Pan, L.: ‘A survey of graph cuts/graph search based medical image
segmentation’, IEEE Rev. Biomed. Eng., 2018, 11, pp. 112–124

[8] Le, T.H., Jung, S.W., Choi, K.S., et al.: ‘Image segmentation based on
modified graph-cut algorithm’, Electron. Lett., 2010, 46, (16), pp. 1121–1123

[9] Boykov, Y.Y., Jolly, M.-P.: ‘Interactive graph cuts for optimal boundary &
region segmentation of objects in ND images’. Proc. Int. Conf. Computer
Vision, Vancouver, Canada, 2001, pp. 105–111

[10] Rother, C., Kolmogorov, V., Blake, A.: ‘GrabCut: interactive foreground
extraction using iterated graph cuts’, ACM Trans. Graph., 2004, 23, pp. 309–
314

[11] Mortensen, E.N., Barrett, W.A.: ‘Intelligent scissors for image composition’.
Proc. Int. Conf. Computer Graphics and Interactive Techniques, New York,
NY, USA, 1995, pp. 191–198

[12] Jermyn, I.H., Ishikawa, H.: ‘Globally optimal regions and boundaries as
minimum ratio weight cycles’, IEEE Trans. Pattern Anal. Mach. Intell., 2001,
23, pp. 1075–1088

[13] Sinop, A.K., Grady, L.: ‘A seeded image segmentation framework unifying
graph cuts and random walker which yields a new algorithm’. Proc. Int. Conf.
Computer Vision, Rio de Janeiro, Brazil, 2007, pp. 1–8

[14] Kimmel, R., Bruckstein, A.M.: ‘Regularized Laplacian zero crossings as
optimal edge integrators’, Int. J. Comput. Vis., 2003, 53, pp. 225–243

[15] Kolmogorov, V., Boykov, Y.: ‘What metrics can be approximated by geo-cuts,
or global optimization of length/area and flux’. Proc. Int. Conf. Computer
Vision, Beijing, China, 2005, pp. 564–571

[16] Boykov, Y., Veksler, O., Zabih, R.: ‘Fast approximate energy minimization
via graph cuts’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, pp. 1222–
1239

[17] Shi, J., Malik, J.: ‘Normalized cuts and image segmentation’, IEEE Trans.
Pattern Anal. Mach. Intell., 2000, 22, pp. 888–905

[18] Hao, Z., Wang, Q., Ren, H., et al.: ‘Multiscale superpixel classification for
tumor segmentation in breast ultrasound images’. Proc. Int. Conf. Image
Processing (ICIP), Orlando, USA, 2012, pp. 2817–2820

[19] Gao, L., Yang, W., Liao, Z., et al.: ‘Segmentation of ultrasonic breast tumors
based on homogeneous patch’, Med. Phys., 2012, 39, pp. 3299–3318

[20] Alemán-Flores, M., Álvarez, L., Caselles, V.: ‘Texture-oriented anisotropic
filtering and geodesic active contours in breast tumor ultrasound
segmentation’, J. Math. Imaging Vis., 2007, 28, pp. 81–97

[21] Liu, X., Huo, Z., Zhang, J.: ‘Automated segmentation of breast lesions in
ultrasound images’. Proc. Int. Conf. Engineering in Medicine and Biology
Society IEEE-EMBS, Shanghai, China, 2006, pp. 7433–7435

[22] Sled, J.G., Zijdenbos, A.P., Evans, A.C.: ‘A nonparametric method for
automatic correction of intensity non-uniformity in MRI data’, IEEE Trans.
Med. Imaging, 1998, 17, (1), pp. 87–97

[23] Wells, W.M., Crimson, W.E.L., Kikinis, R., et al.: ‘Adaptive segmentation of
MRI data’, IEEE Trans. Med. Imaging, 1996, 15, (4), pp. 429–442

[24] Li, C., Xu, C., Anderson, A., et al.: ‘MRI tissue classification and bias field
estimation based on coherent local intensity clustering: a unified energy
minimization framework’. Proc. Int. Conf. Information Processing in Medical
Imaging, Williamsburg, VA, USA, July 2009, pp. 289–299

[25] Bilenia, A., Sharma, D., Raj, H., et al.: ‘Brain tumor segmentation with skull
stripping and modified fuzzy C-means’. Information and Communication
Technology for Intelligent System, Singapore, 2019, pp. 229–237

[26] Szwarc, P., Kawa, J., Rudzki, M., et al.: ‘Automatic brain tumour detection
and neovasculature assessment with multiseries MRI analysis’, Comput. Med.
Imaging Graph., 2015, 46, pp. 178–190

[27] Popuri, K., Cobzas, D., Murtha, A., et al.: ‘3D variational brain tumor
segmentation using Dirichlet priors on a clustered feature set’, Int. J. Comput.
Assist. Radiol. Surg., 2012, 7, pp. 493–506

Table 6 Mean performance score of GBKS GC method for HGG and LGG (mean±std)
JI DSC PPV Sensitivity Specificity

HGG 0.87 ± 0.06 0.87 ± 0.06 0.89 ± 0.07 0.99 ± 0.03 0.91 ± 0.05
LGG 0.89 ± 0.05 0.92 ± 0.04 0.93 ± 0.03 0.99 ± 0.03 0.95 ± 0.04
HGG (bias field) 0.88 ± 0.04 0.78 ± 0.07 0.86 ± 0.09 0.99 ± 0.01 0.91 ± 0.06
LGG (bias field) 0.85 ± 0.09 0.75 ± 0.13 0.83 ± 0.13 0.99 ± 0.01 0.91 ± 0.13
 

Table 7 Comparison of performance metric with the existing techniques (mean±std)
DSC JI Sensitivity Specificity PPV

Jiang et al. [29] 0.84 ± 0.09 0.74 ± 0.14 0.87 ± 0.07 0.83 ± 0.14 0.74 ± 0.14
Boykov and Funka-Lea [45] 0.69 ± 0.12 0.53 ± 0.15 0.87 ± 0.09 0.59 ± 0.20 0.69 ± 0.12
Grady et al. [46] 0.73 ± 0.16 0.60 ± 0.18 0.75 ± 0.26 0.75 ± 0.07 0.60 ± 0.18
HGG (GBKS) 0.87 ± 0.06 0.87 ± 0.06 0.99 ± 0.03 0.91 ± 0.05 0.87 ± 0.06
LGG (GBKS) 0.92 ± 0.04 0.89 ± 0.05 0.99 ± 0.03 0.95 ± 0.04 0.89 ± 0.05
 

Fig. 13  Graphical representation of comparative results
 

92 IET Image Process., 2020, Vol. 14 Iss. 1, pp. 84-93
© The Institution of Engineering and Technology 2019

 17519667, 2020, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-ipr.2018.6615 by IC

M
R

, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



[28] Kanas, V.G., Zacharaki, E.I., Davatzikos, C., et al.: ‘A low cost approach for
brain tumor segmentation based on intensity modeling and 3D random
walker’, Biomed. Signal Proc. Control, 2015, 22, pp. 19–30

[29] Jiang, J., Wu, Y., Huang, M., et al.: ‘3D brain tumor segmentation in
multimodal MR images based on learning population- and patient-specific
feature sets’, Comput. Med. Imaging Graph., 2013, 37, pp. 512–521

[30] Zhao, L., Sarikaya, D., Corso, J.J.: ‘Automatic brain tumor segmentation with
MRF on supervoxels’, Multimodal Brain Tumor Segmentation, 2013, 51

[31] Ilunga-Mbuyamba, E., Avina–Cervantes, J.G., Garcia–Perez, A., et al.:
‘Localized active contour model with background intensity compensation
applied on automatic MR brain tumor segmentation’, Neurocomputing, 2017,
220, pp. 84–97

[32] Havaei, M., Davy, A., Warde-Farley, D., et al.: ‘Brain tumor segmentation
with deep neural networks’, Med. Image Anal., 2017, 35, pp. 18–31

[33] Kleesiek, J., Biller, A., Urban, G., et al.: ‘Ilastik for multi-modal brain tumor
segmentation’. Proc. Int. Conf. MICCAI BRATS (Brain Tumor Segmentation
Challenge), Boston, USA, 2014, pp. 12–17

[34] Zikic, D., Ioannou, Y., Brown, M., et al.: ‘Segmentation of brain tumor tissues
with convolutional neural networks’. Proc. Int. Conf. MICCAI-BRATS,
Boston, USA, 2014, pp. 36–39

[35] Havaei, M., Larochelle, H., Poulin, P., et al.: ‘Within-brain classification for
brain tumor segmentation’, Int. J. Comput. Assist. Radiol. Surg., 2016, 11, pp.
777–788

[36] Li, Y., Jia, F., Qin, J.: ‘Brain tumor segmentation from multimodal magnetic
resonance images via sparse representation’, Artif. Intell. Med., 2016, 73, pp.
1–13

[37] Wu, K., Yizhou, Y.: ‘Automatic object extraction from images using deep
neural networks and the level-set method’, IET Image Process., 2018, 12, (7),
pp. 1131–1141

[38] Bakas, S., Akbari, H., Sotiras, A., et al.: ‘Advancing the cancer genome atlas
glioma MRI collections with expert segmentation labels and radiomic
features’, Sci. Data, 2017, 4, p.170117

[39] Menze, B.H., Jakab, A., Bauer, S., et al.: ‘The multimodal brain tumor image
segmentation benchmark (BRATS)’, IEEE Trans. Med. Imaging, 2015, 34,
pp. 1993–2024

[40] Menze, B.H., Van Leemput, K., Lashkari, D., et al.: ‘A generative model for
brain tumor segmentation in multi-modal images’. Proc. Int. Conf. Medical
Image Computing and Computer-Assisted Intervention, Berlin, Germany,
2010, pp. 151–159

[41] Rao, B.D., Goswami, M.M.: ‘A comprehensive study of features used for
brain tumor detection and segmentation from MR images’. Innovations in
Power and Advanced Computing Technologies (i-PACT), Vellore, India,
2017, pp. 1–6

[42] Rosenfeld, A., Pfaltz, J.L.: ‘Sequential operations in digital picture
processing’, J. ACM, 1966, 13, pp. 471–494

[43] Park, C., Huang, J.Z., Ji, J.X., et al.: ‘Segmentation, inference and
classification of partially overlapping nanoparticles’, IEEE Trans. Pattern
Anal. Mach. Intell., 2013, 35, p. 1

[44] Dogra, J., Jain, S., Sood, M.: ‘Segmentation of MR images using hybrid k
mean-graph cut technique’, Procedia Comput. Sci., 2018, 132, pp. 775–784

[45] Boykov, Y., Funka-Lea, G.: ‘Graph cuts and efficient ND image
segmentation’, Int. J. Comput. Vis., 2006, 70, pp. 109–131

[46] Grady, L., Schiwietz, T., Aharon, S., et al.: ‘Random walks for interactive
organ segmentation in two and three dimensions: implementation and
validation’. Proc. Int. Conf. Medical Image Computing and Computer-
Assisted Intervention, Berlin, Germany, 2005, pp. 773–780

IET Image Process., 2020, Vol. 14 Iss. 1, pp. 84-93
© The Institution of Engineering and Technology 2019

93

 17519667, 2020, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-ipr.2018.6615 by IC

M
R

, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


