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Abstract The road transport of dangerous goods has been the subject of research with

increasing frequency in recent years. Global positioning system (GPS) based vehicle

location devices are used to track vehicles in transit. However, this tracking technology

suffers from inaccuracy and other limitations. In addition, real-time tracking of vehicles

through areas shielded from GPS satellites is difficult. In this paper, the authors have

addressed the implementation of a smart vehicle navigation system capable of using radio

frequency identification based on information about navigation paths. For prediction of

paths and accurate determination of navigation paths in advance, predictive algorithms

have been used based on the hidden Markov model. At the core of the system there is an

existing field programmable gate array board and hardware for collection of navigation

data. A communication protocol and a database to store the driver’s habit data have been

designed. From the experimental results obtained, an accurate navigation path prediction is
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consistently achieved by the system. In addition, once-off disturbances to the driver habits

have been filtered out successfully.

Keywords Hidden Markov model � Navigation path � Prediction algorithms � RFID �
Vehicle tracking

1 Introduction

Currently, the road transport of dangerous goods relies on tracking technology. In

designing smart navigation systems Global Positioning System (GPS) data may be aug-

mented with Wireless Fidelity (Wi-Fi) and Global System for Mobile comunications

(GSM) signals to be used to provide location information of vehicles transporting goods

and passengers [1]. At present these systems suffer from limitations such as reduced

reliability in areas that are not permeated by the necessary GSM or Wi-Fi signals, or areas

in which GPS satellites do not provide sufficient coverage. In this paper, we have designed

and implemented a system that is capable of predicting the navigation path of a vehicle on

the basis of a database built using the driver’s existing driving practices. The problem

addressed in this work is the implementation of a system capable of using Radio Frequency

Identification (RFID) based information about navigation paths, in conjunction with pre-

dictive algorithms based on the hidden Markov model to accurately determine the vehicle

navigation paths in advance. For predictive systems, current methods may be split into two

main groups. Prediction based on historical data use either frequency based probabilistic

models or Bayesian inference to determine future events [2]. In the absence of historical

data, evolutionary or meta-heuristic algorithms are used to predict optimal navigation

paths, such as the one used by [3]. These algorithms usually require a constraint to be

placed on the system for effective prediction to take place. For example, if the prediction is

for vehicle navigation, then the constraint could be finding the quickest possible navigation

path. A genetic algorithm using this constraint is addressed by [4]. The design of the

proposed smart navigation system will extend the predictive systems by using existing

vehicle navigation information, gathered using RFID technology, to predict navigation

paths without necessarily constraining the paths to the quickest or the shortest one.

A Markov process is a stochastic process in which one can make predictions about the

future state of the process based on only its current state. These predictions would be as

good as predictions made if one had been aware of the entire history of the process. Since

the future of the system is dependent only on its current state, the process can be con-

sidered ’memoryless’. This ’memoryless’ property of a process is called the Markov

property, whereas a HMM is one in which the states, though known, are not directly visible

to the observer. What is visible is the output, which is dependent on the current state (as a

result of the underlying process assuming the Markov property). Therefore the sequence of

observed output values provides information about the sequence of states. We have used

the concept of HMM to design and implement the smart navigation system.

This paper is categorized into various sections. Sect. 2 discusses the literature survey

and various techniques related to vehicle navigation path prediction and data acquisition.

Sect. 3 focuses on the theoretical analysis and modeling aspect of the proposed system and

also shows the various navigation path possibilities. Sect. 4 lists the design principles used

in two different sections for hardware and software parts. Sect. 5 provides the detailed
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view of hardware and software implementations of the design. Sect. 6 consists the various

experimental results of the implemented system. Finally, Sect. 7 concludes the work.

2 Literature Survey

The main aim of this work is to implement a system capable of predicting the navigation

path of a vehicle according to a database built using the driver’s habits and populated by

data using the previous navigation path details. In addition, it is required that RFID devices

and sensors be used in gathering the data. Finally, the prediction algorithm needs to be

based on the HMMl. In order to meet the requirements, an investigation into predictive

techniques as well as data gathering methods has been undertaken. Furthermore, a detailed

look at the nature of the HMM and its application in predictive algorithms. A discussion of

the accumulated literature follows in the subsections below.

2.1 Hidden Markov model

It is known that in the HMM the sequence of observed output values provides information

about the sequence of states. If modeled using an HMM, then the observer will only

observe a sequence of output tokens directly. The underlying states and the state transition

and emission probabilities are considered prior knowledge. Baum et al. [5] have described

the model based on this information; the observer can attempt to infer the sequence of

states that yielded the observed output sequence. The application of the HMM as a pre-

dictive algorithm has been used in biotechnical fields to study protein structures and

genetics. Sonnhammer et al. [6] discussed a method of modeling and predicting the

location and orientation of alpha helices in some forms of proteins, whereas Stanke and

Wack [7] used the HMM for gene prediction. Despite the differences in application, the

HMM is an acknowledged tool for predictive solutions to systems that can be modeled as

Markov processes. Applying HMM to a vehicle navigation system requires only that the

navigation path be represented as a Markov process as well. Ning et al. [8] proposed the

route recommendation system architecture and the mathematical model for driving route

prediction using K-means?? and Laplace smoothing technique.

2.2 Vehicle Navigation Path Prediction

Vehicle navigation paths are usually repetitive in nature due to natural constraints that limit

the freedom of the driver. One of the most common natural constraints is time; most

drivers attempt to reduce the amount of time spent traveling between their origin and

destination. However the eventual navigation path that a vehicle driver decides on is

influenced by emergent constraints from the road network and environment in general.

Harsh weather conditions, poor traffic conditions and the availability of fuel will all factor

into the decision-making of the driver and affect the eventual navigation path. The pro-

posed system will collect driver habits over a period of time and, using this data, perform a

static prediction on a vehicle’s navigation path. The prediction is considered static, as it

will not be updated as the vehicle is being driven along the navigation path. The possible

navigation path will be modeled as an HMM whose parameters are derived from the

driver’s existing driving practices.
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A number of methods can be considered for the prediction of vehicle navigation paths.

Barth and Karbassi [9] have used a hierarchical tree data structure to perform real-time

prediction on the navigation path that a vehicle will take for direct trips (source to des-

tination). Their algorithm is recomputed as new data from the vehicle arrives while the

vehicle is already in transit. However, their method is incapable of handling situations in

which the vehicle is required to make an erroneous stop along the way (for example a fuel

stop). Froehlich and Krumm [10] discussed an alternative method where details of vehi-

cle’s navigation path are collected and grouped by similarity. Each specific navigation path

is assigned an index and stored. As the vehicle begins its journey, the navigation path

progresses their algorithm attempts to match the current navigation path with an existing

one. Although this allows for an initial prediction of the navigation path, the prediction is

continuously updated as the journey progresses. The nature of this algorithm implies that

the presence of disturbances in the navigation path (such as unexpected stops or unex-

pected road works) will result in the creation of new navigation paths. These paths will

affect the accuracy of future predicted navigation paths by increasing the time it takes for

the matching algorithm to find an existing matching navigation path. Feng et al. [11]

proposed a new method using a Kalman filter? to predict the reliable location of vehicles’

next move. In their experiments they achieved a degree of location performance. They also

quantitatively compared the prediction performance of the proposed method and neural

network methods. Silva et al. [12] proposed a solution for navigation on congested roads

by using smart phones. The proposed system first obtains the traffic information from a

central system and then it guide the driver on the basis of obtained information. In Sim-

mons et al. [13] proposed the usage of the HMM to perform predictions on a vehicle’s

navigation path. In their method, the historical driver data are gathered using GPS infor-

mation. This is then used to supply parameters to the HMM. They were able to achieve

results with acracy of above 98 % in most cases, although the navigation paths they tested

had very few places in which choices were required. However, in their analysis it was

shown that GPS data are not reliable because of noise and shielding from buildings in

urban areas or tunnels. They had to include specialized algorithms to counteract the poor

reliability of the GPS data.

The shortcomings of the systems described above create the gap that must be addressed

by the proposed smart navigation system to be designed. The nature of the HMM allows

for accurate predictions when presented with reliable data, as indicated by the results of

Simmons et al. [13] . However, this navigation system is designed to gather data using

RFID devices rather than GPS. The inclusion of a filtering algorithm on the gathered data

will reduce the effect of occasional disturbances to the navigation paths that will be

considered by the vehicle.

2.3 Acquisition of Navigation Paths

Using the prediction algorithms described above, data regarding vehicles’ navigation paths

have to be gathered. The data should include pertinent variables that can be used to

construct a clear picture of the driver’s decision-making process. To that effect, infor-

mation such as the vehicle’s speed, the time of day and the occurrence of precipitation

must be gathered as the vehicle travels along a navigation path. In addition to the afore-

mentioned variables, the position of the vehicle is also critical information for the algo-

rithm. There are a number of ways to acquire this information. These include among

others:
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• Manual note-taking by the driver or an accompanying passenger.

• GSM signal tracking using cell tower triangulation.

• GPS signal tracking.

• RFID based tracking.

The global presence of mobile phones has led to a number of investigations as to their

usability in tracking systems. Ye et al. [14] defined the relationship between various roads

on the basis of social network analysis and then applied a route prediction algorithm to find

the optimal route. The authors verified the efficiency of their algorithm by conducting

various experiments.Quddus and Washington [15] developed a map-matching algorithm

for finding the shortest path and vehicle trajectory. The proposed algorithm uses A* search

algorithm for finding the shortest path. The accuracy of the proposed algorithm is obtained

98.9 % for every 30s GPS data. The authors considered the threshold of 1000m for finding

the shortest distance. Luo et al. [16] proposed a new path-finding query that finds the most

frequent path during user-specified time periods. The authors conducted their experiments

on GPS data obtained from 6000 taxis in Shanghai. Kansal et al. [17] discussed a sensor

network for tracking using mobile phone devices. They mentioned the fact that the

prevalence of mobile devices and the increased availably of GPS technology on them make

them ideal nodes in a sensory network that focuses on the same GSM signals used for voice

communication. Alternatively, exclusive GPS devices can be mounted on vehicles for the

sole purpose of tracking. These devices can be integrated with the vehicle’s electronics for

power purposes and run indefinitely. Both GSM and GPS based systems suffer from noise

and accuracy limitations, particularly in areas where the GSM towers of GPS satellites

have limited or no coverage. This limits their potential usage as location data sources for

the proposed prediction algorithm. However, RFID devices can be used to counteract this

limitation in such areas.

3 Theoretical Analysis and Modelling

In order to design the proposed system, an understanding of the HMM and its application

in predictive analysis is required. Details of HMM is discussed in the next section. Here,

we will explain the nature of the model and highlight the specific features that will make it

suitable for this system. In Fig. 1, a Markov process with random variable ’x’ is shown.

The transition probabilities between the three states of the variable are indicated as aij
where ’i’ refers to the preceding state and ’j’ refers to the resulting state. The tokens

Fig. 1 Hidden Markov model
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yielded by the process (outputs at each state) are represented by the variable ’y’. The

probability of a specific output, given that the system is at a specific state, is called the

emission probability. These probabilities are indicated as 0bmðynÞ0. In this case, the ’m’

represents the current state and the 0y0n represents a particular output. The proposed work

requires the use of the HMM to predict vehicle’s navigation path which is necessary to

model the driver environment as a stochastic process possessing the Markov property.

The real-world context of the navigation path prediction problem can be described as

follows:

• A vehicle travels along a navigation path from point A to point B. It is assumed that this

navigation path is frequently used but, there may be multiple navigation paths to travel

between these two endpoints. Furthermore, it is assumed that the driver bases the

decision on which navigation path to take on the environmental and traffic conditions at

the time the path must be driven.

• Each vehicle that drives along this navigation path has a set of routing habits based on

the decisions the drivers make, given specific environmental conditions. It is assumed

that any other factors (such as the driver’s health or the vehicle’s status) are not

statistically significant in the habitual analysis of the driver.

• Information about the vehicle’s navigation paths and the external conditions at the time

of the navigation is stored in an accessible database. Based on this context, a

suitable stochastic process has to be determined. This would be the process modelled

using the HMM. There are a number of ways to reduce this information into a Markov

process. Two such methods are discussed below.

3.1 Navigation Paths as States

In this representation, the stochastic process settles at states that are defined as navigation

paths. This means that transition probabilities indicate the probability of selecting a nav-

igation path based on the present navigation paths and observations. As shown in Fig. 1, all

possible navigation paths between points A and B are possible states of the Markov

process. Information about the observations made on a specific day along a given navi-

gation path of a vehicle is stored in a database. The navigation path information is linked to

Fig. 2 Road sections as states
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the driver’s driving habits. The variables indicated as aij in the diagram represent the

possibility of the driver selecting a navigation path, given the last one he has driven. The

variable bi represents the probability of a specific observation being made ðyiÞ, given the

current state. For instance, if a vehicle travels along navigation path 3, the probability of

driving navigation path 2 next is a32 in the figure. In addition, the probability of obser-

vation 2 being made is b3ðy2Þ where y is a variable indicating the different observations.

3.2 Vertices/Edges as States

In this representation, the stochastic process settles at states that represent points along the

navigation path. These points could be intersections (vertices) or road sections (edges). The

transition probabilities in this case would represent the chance of proceeding to a specific

intersection (or road section), given that the vehicle is currently on a specified intersection (or

road section). Figure 2 represents the road sections from x1 to x4 as states in the Markov

process. A navigation path is stored in the database as a sequence of transitions from road to

road. The transition probabilities between the road sections are expressed by variable aij in

Fig. 2 above. For instance, given that the vehicle is on road section x1 above, the probability

of turning onto road x2 is a12 whereas the probability of driving on straight aheadwould be a13
and the probability of turning onto road x4 is a14. It should be noted that this is functionally

similar in most aspects for using the road intersections as states, rather than the road sections

themselves. This is due to the fact that representing a navigation path as a sequence of road

transitions is equivalent to using intersection transitions, and just as effective.

3.3 Selected Navigation Path Model

From the above two alternatives, for representation of the problem as a Markov process,

we have considered that using the road intersections (vertices) as states in the algorithm

would be the most effective way of representing the problem. Figure 3 shows a virtual road

Fig. 3 Road network model
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network with intersections marked as numbers. The arrows between the intersections

indicate the allowable transitions between them. For example, it is possible to transition

from vertex ’0’ to vertex ’1’ as well as from vertex ’1’ to vertex ’0’. This form of directed

graph representation of the road network allows for easy translation into the HMM problem

space. If we assume that the process by which a vehicle proceeds along a navigation path is

a Markov process, then each vertex would represent a possible state in which the process

can be at a specific time. The presence of at least one directed arrow between two states

indicates the existence of a transition probability between the two. To expound on that

point, there is a directed arrow between vertex ’1’ and vertex ’4’, which implies that there

is a probability of transitioning between the two states (from 1 to 4). In addition, there are

three directed arrows starting at vertex ’1’ (from 1 to 4 to 5 to 2 and back to 1), implying

that it is possible to transition from vertex ’1’ and return to it.

As the purpose of an algorithm is to determine the likely navigation paths, it is unlikely

that a navigation path accurately predicted will require the vehicle to loop backwards onto

the same intersection. Therefore, the definition of possible transitions is constricted, with

the condition that the presence of exactly one directed arrow between two states indicates

the existence of a transition probability between them. This would mean that it is not

possible to transition from vertex ’1’ and return to it, as that requires more than 1 directed

arrow. Having defined the states of the process, we can define the transition probabilities of

the model. These probabilities indicate the likelihood of a vehicle to transition from the

current state to a future one. Using Fig. 3, if the transition probability from vertex ’1’ to ’4’

is 60 %, from ’1’ to ’2’ is 35 % and from ’1’ to ’0’ is 5 %, then one can assert with high

confidence that the vehicle at vertex ’1’ will most likely transition to vertex ’4’ next. These

transition probabilities are derived from the accumulated existing driving practices of the

driver.

Finally, translating the problem into the HMM which uses a-priori knowledge of

emission probabilities (the probability of an observation being made given that the process

is at a specific state), state transition probabilities and the initial probability of each state to

compute the most likely sequence of states which results in the observations. This section

of the HMM should be adapted in a novel fashion to suit the requirements of the work. For

a road network based problem, possible observations include traffic, weather and time of

day. None of these are directly caused by the current state of the process which affects their

inclusion into the problem. To represent these two main design decisions were made.

• Three observations of a binary nature would be tracked, namely traffic (high or low),

precipitation (rainy or dry) and daytime (day or night). These observations have been

combined into a bit flag, allowing for eight possible combinations. For instance, the bit

flag ’101’, which is the number 5 in the decimal system, would represent ’high traffic,

dry, daytime’ if we use the order of observations as stated earlier and other possible

combinations could be similarly designed.

• The observations would be represented as a list (containing the present observation,

repeated) rather than a single observation. This stems from the nature of the HMM. The

number of states in the sequence predicted is directly linked to the number of available

observations. If only one observation is available, only one state is predicted. However,

with a list of observations, the sequence returned has a maximum length limited only

by the length of the list of observations. By using in a maximally long list of

observations, the resulting predicted sequence can be truncated based on another

parameter (for example, when the sequence first reaches the destination state).

1724 R. Malekian et al.

123



4 Design Methodology

In order to meet the stated objectives, a system consisting of a sensory platform and a

predictive algorithm has to be designed. The possible interface of the proposed smart

navigation system has been determined and preferable outputs have been considered.

Based on these parameters, the boundary for the proposed smart navigation system has

been defined and the top-level components of the system have been conceptualized and

designed. These top-level components are broadly separated into a primarily hardware-

based sensory platform and the software implementation of a predictive algorithm. The

conceptual design of these two components is discussed in the following sub-sections.

4.1 Hardware-Centric Component

The hardware sensing platform has been designed to allow for the gathering of environ-

mental and geographical data. A detailed hardware platform as represented in Figs. 4 and 5

consists of a sensory system comprising of an accelerometer, humidity sensor, temperature

sensor and real-time clock capable of interrogating environmental conditions. The raw data

output from these individual components would be used to determine the environmental

and traffic conditions along the navigation path being recorded. The navigation path itself

is determined by the sequence of tags read by the RFID reader in the vehicle. The real-time

clock is included to reduce the complexity that the user would have to face when operating

the system. In addition, it may not always be possible to recall the starting time of a

navigation path with sufficient accuracy. Finally, the interface between the hardware and

the computer running the algorithm was implemented as a direct cable, communicating

using a serial link. This allows for direct viewing and analysis of collected data when the

hardware platform is connected to a portable computer while the vehicle is on a navigation

path. The entire hardware platform is designed around an FPGA controller.

4.2 Software System

The main component of the proposed navigation system as shown in Fig. 6, is the algo-

rithm, which predicts a navigation path based on historical data collected by the hardware

Fig. 4 Detailed hardware design of implemented system
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system. These historical data are stored in a database that can be accessed by the algorithm.

Two software subsections complement the functionality of the predictive algorithm. (1)

The filtering subsection is used to ensure that statistically significant data points have been

used in the predictive algorithm to prevent unnecessary skewing of results due to once-off

deviations from the norm. (2) The HMM is used to predict the navigation paths. Currently,

two major algorithms are used to solve problems modelled by the HMM: (a) The forward-

backward algorithm is used to determine the probability of all potential state transitions in

the model that would have led to the observed outputs, (b) The Viterbi algorithm is used to

determine the most likely sequence of states that would result in the observed outputs. In

most cases the algorithm returns the same solution given the same input and conditions.

However, the Viterbi algorithm is more representative to use with the proposed smart

navigation system, which is why it is implemented as opposed to the forward-backward

algorithm.

Fig. 5 Components used for designing the smart navigation system

Fig. 6 Components of software systems
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An exponentially weighted moving average (EWMA) filter has been used to smooth out

spikes in the data points queried from the database before using them to compute state

parameters for the prediction algorithm. The EWMA filter has an easily

adjustable smoothness, making it ideal for situations in which the volume of data is not

necessarily known beforehand. As for the mapping, an adjacency list has been used to store

information about the roads between intersections. The adjacency list would be queried

from the database and used to generate a graph with intersections as vertices and roads as

directed edges between them.

5 Implementation

5.1 Hardware implementation

To implement the proposed smart vehicle navigation system as shown in Fig. 4, we have

selected two communication protocols which are described as follows:

5.1.1 Universal Asynchronous Receiver/Transmitter (UART)

Communication between the FPGA and the computer on which the software performs is

achieved using the UART protocol. This protocol allows for serial data transmission using

a synchronized clock between the sender and receiver. The protocol transmits and receives

data according to the set of standards described below:

• Idle - the line is high.

• Start - the line is set low (a ’0’ bit is sent).

• Data - the eight data bits are sent by setting the line to high for ’1’ and back to low for

’0’.

• Stop - the line is set high (a ’1’ bit is sent).

• There are two options:

– Idle - keep the line high

– Start - set the line low and send another byte.

The entire process is controlled by the UART clock speed, commonly called the baud

rate. Baud (Bd) is the unit for symbol rate, effectively representing the number of distinct

symbol changes per second on a digital signal. This clock is generated both by the emitter

and receiver. As a result, the two clocks may fall out of synchronization, which would

result in incorrect data or failed transmissions. To avoid such a type of scenario, the FPGA

is coded to oversample the incoming signal at 16 times the baud rate. This allows for

samples of the incoming data bits to be taken at times when the bit value is settled

irrespective of clock synchronization status. For instance, in Fig. 7 the faster clock can be

used to sample the slower one. If there are 16 ticks of the faster clock for each cycle of the

slower one, one simply counts the number of ticks (rolling over from 15 to 0) and sample at

a number that is suitable for the situation. To sample in the middle of the ’high’ cycle in the

Fig. 6, the sample would be taken at tick counter ’0’.In the proposed navigation system the

UART protocol is implemented as a finite state machine (FSM), shown in Fig. 8. The

control signal ’rx’ determines whether or not the UART is ready to receive a byte. The

variable ’nbits’ counts the number of bits received and after a full byte (8 bits) and the stop

Smart Vehicle Navigation System Using Hidden Markov... 1727

123



signal (1 bit) have been received, it returns to the idle state. The transmission FSM is

fundamentally identical to the reception one. However, the direction of data flow is

reversed.

5.1.2 Inter-Integrated Circuit ðI2CÞ

Communication between the FPGA controller and the digital sensors uses the I2C protocol.

The basic protocol considers two signal lines: (1) the data line, and (2) clock signal. For

most I2C applications a maximum clock signal of 400 kHz is recommended. Considering

the nature of the data being sent from the sensors to the FPGA, an I2C clock of 100 kHz is

generated and used for the protocol. Because of to its dual lane nature, the protocol

description is slightly more involved than the UART one. As shown in Fig.9, the data line

is pulled high by an external resistor while the system is idling.In between these two

conditions, data are sent in bytes (exactly 8 bits long). Each transferred byte is followed by

an acknowledgment condition, which is defined as the data line being pulled and held low

(by the receiver) for the duration of a clock cycle ’high’. Based on this protocol and with

small variations to its fundamental design, communication between the FPGA and sensory

units is established and used to interrogate them as required. Protocol I2C is also imple-

mented as FSM, shown in Fig. 10. Here, the system is initially in the idle state. As soon as

the reset (’rx’) button is set ’low’, the system moves into the ’Start’ state, which sets the

’start’ condition on the data line. The next state is the ’Transfer’ state in which the first byte

on the stack (whose length is given by ’nbytes’) is sent or received. Once the byte transfer

is completed, an acknowledgment condition is set on the data line. Depending on whether

Fig. 7 Oversampling a slow clock

Fig. 8 UART reception FSM
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there are more bytes to transfer or not the system then either transitions into the ’Stop’ state

or returns to the ’Transfer’ state.

5.2 Software implementation

The primary function of the software system is the prediction of the most likely navigation

path for the navigation of the vehicle. As shown in Fig. 6, there are four subsections related

to this prediction system, which are discussed as follows:

5.2.1 Driver habits database

The algorithm depends on information gathered about external conditions during the

navigation of a vehicle, as well as the navigation path used between the endpoints of

Fig. 9 I2C protocol start and stop conditions

Fig. 10 I2C FSM
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interest. This information is stored in a database, which is accessible by the algorithm. The

schema of the database to store the received information is shown in Fig. 11. Here, the

table representations only include the primary and foreign keys, whereas the arrows point

towards the table being linked by the foreign keys. Based on this initial description of data,

a relational database scheme is developed. To develop these schemas, ab SQLite database

has been used. The programming language Python is used for the further implementation

section. An Object Relational Mapper (ORM) system called peewee is used to facilitate

database communication within the software. The ORM layer allows for the representation

of database tables and relationships as higher-level language classes and types. It

encourages separation of low-level database management from high-level data usage,

making it easy to switch out databases completely if the situation requires it.

5.2.2 Road network map

The algorithm is required to predict vehicle’s navigation path along a road network. This

section of the design focuses on translating the real-world geographical map system into a

mathematical construct that can be used by the algorithm. As discussed in the hardware

implementation section, geographical data gathered by RFID devices strategically placed

along the roads. This requirement of placing tags in advance allows for manual gathering

of the geographical information relating to tagging locations. For instance, a tag placed

along a certain road would be translated into the geographical coordinates of the terminal

intersection of that road. Once the intersections had been tagged accordingly, an adjacency

list is used to represent possible transitions between the intersections. The decision is made

to use an adjacency list rather than an adjacency matrix because of the inherently sparse

nature of road networks when represented as directed graphs. The ’sparse’ property can be

defined as the relationship between the average numbers of edges intersecting at a single

vertex versus the total number of vertices in the graph.

For road networks, most intersections have four roads feeding them, whereas the

number of intersections in an area with multiple navigation paths between two endpoints is

assumed to be significantly higher than four. As the number of intersections (represented

here by ’n’) grows, the adjacency matrix size grows by a factor of n2. The adjacency list is

less space-efficient for small numbers of vertices, but as the scale of the problem grows, the

Fig. 11 Database schema showing major links
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upper limit to the size of the adjacency list approaches n2 as well. However, if the network

is sufficiently sparse (for example, if there are at most four edges at a vertex), the adja-

cency list will be significantly more space-efficient, approaching only 4n in size.

Here, Tables 1 and 2 represents two road network models for Fig. 3. Note that the

adjacency matrix representation has a large number of cells with no constituent data,

whereas the adjacency list simply has shorter constituent lists as required.

5.2.3 Filtering

As the vehicle’s navigation details are collected, it is expected that occasional deviations

such as side trips to petrol stations, reroutes due to accidents or roadworks, human

interference and many others from the normal path, may take place. To keep the efficiency

of the prediction algorithm high, a filtering subsection has been designed to process the

pertinent data that is prone to disturbance before using these data in the prediction algo-

rithm. Here, the vehicle navigation details are represented as a sequence of transitions. If a

vehicle navigates along the same navigation path ’n’ times, there will be at least ’n’

transitions from each intersection on the navigation path to the next one, for the inter-

section along the navigation path used. Fig. 12 shows a short section of such a navigation

path. As shown in Fig. 12, the vehicle has transitioned from vertex ’3’ to vertex ’5’ twice,

and from vertex ’3’ to vertex ’4’ only once. Vertex ’3’ has three possible transitions becuse

of the nature of the road network. In order to translate these data into transition proba-

bilities, all the possible transitions are first considered:

tp3x ¼ 1=adjð3Þ ¼ 1=3 ð1Þ

Equation 1 states that the initial transition probabilities for all transitions from state ’3’ are

equal and a function of the number of adjacent intersections to state ’3’. After this, the

individual transition probabilities are incremented by 1 for each transition in the database,

which is shown in Eqs. 2 and 3. The resulting transition probability values are then

normalized to sum up to 1 in Eqs. 4–6.

tp34 ¼ tp3x þ 1 ¼ 4=3 ð2Þ

tp35 ¼ tp3x þ 2 ¼ 7=3 ð3Þ

Table 1 Table adjacency list
Vertex Adjacents

0 1,3

1 0, 2, 4

2 1, 5

3 0, 4, 6

4 1, 3, 5, 7

5 2, 4, 8

6 3, 7

7 4, 6, 8

8 5, 7
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tp32norm ¼ tp32=ðtp32 þ tp34 þ tp35Þ ¼ 1=12 ð4Þ

tp34norm ¼ tp34=ðtp32 þ tp34 þ tp35Þ ¼ 1=3 ð5Þ

tp35norm ¼ tp35=ðtp32 þ tp34 þ tp35Þ ¼ 7=12 ð6Þ

The above calculations show that there is a 58.33 % chance of the vehicle transitioning

to state 5 from state 3, a 33.33 % chance to transition to state 4 and an 8.33 % chance to

transition to state 2. Whereas these values are intuitively acceptable, the nature of the

HMM algorithm calls into question their reliability. The issue with this unfiltered transition

data has strong confidence given to the transition probabilities after only 3 samples. It can

also be seen that the transition probability from state ’3’ to ’2’, which should be

approximately 33.33 %, is now 8.33 %. This low probability would have a large effect on

the algorithm, where the probabilities are combined multiplicatively, and reduce all pos-

sible chances of a probable navigation path transition from ’3’ to ’2’ even when that

transition may be the likeliest one based on the situation at the time of prediction.

Therefore, it is decided to implement an Exponential Weighted Moving Average

(EWMA) filter to reduce the effect of single deviations and low sample sizes on the

resulting transition probabilities. After three samples, there should ot be a significant

difference between the new transition probabilities and the ones computed without any

vehicle information and, after 100 samples, a few new deviations should not have a

significant effect on the transition probabilities that have been established. A slow response

of the EWMA filter would provide the required smoothing. The filter parameter (repre-

sented by a) could be parameterized, allowing for user control over the smoothness of the

filter and its reactiveness to change.

With an ’a’ value of 0.9, the filter takes 0.9 of the existing transition value, and (1 -

0.9) of the new value (set to be 1 in this case, as in the unfiltered case as well). This

computation takes place recursively for each new transition recorded. At the end, the

normalization is done as before.

tp34 ¼ ð0:9� tp34Þ þ 0:1 ¼ 0:4 ð7Þ

tp35 ¼ ðð0:9� tp35Þ þ 0:1Þ � 0:9Þ þ 0:1 ¼ 0:46 ð8Þ

Table 2 Adjacency matrix vertex versus adjacent

0 1 2 3 4 5 6 7 8

0 0 1 0 1 0 0 0 0 0

1 1 0 1 0 1 0 0 0 0

2 0 1 0 0 0 1 0 0 0

3 1 0 0 0 1 0 1 0 0

4 1 0 0 1 0 1 0 1 0

5 0 0 1 0 1 0 0 0 1

6 0 0 0 1 0 0 0 1 0

7 0 0 0 0 1 0 1 0 1

8 0 0 0 0 0 1 0 1 0

1732 R. Malekian et al.

123



Normalizing using the normalization formulas given in Eqs. 4–6 for above results will

be:

• tp32 = 27.93%

• tp34 = 33.52%

• tp35 = 38.55%

These values still indicate the highest preference for the ’3’ to ’5’ transition and the lowest

for the ’3’ to ’2’ transition. However, all the values are still relatively close to the original

33.33 % assigned to them by the nature of the road network. This is a closer representation

of the truth, as the sample size does not give us the requisite confidence to deviate too far

from the default, as was the case with the unfiltered values. The smaller range between the

probabilities also means that the algorithm will be free to attempt all alternative values if

the situation demands it.

5.2.4 HMM algorithm

As stated earlier, the Viterbi algorithm is used to determine the most likely sequence of

intersections based on vehicle navigations and observations on the day of travel. This

Fig. 12 Road section

Fig. 13 Viterbi algorithm visualizer
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algorithm can be visualized as a trellis diagram, with the solution being the highest

probability path through the trellis. The algorithm is visualized in Fig. 13 and a simple

problem is postulated to demonstrate the algorithm’s process. For this we have considered

the following parameters:

• Initial probabilities:

• State 1 = 60 %

• State 2 = 40 %

• Transition probabilities:

• 1 to 1 = 35 %

• 1 to 2 = 65 %

• 2 to 1 = 55 %

• 2 to 2 = 45 %

• Emission probabilities:

• A given 1 = 70 %

• A given 2 = 30 %

• B given 1 = 25 %

• B given 2 = 75 %

On the basis of the above probabilities, this algorithm proceeds as follows:

1. Initial path sections (t = 1). For these sections the computation is given by:

Pinitial for state � Pobservation; givenstate

• Path 1 = (0.6)�(0.7) = 0.42

• Path 2 = (0.4)�(0.3) = 0.12

1. Next observation (t = 2). For these sections the computation is given by:

Pold state � Ptransition from old to new state � Pobservation; givennewstate

• Path 11 = (0.42)�(0.35)�(0.25) = 0.03675

• Path 12 = (0.42)�(0.65)�(0.75) = 0.20475

• Path 21 = (0.12)�(0.55)�(0.25) = 0.0165

• Path 22 = (0.12)�(0.45)�(0.75) = 0.0405

Select the highest probability path to each state and preserve the path. For the above case

those are Path 12 (probability 0.20475) and Path 11 (probability 0.03675). The remaining

paths can be discarded. If there are additional observations, start with transitions from the
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remaining paths and proceed as indicated in number 2 above. This means that the next

computations would be for Paths 121, 122, 111 and 112.

One aspect of the algorithm is the fact that probabilities are multiplied along the path.

As probabilities are fractional quantities, their multiplication can result in small numbers

that encroach on the precision limits of most computer systems. As a means of dealing with

that, the Viterbi implementation used in this work uses the inverse logarithm of all

probabilities in its calculations. This means that the values are added rather than multi-

plied, and, at the end, the Viterbi path is the one with the lowest inverse log probability.

This effectively removes the need for handling extremely small numbers, as the inverse

logs of probabilities will generally be large positive numbers and primarily using addition

should keep them well within the precision limits of most commercial computer systems.

6 Experimental Analysis

This section represents the various experiments carried out using the above-mentioned

hardware, software designs and algorithms. Details of these experiments and the results

obtained are listed as follows:

6.1 Experiment 1: Prediction Accuracy

The objective of this experiment is to determine whether the algorithm can accurately

predict the navigation path of the vehicle using the path database. To perform this exper-

iment we used the GPS tracking android phone software (intelligent routing by FilterIS). In

our observations we obtained the results shown in Table 3. From the data obtained it is clear

that the algorithm correctly predicted the navigation path eight times out of 10, and for the

two incorrect predictions the reasons are outside the scope of the problem.

6.2 Experiment 2: Heading Information Through Magnetic Compass

The objective of this experiment is to perform well in a test involving multiple direction

changes. The vehicle is driven on a straight road for 100 meters; it makes a sharp right-

hand turn and thn cotinues straight. Figure 14 depict three images, one on the first straight,

the second while the turn is taking place and the third three seconds after the second turn

Table 3 Experiment 1 results
Test Accurate Possible reason for inaccuracy.

1 Yes

2 No Phone call diversion

3 Yes

4 Yes

5 Yes

6 Yes

7 No Traffic lights out on major streets.

8 Yes

9 Yes

10 Yes
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when the vehicle is moving straight on the road. The degrees for Fig. 14 from left to right

are: 97.12, 109.6 and 97.63. A deviation of less than one degree is shown.

6.3 Experiment 3: RFID Tag Read Distance

The objective of this experiment is to determine the effective range of the RFID tags used

in the system. To perform this experiment, we used RFID tags, a reader, and distance-

measuring devices. In Table 4, most of the tags were unable to reach 5m. However, despite

the rating for maximum distance on the tags being given as 3m, they could be all capable

of being read from outside that range.

6.4 Experiment 4: RFID Devices Read Rate

This experiment sought to establish an upper limit on the vehicle speed that would allow

for interrogation of the tags placed by the road. To perform this experiment, we used RFID

tags and readers. Here, tags had a significantly larger acquisition rate, which improved the

range in which the vehicle needed to be for a successful tag read. We considered a road

distance of 700 m and all the tags were placed along it. Seve successful trips were

recorded. A successful trip is defined as one in which all of the tags placed along the road

are interrogated. The maximum speed of the vehicle across this experiment was recorded at

28.3 km/h, which is a marked improvement over the values obtained from the initial run of

the experiment. The experimental runs are listed in Table 5 below.

6.5 Experiment 5: GPS Location Estimation

The objective of this experiment was to obtain the latitude and longitude from the location

listener and convey this to the map application. The camera position was constantly moved

to the user’s current location. A snapshot of the GPS location while on the move is shown

in Fig. 15.

Fig. 14 Vehicle movement readings using magnetometer on a T-shaped road test
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6.6 Experiment 6: Tag Detection Application

A reader is mounted underneath the car on the front side. Tags were placed on a straight

section of an underground parking lot of a local mall 10 m apart. The vehicle traversed the

tags at a speed of about 30 km/h. All four tags that were placed were detected by the reader

and displayed with position data and timestamps. This is shown in Fig. 16.

6.7 Experiment 7: Total System Delay

This experiment measured the amount of time expended during the execution of the

algorithm. Here, we used the prediction algorithm on a commercially available personal

computer. We also used the stopwatch to record the working time of algorithm. In the

results obtained it was found that the algorithm is much faster than the reaction time of the

person holding the stopwatch.

6.8 Experiment 8: Filtering System

This experiment was designed to test the robustness of the filtering system in the face of

disturbances. To perform this experiment we used a sample database with some pre-

existing navigation paths and it was assumed that one of the navigation path would always

Table 4 Experiment 2 results
Tag ID Read distance

123483 3.8

123444 5.2

123445 4.4

234545 4.6

123583 5.1

234511 3.4

165001 4.0

769696 4.2

123458 4.3

Table 5 RFID read rate data

Navigation Path Start End Duration Distance Speed (km/h)

1 19:47:38 19:51:38 0:04:00 700 10.50

2 20:09:39 20:12:04 0:02:25 700 17.38

3 20:23:27 20:25:25 0:01:58 700 21.36

4 20:36:50 20:38:43 0:01:53 700 22.30

5 20:48:29 20:50:03 0:01:34 700 26.81

6 21:05:12 21:06:41 0:01:29 700 28.31

7 21:18:52 21:20:30 0:01:38 700 25.71

Average 0:02:08 700 21.77
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be the same for a specific vehicle. Then, we added a new navigation path with a different

transition from the common navigation path used by the vehicle and observed the resulting

prediction. From our analysis, it is found that the predicted navigation paths were not

affected by single instances as long as there were more than one existing navigation paths

for the vehicle between the points of interest. In cases where there was only navigation

path for the vehicle between the two endpoints, the addition of another navigation path

would not be regarded as a disturbance because of the lack of information on what

navigation path should be considered the norm.

7 Conclusion

The main objective of this research work is to implement a system capable of predicting a

vehicle’s navigation paths based on the existing driving practices of drvers by using an

HMM inference algorithm. These existing driving practices are collected by a hardware-

Fig. 15 Position estimation using GPS sensor
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sensing platform and RFID technology. The software algorithms in this research work all

turned out quite well. Implemented algorithms were rigorously tested and the entire pre-

diction software suite was sbject to unit tests to prevent changes over time from affecting

its core functionality. In addition, the UART communication module was well designed.

No timing issue or data loss issues occurred throughout the implementation of work. The

Viterbi algorithm, which is an inference algorithm for the HMM, was implemented using

Python programming language. This algorithm provided the most likely sequence of states

that a Markov process underwent to provide a given sequence of observations. For the data

collection, sensors were acquired and attached to an FPGA controller. Communication

protocols between the sensors and FPGA, as well as the FPGA and a computer, were

designed. An RFID reader and tag set was used to gather geographical data as well as

trigger the gathering of environmental data via the serial connection being bridged via the

computer.

Fig. 16 Successful tag detection with location data and timestamps
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With the recent advancement in sensitivity and scale of smart-phone sensors, one future

prospect for this project would be a fully mobile application, capable of collecting existing

driving practices of a driver, storing the information, predicting navigation paths and

tracking the vehicle in real-time using GPS where available and falling back on Bluetooth

low energy devices, which are ideal because of the near universal presence of Bluetooth

technology on modern smart phones.
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