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Abstract
The rapid rate of dependence over internet usage using digital devices also results in enormous data traffic. The conventional
way to handle these services is to increase the infrastructure. However, it results in high cost of implementation. Therefore,
to overcome the data burden, researchers have come up with data offloading schemes using solutions for NP-hard Target
Set Selection (TSS) problem. Our work focuses on TSS optimization and respective data offloading scheme. We propose
a heuristics-based optimal TSS algorithm, a distinctive community identification algorithm, and an opportunistic data
offloading algorithm. The proposed scheme has an overall polynomial time complexity of the order O(k3), where k is
the number of nodes in the primary target set for convergence. However we have obtained its realization to linear order
for practical reasons. To validate our results, we have used state-of-the-art datasets and compared it with literature-based
approaches. Our analysis shows that the proposed Final Target Set Selection (FTSS) algorithm outperforms the greedy
approach by 35% in terms of traffic over cellular towers. It reduces the traffic by 20% as compared to the heuristic approach.
It has 23% less average latency in comparison to the community-based algorithm.

Keywords Mobile data offloading · Target set selection · Ad-hoc networks · Overlapping communities · Opportunistic
communications · Data forwarding

1 Introduction

The rise in use of mobile phones, tablets, Personal
Digital Assistants (PDAs), and internet based applications
for services like news, online video streaming, gaming,
and massive file transmissions has shown significant
growth in internet traffic. The dependence over mobile
internet data has been exponentially rising due to its
widespread significance and frequent usage. The pandemic
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like situations of COVID-19 have further added to this
dependence. The conventional way to handle these internet-
based services is to rely on external infrastructures.
However, the current demand for data, if equipped
with these devices, would incur a very high cost of
implementation. It requires a high financial investment,
long process of development, low return value, and a high
maintenance cost. There is an exponentially rising need
for attention for mobile data traffic and its offloading
alternatives.

As per the white paper report from [1], nearly 15% of
the global population of internet users is expected to rise
by the year 2023 than from the year 2018. The number
of devices connected to IP networks is likely to be three
times its global population. More than 70% of theglobal
population is expected to have mobile connectivity with
about four times rise in machineto-machine connections.
The analysis forecasts that the global mobile data traffic
would rise to five times to reach nearly 164EB per month
by the year 2025 [2]. In order to reduce the traffic load
corresponding to one junction, an optimal solution is to use
ad-hoc networks. For such mobile data offloading, WiFi and
Bluetooth technologies have been described as a promising
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solution [3]. Opportunistic communication [4] through WiFi
based common hotspots serve similar objectives.

To identify offloading structures for such optimizations,
the static opportunistic contact analysis is done [5–
11]. However, the significance of continuously evolving
networks is yet to be identified. The literature suggests
comparative analysis of greedy, heuristic, and random
approaches in [8, 12] for static target sets. It suffers
the drawback of being unrealistic due to the dynamic
behavior of the network graph. The majority of research
work is focused on the identification of users, who behave
similarly on some similar grounds. It is achieved through
heuristics based TSS [13]. TSS is the procedure of selecting
a limited set of nodes, which can share the duplicate
data, which is otherwise meant for each node via access
points. Such a solution is NP-hard [13] in order to
approximate minimum or maximum participants for set
identification. The associations are static and independent of
time constraints, and the majority of the literature suggests
modeling for fixed networks, which does not vary with time.
However, we need to consider the opportunistic associations
concerning time constraints.

We intend to optimize the answer to this NP-hard TSS
problem in this paper and suggest the identification of an
optimized target set to propose access point level offloading.
Therefore, TSS detection can be activated to minimize the
final set to give its customers cellular network offloading
at different times as against [14] . As illustrated in Fig. 1,
we focus to target a limited set of users within the range
of the same access point. Unfortunately, the access point
has to deliver similar content frequently to many users,
which renders a bottleneck at a superior level and lays
the foundation for data offloading needs. The problem is
simplified by offering a differentiation technique of data
offloading. The proposed solution includes optimization of
a dynamic target set identification at three sub-levels. It
consists of the initial selection of the target set, the portion

Fig. 1 Offloading target sets for different interests

of the secondary target set and the optimized selection
of the target set for complex networks. Our significant
contributions can be summarized as:

– We aim optimal target set using three-phase optimiza-
tions for TSS limiting the users’ overlapping communi-
ties.

– We guarantee the restricted membership of each node
to minimize the possibility of conflicting groups in the
event of different interests.

2 Literature survey

The majority of the literature related to mobile data offload-
ing proposes several algorithms for feasible optimizations.
However the research work is inter-related, but we try
to categorize the literature survey broadly into three sub-
categories. The research over data offloading is divided
into the area of application, identification of data offload-
ing parameters and study of TSS. So we review the existing
literature for data offloading on its basis in the following
subsections.

2.1 Types of ad-hoc connections

The most favorable strategy to migrate data traffic from
cellular networks to device-to-device networks is by using
Delay Tolerant Networks (DTNs). The limited capacity
of the DTN based devices and the varied interest of
user constraints for their limited storage has been studied
in [15]. DTNs with real traces of humans and vehicles
are transformed into maximization function problem using
optimized 0-1 Knapsack with linear constraints. The authors
have proposed a Greedy Algorithm (GA) for general
scenarios, an Approximation Algorithm (AA) for shorter
lifetime scenarios, and an Optimal Algorithm (OA) for
homogeneous contact rates and buffer size. However,
their work assumes the occurrence of contacts between
any two nodes to be following Poisson rates. Thus
the implementation is limited to such models related to
DTN traces only. The topic of offloading maximization
is also discussed in [8] using a greedy method based
on heuristic documents. It requires the approximation of
shorter-lived record associations. An optimal algorithm for
heterogeneous contacts is proposed in it. Their work is
compared with greedy and approximated algorithms in
[16]. There is a proposal for an adaptive transporting
algorithm based on Lyapunov optimization, which can
release part of the application’s computing to a dedicated
server and adapt to evolving environments as in [17].
Special consideration has been given to heterogeneous
networks , making them more practical by categorizing
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users as helpers and subscribers. Kempe et al. approximated
the upper bound for TSS [18] and Chen determined its
lower bound [10]. The authors assume the users to mutually
agree to share and get the same information on sharing
basis. This could reduce their load for payment and also
may share their resources to avoid congestion. In the case
of Vehicular Ad-hoc Networks (VANETs), these Wi-Fi-
based access points are assumed to be associated with
the public mode of transport [19]. The users are assumed
to be belonging to a limited community at similar time
instances across the day intervals. This helps them to be
considered on priority for all such networks. The offloading
using the Wi-Fi-based access points proposed in [7] lowers
the transmission cost. It is intended to be lower than
the transmission cost via cellular networks. The suggested
algorithm in [9] explores the network-based interaction
between nodes and tests whether connectivity exists
between them. Based on this association within a common
transmission range, the authors categorize a few nodes
as sub-network deterministic nodes. Even after finalizing
these nodes, few nodes may fall in the range of more than
one deterministic node. The authors have identified such
scenario of multiple communities in [20]. In such cases,
the final priority of a node needs to be determined on
the basis of some significant characteristics. The authors
have proposed a data forwarding algorithm namely Social
Attraction and Infrastructure Support (SAIS) which uses
the property of social networking for implementation. The
major contribution of their work is the realistic addressing
of small ratio of access points in comparison to the total
number of mobile users. The authors have also addressed
the property of graph cliques for network realization.

2.2 Parameters of data offloading

Few authors use encounter frequency within the same
classroom to consider offloading the cellular traffic [11].
They have used social community and encounter-based
frequency to analyze the performance of data forwarding.
The authors have proposed data forwarding on the basis of
encounter, Rarest First (RF) meeting, and random strategies
and compared them. The findings show the comparative
analysis is outperformed by the RF algorithm. The authors
use the material latency of distribution in the RF algorithm
to assess the effect of a set deadline for the inclusion of
sources in the group. The findings illustrate optimization
based on the balance of frequency and latency of offloading.
The main consideration is the expectation of regularity
of human mobility to demonstrate social engagement as
a key factor of assessing the opportunistic discharge of
mobile data based on contact. The problem has been proved
to be sub-modular followed by the application of greedy
algorithms and heuristics of human mobility patterns.

However, the assumption of some content dissemination
controller to decide which nodes content must be sent is also
partial as in [21]

The literature includes [12] with different probabilities
of system discovery to achieve the opportunistic commu-
nication of moving cell phones for short contact time. The
comparative results in [9] show that the greedy algorithm
is better than heuristic and random algorithms.. It derives
a framework to exchange small data during short contact
periods. In [5], there is a device model for the imple-
mentation of traffic offloading using motion predictions
that uses the collection of different matrices to evaluate
the neighboring node coverage zones and the likelihood of
meeting. The likelihood of the meeting is used as the heuris-
tic parameter for evaluating the coverage relationship in the
graph-based coverage calculation. For the ad-hoc network,
the network was simulated over the ns-2 network simula-
tor. The majority of the research work considers the use of
online social networks to identify the social participation
and activity status using social networks like Facebook or
Twitter in [21]. [22] suggests acceptable worst-case solution
using tree-based transformation of static graphical network.
The authors propose the Adaptive Finding Overlapping
Community Structures (AFOCS) algorithm comparing it
with C finder [23] and COPRA methods [24] for dynamic
group detection. In order to locate the local community and
then merge the overlapping populations, their initial work
enforces the relationship under the basic community struc-
ture. The group optimization AFOCS algorithm causes new
nodes to be inserted and removed. It also controls the addi-
tion and removal of them into the group. The authors in [25]
have demonstrated the correlation between space-crossing
community detection and its influence in data forwarding in
mobile social networks. They have proposed a data forward-
ing algorithm namely Social Attraction and Access Point
Spreading (SAAS) to improve data forwarding efficiency
addressing the properties of delivery ratio and delay.

2.3 Target set selection problem

The issue of determining which nodes are more helpful
to speed up the dissemination process has been aimed at
TSS [6, 21]. Reinforcement learning based approach of
actorcritic modeling is suggested for solving TSS in [21].
The results for the actor-critic approach and Derivative
Re-injection to Offload Data (DROiD) [6] are compared
in opportunistic networks for single community scenario
and multiple community scenarios. The researchers also
targeted the issue in order to define the cap on the number of
nodes to be allocated to disseminate the material. In order to
define the heuristic behavior and evaluate the nodes that are
more useful for spreading the material, the acknowledgment
message with additional information is used. It is achieved

1272 Mobile Netw Appl  (2021) 26:1270–1280



using the learning principle of temporal difference. It uses
the content distribution stage, the ratio of nodes used to
the nodes available, and the percentage of time remaining
until the panic zone for content delivery. In [26], VIP
delegation is suggested on the basis of the social dimensions
of user mobility. The authors use frequency of meetings
as the significant attribute to determine the strength of
social ties. The VIP promotion techniques have been
classified using random and greedy approaches into Blind
global promotion and Greedy global promotion techniques
respectively. The authors have used the attributes of between
centrality, proximity centrality, degree centrality, and page
rank to determine the social strengths for VIP neighborhood
selection. the authors define the value of a node in the
graph. Small nodes are identified in few research studies
to send the same data on the basis of certain deterministic
characteristics to the maximum number of neighboring node
[27, 28]. The major issue is that the access point would
have to provide some equal or unequal offering for all
the users irrespective of their unequal significance [8, 9,
11]. Thus incentive determination becomes significant. The
major drawback of the present literature is the ignorance
of continuously evolving network composition and limiting
the analysis of static network-based communities and less
attention to overlapping communities. This can be achieved
by the collaborative effort of users along with their network
service providers, which we utilized using tree-based graphs
in our scenario. We have tried to merge the greedy and
overlapping community approaches to the dynamic level.

3 Systemmodel and assumptions

In this section, we summarize the model and the assump-
tions laid with the inclusive definitions and notations
explained. Our model is a hybrid of basic mobile data net-
work along with the associated opportunistic network sup-
porting the infrastructure based requirements for efficient
mobile data offloading.

3.1 Systemmodel

We assume a network of mobile users with different
interests within the range of an access point to belong to a
single community initially. For simplicity, we presume all
users have the same capabilities, at least the minimum of
all. All users are mobile and interconnected using wireless
links. Also, before its Time-to-live (TTL) expires, we have
to consider that the data transmission is efficient. TTL is
the data item’s transmission date regardless of download
or upload. Our aim is to derive minimal but optimal
subset of users. Our system model comprises of a group
of communities represented by the set of nodes or the

Mobile Users (MUs) for a specific service represented by
edges in between. The dynamic behavior of MUs has been
observed in the data set pre-processing in reference to
different time instances. As illustrated in Fig. 1, since one
or more nodes are connected to some other nodes in similar
communities, we may try to offload the traffic to it from
the access point. In this section, we summarize the model
and the assumptions laid with the inclusive definitions
and notations explained. Our model is a hybrid of basic
mobile data network along with the associated opportunistic
network supporting the infrastructure based requirements
for efficient mobile data offloading.

We consider a service, such as Sports News or Weather
Update, subscribed to by n users in the range of the
access point and transmitting the relevant data to the whole
population. Thus, the overall network load handled by the
access point is calculated as the product of the number of
nodes and the corresponding individual load for each node.
We may need to find out the heuristic pattern of k users
within the range of access point S. This helps to find out
the dynamic patterns of these nodes. Another way out could
be to find relations between these nodes to obtain subsets
using certain characteristics of similar subscriptions. We
reflect C[i] as the cost of these data transmissions through
the access point of the cellular network and c[i] as the cost
of these transmissions through Wi-Fi hotspots found in the
immediate vicinity. In terms of data bytes, the expense is
observed. The data record has to be kept by the cellular
network’s access point. By taking the ratio c[i] : (C[i]),
the improvisation can be determined. Our aim is to identify
every neighboring node j for each node i and assign the
matrix attribute If (i)j = 1. The value of If (i)j is unity
if node i is in direct contact with node j , and is otherwise
0. In general, the network nodes are divided into different
classes and our focus of observation is focused on a single
S community based on one form of subscription. In a larger
subset, this is determined as a local target set range. We refer
to this as the Optimal Goal Set (OTS) derivative based on
the values of SIni

, BIni
[29] and Depthni

. The availability
of users within the connectivity spectrum of data access via
Wi-Fi ensures data offloading in real life. In addition, it is
also time-bound for the period for which the consumer is in
the deliverable range. In addition, there is a fixed size of the
content to be shared across these data access points. Using
a tuple-based offloading incentive function S′ni = [α, β].
The lower bound of α is 0. The value of α defines the length
of the node i within the Wi-Fi hotspot proximity range. The
value of β = [0/1] indicates the possibility of the Wi-Fi
based connection for the downloading service depending
on the cost of data entry and outflow. The capacity of the
transmission is determined by using the speed and the time
that the consumer stays connected. The final set is achieved
by the heuristic greedy method. The optimal derivation S′

1273Mobile Netw Appl  (2021) 26:1270–1280



contains k′ nodes in such a way that k′ � k. The list of
notations and symbols used in this paper are enlisted in the
Table 1 below.

3.2 Definitions

In order to understand the system model we need to define
the following terms at first:

Definition 1 Community Selection: Traditionally, the term
Community is defined as a group of users who have a
common belief or behavior to ensure that they are tightly
knit nodes, with more internal links than external links
[20]. Based on this definition, we use the term Community
initially to identify users within the range of one access
point. Thus St = [n1, n2, .. . . . ., nk] is the initial community
of users. We determine the sub-communities also on the
basis of common user interests as in [30] to ensure strong
internal links. We define a small subset S′ of S nodes
that could be targeted to deliver data based on short-range
communications made only at the user level to the entire
collection S. The optimal set and final target set are derived
from it. After the sub-community determination, when one
node is selected from the major superset St for content

Table 1 Description of notations used

Sr.No. Notation Description

1 S Collection of devices within the

range of a single access point

2 k Total number of users who subscribe

similar interests in S

3 SIni
Similarity impact for node ni

4 BIni
Betweenness Impact for node ni

5 f BI Betweenness impact function

6 PT S Initial primary target set identified

7 ONSnj
Optimal neighbor set identified

for node nj

8 SV − I Similarity vector containing common list

of subscriptions

9 SV − II Similarity vector containing compressed data

10 Nbrni
Set of neighbors of ni

11 If (i)j Knapsack identification factor

of node i w.r.t. node j .

12 D Set of interests d1, d2, d3, . . . , dz of

independently different sizes

13 SKmax Set of nodes with maximum influence value

14 W Variable window size for

limited number of nodes

15 Utilityni
Utilization function for node ni

16 rowwt (ny) Matrix row weight of node ny

delivery of interest item i, it is also termed as a Community.
Thus we have used the term Community interchangeably, in
reference to the interest-based subgroups for the users and
significant offloading users for the access points.

Definition 2 Overlapping Community: Based on the earlier
definition of Community itself, when the access point
observes a user to belong to more than one user group then,
then we use the term the Overlapping Community. In other
words, we say if a user is selected for more than one interest
item, then the communities may overlap among themselves.
Considering the user ux being interested in item ia and
for item ib also, we have the user ux to belong to more
communities a and b, simultaneously.

3.3 Assumptions

We have assumed that all the users within the range of
one access point belong to the same community. Also,
the classification of all nodes in any set is on the basis
of a similar category of subscribers for the same service.
All nodes are ready to replicate the similar interest data
within a defined time limit. Each community has dynamic
interactivity based interconnections. Every node is also
presumed to agree to share its list of neighbors with their
interests in the form of Summary Vector components similar
to the cache enabled scenario as in [31].

4 Problem statement

Our problem is to identifying a subset of users belonging
to the same or different community and discharging the
data which is otherwise intended for the access point of
the cellular network. The problem of data offloading relies
on selecting a limited set of nodes and then forwarding
the data to its identified target subset. The major goal
remains to select a subset of vertices in the graph which
in turn could satisfy some other vertices on the basis of
some common attributes. This objective is achieved by the
identification of common subscription-based communities,
followed by targeting only limited nodes from the identified
subset which belong to the same community over a
fixed span of time δt and hence is dynamic. Our model
focuses to prioritize nodes for an optimized subset in
case of overlapping interest-based scenarios. Earlier to our
work, the literature suggests social network-based static
community derivation. We do also address the overlapping
communities by limiting them to belong to one user interest
at a time. In order to belong to one subset of S′, we accept
groups dependent on the same facilities. The solution to this
problem is subdivided into different stages of recognition
and subset selection optimization. In order to derive the

1274 Mobile Netw Appl  (2021) 26:1270–1280



complete route for the data packet to reach through the
maximum number of nodes, the neighbor prediction for
each set is followed. Several authors mentioned in the
literature also encounter the same form of problem [4,
8, 10, 11], but the approach proposed typically suffers
the disadvantage because the model is static and partial
or predetermined. It becomes more unrealistic because
when we consider the offload for mobile data subscribers,
the users are mobile in our model. The relationship is
extracted from some of the solutions based on experiences
in history that establish a predetermined connection. Taking
into account these limitations of previous work, we seek
to achieve dynamic allocation [17, 32] for each goal set.
Centered on changing the allocation of nodes to many target
sets, we suggest a more complex algorithm. We exploit
two feasible optimization scenarios: firstly, the target set
selection within a single community is restricted to the
selection of subscribers to one service and secondly, the
offloading of neighbors across different communities. This
model of network-based graph is similar to the assignment
problem of a knapsack. In order to represent a set to be
belonging to a community or not, we declare every matrix
entity to be unity if it lies in the community and zero
otherwise. Consequently, the aim of this study is to define
the number of initial users to be identified as the primary and
secondary target sets. This helps to derive optimized target
sets. The level of interactivity in the overlapping population
needs to be detected after the selection of the optimal target
sets. This is done to define the path via the optimized target
source set.

5 Proposed algorithm

We divide the entire procedure into three sub-algorithmic
steps to yield the optimized final target set. The first sub-
algorithm provides the nodes for the primary target set
which are further optimized to a limited target set in the
second sub-algorithm. The final sub-algorithm determines
the route optimized data forwarding scheme for data
offloading.

Algorithm 1 We start with the Primary Target Set (PTS)
identification algorithm. This algorithm aims to use a
limited set of nodes from a single community on the basis
of similarity index values and the optimum threshold values
for the nodes within the sets. The nodes are checked for
their similar choices of subscription derived based on set of
interests. The nodes which fall in the range of the access
point at time instance t are identified and compared with the
nodes at instance, t + δt . For each node, ni all the neighbors
m are identified. Corresponding to these neighbors, we
evaluate the similarity in data subscription as in [33]. We
evaluate Betweenness Impact BIni

for each node ni , using

betweenness centrality BCni
[29], and its total number of

neighbors ρni
using

BIni
= BCni

ρni

(1)

Here the value of betweenness centrality BCni
for the node

ni is given by

BCni
=

N−1∑

j=1

j−1∑

k=1

gjk(ni)

gjk

(2)

where gjk(ni) identifies the number of paths between nodes
nj and node nk passing through the nodeni . Here gjk is
the total number of paths connecting node nj and node
nk . For each node and its immediate neighbor, we evaluate
the similarity in data for them. We also use the influence
function similar to the k-truss used by the authors in [34]
. It ensures maximum usage of cut vertex-based nodes. It
is based on the concept of influence sub-graphs in graph
theory. According to it, a K-influence subgraph ni(K) for
a graph G is defined as the largest sub-graph with all
interconnected edges belonging to at least K − 2 triangles.
Thus each edge for the node ni has an influence value,
ni(ij) = K , if it belongs to ni(K) but does not belong
to ni(K + 1). This is equivalent to the clique of order K .
The nodes are ranked on the basis of Influence Size, INSni

derived using

INSni
= max|ni(ij)| (3)

It helps to derive the maximum impact for different
influence values among all nodes in the graph.

We derive the fraction in the influence F = R
Kmax
W for a

variable size window W, using the following equation

R
Kmax

W = Number of nodes in ni(K)/|S|kmax

|W |/|S| (4)

The final preference for edges is determined on the basis
of combined value of EgoBetweenness and Inf luence for
each node, which is calculated using

Utilityni
= (α × F × INSni

) + (β × BIni
) (5)

Here α and β are tunable constants with α + β = 1 to
give priority. The ni node is chosen for inclusion in the
PTS set based on the maximum value of Utilityni

. The
same protocol is updated for BI ≥ 0.5 nodes. This ensures
the priority given to the impact of similarity using tunable
constants. We divide the set of users into two halves based
on the value of BI , with the values to be either BIł 0.5
or BI ≥ 0.5. Although the complexity of this algorithm
is more, yet it is responsible for the major improvisation
achieved in our results.
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Algorithm 2 The target set is optimized further when
we optimize the sets on the basis of interests prioritized
by the nodes. We aim to identify the nodes which should
be preferred more over the rest of the nodes, similar to
the social network connections on the basis of frequent
interactivity in terms of activity status governed by the
access point. These nodes are referred to as the optimal
nodes. The data is replicated to its neighboring nodes by
them. An access point needs to prioritize a small number
of nodes in any group in which a user encounters V

neighbors for data retrieval using several edges E. The
ONS algorithm does this identification of neighbors. It uses
the breadth-first search and depth-first search approaches
to determine the set of progressive nodes. Such nodes
share the utility values from the previous algorithm to their
neighbors. The compressed message carrying two summary
vectors is expected to carry all nodes: summary vectors
SV − I and SV − II . The SV − I includes each node
’s list of subscription interests, and SV − II stores the
data in compressed form. For the adjacent node, the data
are given on the basis that the subscriptions across the
summary vectors are equivalent. If the initially available
data is relatively low than the data in the main node, the
data is transmitted to the nearest node. Based on a similar
form of subscription, we continue to classify individual
populations. This problem is defined as optimum neighbor
set selection. In this algorithm, we propose to share the data
to the neighboring nodes in the form of summary vectors.
It considers the nodes which have multiple belongings
to more than a single communities identified through the
channel. We determine the overlapping on the basis of its
matrix representation for each matrix containing a node
that belongs to more than one community. The weights
of common interests across the interest matrix ensure the
selection of non-overlapping communities.

Algorithm 3 We transform the network visualization into
a tree data structure. This helps in avoiding any cycles
and reduces the number of directed connecting links. Such
a transformation helps us to impose the phenomenon of
shortest path application across the minimum spanning tree
using the depth attribute of each node. In order to evaluate
depth, the graph users need to be connected. Thus the row
matrix sum is used to obtain the depth based relation. The
maximum depth evaluated using rowwt(ny) determines the
maximum utility of minimum number of nodes associations
with lesser delay tolerance and assuring maximum portion
of the network covered. The nodes with the best available
ad-hoc approach are selected.
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Complexity analysis for algorithm The target set selection is
an NP-hard problem [13, 35] to approximate the maximiza-
tion and minimization variants. The PT S algorithm has a
complexity of order i× int . The number of interests int , are
far less in comparison to i number of users. Hence we can
consider O(i × int) ≈ O(i). Also, the second algorithm is
dependent on the number of neighbors of nodes. The num-
ber of primary neighbors for any node are also very less in
comparison to the total number of users. Hence for ONS

algorithm, the complexity can also be approximated to be
of the order O(j). The final algorithm FT SS is dependent
on the output of the previous PT S and ONS algorithms.
ONS is repeated for each user identified from PT S. Hence
the overall order for FT SS is (i × j). However, the average
number of neighbors is also very less in comparison to total
number of users. Hence we may consider O(i × j) ≈ O(i).
Thus the overall complexity of our algorithm is linear for
practical reasons.

6 Simulation and performance evaluation

The proposed optimization is compared with literature
strategies for its implementation using MATLAB. Our
results are authenticated for data forwarding in case of
limited sizes of the target sets involving more significant
nodes. The simulation is evaluated over reality mining
dataset from MIT and bluetooth dataset from NUS.
These datasets have been used to identify the social
communities and groups on the basis of the identification
of bluetooth enabled devices in the proximity for static
and dynamic associations which evolve with time. In this
section , we present the simulation results of the greedy
heuristic community-based algorithm and compare them
with the naive FT SS algorithm. We consider a scenario
of transmission of a fixed size message of 10 Kbs for our
purpose of simulation. Much like newspaper distribution by
a hawker, each delivery of data packets consists of a single
packet. The goal is to determine the most effective target
set to unload cellular data on the basis of opportunistic

Fig. 2 Traffic load over cellular network access point for MIT dataset

Fig. 3 Traffic load over cellular network access point for NUS dataset

communications that are available at various times and then
route the data packet through it.

6.1 Traffic load comparison

We have considered only 1000 nodes from the MIT dataset
in the simulation setup initially. We compare the literature
based algorithms with our algorithm for a fixed size target
set with an upper bound of 50 nodes. We considered a 20-
second time limit for each subscriber to retain and exchange
the data with their neighbors. Otherwise, the network access
point would send data to all nodes in its range automatically
after 20 seconds. For more users, we have repeated the same
method from 1000 to 5000 in the reach of cellular networks
as shown in Fig. 2.

Our algorithm is used to estimate the proportion of users
who can access data by means of the limited number of
users in the targeted sets. FT SS based goal set selection
is found to be more optimal than previous algorithms. If
more subscribers are interested in having the same data,
our algorithm provides optimal results for the optimal
percentage of users. As the number of mutual interest
subscribers increases, the percentage of happy users using
FT SS increases. The rationale for this improvisation is
the possibility that subscribers would have more chances
in a wider opportunistic network to contact others. In this
simulation, 800 nodes from the NUS dataset are studied
and the findings are shown in Fig. 3. We pick a 10 Kb
data packet to be sent to all these nodes with a choice of

Fig. 4 Comparison of data offloading phenomenon over MIT dataset
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Fig. 5 Comparison of data offloading phenomenon over NUS dataset

10-100 node goal sets of different sizes. Initially, the entire
traffic is handled by the access point itself when there is no
subscriber in the target range. Therefore, 800 × 10 = 8000
Kbs of data must be transmitted. The amount of traffic
managed by the access point is reduced as we encourage
more users to assist in offloading as target set users.

6.2 Data offloading comparison

Figures 4 and 5 illustrate the extent of offloading
percentage, which rise with the increase in the number
of subscribers from respective MIT and NUS traces. We
increase the participation of subscribers from 1000 to 5000
and observe nearly 20% more data offloading in comparison
to literature based algorithms for MIT dataset. However, in
simulation over NUS dataset we observe 10-25% more data
offloading for similar extent of contribution of subscribers.

6.3 Average latency comparison

We depict the latency observations in our simulation using
Figs. 6 and 7. We observe that average latency is also
reduced using FTSS algorithm based implementation for
both datasets. The average latency is also reduced nearly
10-12 milliseconds for varying sizes of target sets. As we
go on to increase the sizes of target sets from 100 to 1000,
although the average latency is reducing. But the results
using FTSS shows less latency in comparison to literature
based algorithms.

Fig. 6 Impact of using FTSS over latency for MIT dataset

Fig. 7 Impact of using FTSS over latency for NUS dataset

6.4 Performance gain comparison

At last we check the performance of our algorithm
for different message sizes. For fixed latency of 20
milliseconds, the overall performance gain reduces. The
results for MIT and NUS datasets have been shown in
Figs. 8 and 9 respectively. The results in Fig. 8 show that
for a message size of about 50 Kbs, there is nearly 20%
performance gain. However, the gain is less for smaller as
well as larger message size for MIT datasets. Similarly the
results in Fig. 9 for NUS dataset, we obtain the best optimal
size of message size of about 40 Kbs. However, the results
show less performance gains for smaller as well as larger
message sizes.

7 Conclusion and future scope

Instead of completely using the access point resources of
network providers, minimization of data traffic using inbuilt
service capacities of the users, yield optimized results for
data routing. PTS sub-algorithm has the complexity of
the order of O(k2). ONS algorithm has O(k3) complexity
whereas the FT SS has O(k2) complexity. Thus we have
provided a heuristic based hybrid solution of O(k3) order,
with a limited set of constraints. The approach assumes
that all users are ready to share their identity and interests
with the access points for cooperation. Also, every node

Fig. 8 Performance gain comparison for MIT dataset
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Fig. 9 Performance gain comparison for NUS dataset

has similar information about its immediate neighbors.
This lays the foundation for the determination of optimal
target selection in opportunistic networks such as VANETs
or DTNs. Analysis of our results shows that the hybrid
FT SS algorithm outperforms the greedy approach by 35%
in terms of traffic offloading over cellular towers, 20%
less as compared to the heuristic approach, and 23%
less average latency when compared to the community-
based algorithms. The algorithm yields at least 5-6 % less
offloaders in the target sets in comparison to the heuristics-
based networks. Since all nodes in the network may or may
not be trustworthy amongst a network. Thus the impact of
trust determination for such an evolutionary network has
been excluded in the current work which will be explored
in the future. The vehicular hotspot based access points and
determination of incentives for each of the helper, nodes
are the future orientations for research in this area. The
delay tolerance intervals can also be varied which could
be considered along with the determination of incentives
for helpers to offer services using them. Our results of
optimization render efficient usage of users and reduction in
data traffic. The overall load in limited geographic scenarios
is minimized using our modeling and implementation.
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