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Nowadays, Multiprocessor System-on-Chip (MPSoC) architectures are mainly focused on by manufacturers to provide increased
concurrency, instead of increased clock speed, for embedded systems. However, managing concurrency is a tough task. Hence,
one major issue is to synchronize concurrent accesses to shared memory. An important characteristic of any system design process
is memory configuration and data flow management. Although, it is very important to select a correct memory configuration, it
might be equally imperative to choreograph the data flow between various levels of memory in an optimal manner. Memory map is
a multiprocessor simulator to choreograph data flow in individual caches of multiple processors and shared memory systems. This
simulator allows user to specify cache reconfigurations and number of processors within the application program and evaluates
cache miss and hit rate for each configuration phase taking into account reconfiguration costs. The code is open source and in java.

1. Introduction

In the memory hierarchy, cache is the first encountered
memory when an address leaves the central processing unit
(CPU) [1]. It is expensive, relatively small as compared to
the memories on other levels of the hierarchy and provides
provisional storage that supplies most of the information
requests of the CPU, due to some customized strategies that
control its operation.

On-chip cache sizes are on the rise with each generation
of microprocessors to bridge the ever-widening memory-
processor performance gap. According to a literature survey
in [2], caches consume 25% to 50% of total chip energy,
while covering only 15% to 40% of total chip area, whereas
designers have conventionally focused their design efforts
on improving cache performance as these statistics and
technology trends visibly indicate that there is much to be
gained from making energy and area, as well as performance,
front-end design issues.

Embedded systems as they occur in application domains
such as automotive, aeronautics, and industrial automation
often have to satisfy hard real-time constraints [3]. Hardware
architectures used in embedded systems now feature caches,

deep pipelines, and all kinds of conjecture to improve average
case performance. The speed and size are two concerns
of embedded systems in the area of memory architecture
design. In these systems, it is necessary to reduce the size of
memory to obtain better performance. The speed of memory
plays an important role in system performance. Cache hits
usually take one or two processor cycles, while cache misses
take tens of cycles as a penalty of miss handling, so the
speed of memory hierarchy is a key factor in the system.
Almost all embedded processors have in-chip instructions
and data caches. Scratch-pad memory (SPM) has become
an alternative for the design of modern embedded system
processors [4, 5].

Multiple processors on a chip communicate through
shared caches embedded on a chip [6]. Integrated platforms
for embedded applications [7] are even more assertively
pushing core-level parallelism. SoCs with tens of cores are
commonplace [8-11] and platforms with hundreds of cores
have been proclaimed [12]. In principle, multicore architec-
tures have the advantages of increased power-performance
scalability and faster design cycle time by exploiting replica-
tion of predesigned components. However, performance and
power benefits can be obtained only if applications exploit



a high level of concurrency. Indeed, one of the toughest
challenges to be addressed by multicore architects is how to
help programmers expose application parallelism.

Thread level parallelism brings revolution in MPSoC
[13]. As multiple threads can be executed simultaneously, it
makes the real advantage of multiple processors on a single
chip [14]. However, this leads to a problem of concurrent
access to cache by multiple processors. When more than one
processor simultaneously wants to access the same shared
cache then there is a need of synchronization mechanism
[15]. This paper presents memory map, a fast, flexible,
open source, and robust framework for optimizing and
characterizing the performance, hit and miss ratio of low-
power caches in the early stages of design. In order to
understand the description of simulator and related work
that follows, one must be aware of the terminology used to
describe caches and cache events.

Caches can be classified into three possible ways depend-
ing on the type of information stored. An instruction
cache stores CPU instructions, a data cache stores data for
the running application, and a unified cache stores both
instructions and data. The basic operations to a cache are
reads and writes. If the location specified by the address
and generated by CPU is stored in the cache, a hit occurs,
otherwise, a miss and the request is promoted to the next
memory in the hierarchy. A block is the smallest unit of
information present in the cache. Based on possible locations
for a new block, three categories of cache organization are
possible. If the number of possible locations for each block
is one, the cache is said to be direct mapped. If a block
can be placed anywhere in the cache, the cache is said to
be fully associative and if a block can be placed only in one
of a restricted set of n places, the cache is said to be n-way
set associative. When a miss occurs, the cache must select
a block to be replaced with the data fetched from the next-
level memory. In a direct-mapped cache, the block that was
checked for a hit is replaced. In a set associative or fully
associative cache, any of the blocks in the set may be replaced.

Associativity is one of the factors that impinge on the
cache performance. Currently, modern processors include
multilevel caches with increased associativity. Therefore,
it is critical to revisit the effectiveness of common cache
replacement policies. When all the lines in a cache memory
set become full and a new block of memory needs to be
replaced into the cache memory, the cache controller must
replace it with one of the old blocks in the cache. We have
used the same procedure for SPM. The modern processors
employ various policies such as LRU (Least Recently Used),
Random, FIFO (First in First Out), PLRU (Pseudo LRU), and
N-HMRU.

Least recently used [16] cache replacement policy rejects
the least recently used items first. This algorithm keeps track
of what was used when and which is expensive to make
sure the algorithm always discards the least recently used
item. Random cache replacement policy randomly selects a
candidate item and discards it to make space when required.
This algorithm does not keep any information about the
access history. FIFO cache replacement policy is the simplest
page replacement algorithm. This algorithm requires slight
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book keeping on the part of the operating system. The
operating system keeps track of all the pages in memory in
a queue, with the most recent arrival at the back, and the
first arrival in front. When a page needs to be replaced, the
page at the front of the queue, that is, the oldest page is
selected. Although, FIFO is cheap and intuitive, it performs
poorly in practical application. Hence, it is rarely used in
its unmodified form. PLRU [17] maintains a tree of cache
ways instead of linear order as in case of LRU. Every inner
tree node has a bit pointing to the subtree that contains
the leaf to be replaced next when required. The H-NMRU
[18] cache replacement policy can be described using a
multiway tree, where the leaf nodes represent the lines in
the set. Each intermediate node stores the value of its most
recently used (MRU) child. During a cache hit, the tree is
traversed to reach the accessed line at the leaf node. On
the way, the value of the nodes is updated to point to
the path of traversal. In this way, the most recently used
branches are stored at each node of the tree. While on a
cache miss, the tree is traversed selecting a random value
unlike from the MRU value stored in the node. From each
level a non-MRU path is selected. Hence, this algorithm
points to a leaf node which has not been accessed in recent
times.

A write through a cache modifies its own copy of the
data and the copy stored in main memory at the time of the
write. In a copy-back cache, it modifies its own copy of the
stored information at the time of the write, but it updates
the copy in main memory only when the modified block is
selected for eviction. Read misses usually result in fetching
the requested information into the cache; while write misses
do not necessarily require that the cache fetch the modified
block. The new block is loaded on a write miss if the cache is
using the write allocate strategy, otherwise the write request
is simply forwarded and the modified data is not loaded into
the cache. The cache is said to be nonallocating in the above
case.

The rest of the paper is organized as follows. Section 2
describes working, benefits, and drawbacks of various cur-
rently available memory processor simulators in the field of
embedded systems. An approach with experimental results
for multiprocessor synchronization is described in Section 3
followed by an overview of proposed memory map mul-
tiprocessor simulator architecture in Section 4. Section 5
describes our simulation environment, and experimental
results are explained in Section 6. Lastly, our work is
concluded in Section 7.

2. Survey and Motivation

A number of simulators are available for multiprocessor
shared memory architecture evaluation. We are discussing
some of them with their features and problems that lead to
the need of memory map multiprocessor simulator. SMP-
Cache [19] is a trace-driven simulator for SMP (symmetric
multiprocessor) memory consisting of one windows exe-
cutable file, associated help files, and collection of memory
traces. SMPCache is used for the analysis and teaching of



Journal of Electrical and Computer Engineering

cache memory systems on symmetric multiprocessors. It has
a full graphic and friendly interface, and it operates on PC
systems with Windows 98 or higher. However, SMPCache is
a trace-driven simulator; however, we need a certain tool to
generate memory traces.

OpenMP [20] is a de facto standard interface of the
shared address space parallel programming model using
OpenMP directives. For C and C++ programs, programs/di-
rectives are provided by the OpenMP API to control paral-
lelism through threads. OpenMP supports parallel program-
ming using compiler directives, however, lacks tool to gather
memory access statistics.

SimpleScalar [21] is C-based simulation tool that models
a virtual computer system with CPU, cache, and memory
hierarchy. SimpleScalar [22] is a set of tools through which
users can build modeling applications that simulate real
programs running on a range of modern processors and
systems. The tool set embraces sample simulators ranging
from a fast functional simulator to a dynamically scheduled
processor model that supports nonblocking caches, spec-
ulative execution, and state-of-the-art branch prediction.
In addition to simulators, the SimpleScalar tool set takes
account of statistical analysis resources, performance visu-
alization tools, debugging, and verification infrastructure.
However, the problem is that SimpleScalar does not support
multiprocessors.

M-Sim [23] is a multithreaded simulation environment
for concurrent execution based on SMT model. M-Sim
extends the SimpleScalar 3.0d toolset. M-SIM supports
single-threaded execution, SMT (simultaneous execution
of multiple threads), and number of concurrent threads
MAX_CONTEXTS. For executing the program, we need to
write a statement:

./sim-outorder-num_cores 3-max_contexts_per_core 3

Cache:dll  dl1:1024:8:2: I-cache:dl2  dI2:1024:32:2:1
hello.arg

An argument file contains alpha binary executable will be
produced

1000000000 # ammp < ammp.in > ammp.out

M-Sim supports multiprocessors but requires separate
program per core. M-Sim requires alpha binaries executables
using DEC compiler, which is not a freely available compiler.

Class library in SystemC, including the source code, is
free and available to the public through SystemC portal
[24, 25]. In addition to standard Linux C++ development
and shell tools, GTKWave waveform viewer and Data
Display Debugger (DDD) were used. However, the major
shortcoming for software development of this tool is that
standard software development tools are debugging the
software of the model and not the software running on the
model. Moreover, there is no linker available for SystemC.
Hence, the semantics of SystemC build on top of C++
syntax is not checked within the compilation process that in
turn results in illegal semantics that are syntactically correct
and will not produce any compiler errors or warnings. In
these circumstances, the programs will cause a run-time

error, which are typically harder to locate than compile-
time errors. In addition, unfathomable error messages are
produced by standard C++ compiler with the illegal use
of SystemC semantics and generate a syntactical error
within the SystemC library. Interaction with other software
environments and native C/C++ and SystemC can also be

niggling.

3. Alternate Approach for
Multiprocessor Synchronization

3.1. Memory Interleaving. Memory interleaving [26] is a
technique for compensating the relatively slow speed of
DRAM. Alternative sections can be accessed immediately by
CPU without waiting for memory to be cached. Multiple
memory banks take turns to supply data. An interleaved
memory is said to be n-way interleaved, if there are n banks
and memory location i would reside in bank number i
mod n. One way of mapping virtual addresses to memory
modules is to divide the memory space into contiguous
blocks. The CPU can access alternate sections immediately,
without waiting for memory to catch up (through wait
states). Interleaved memory is one technique to compensate
relatively slow speed dynamic RAM (DRAM). Interleaved
memories are the implementation of the concept of accessing
more words in a single memory access cycle. This can
be achieved by partitioning the memory into N separate
memory modules. Thus, N accesses can be carried out to the
memory simultaneously.

We have implemented memory interleaving with respect
to merge sort algorithm to avoid any synchronization issue
in n process scenario. In general, the CPU is more likely
to access the memory for a set of consecutive words (either
a segment of consecutive instructions in a program or
the components of a data structure such as an array, the
interleaved (low-order) arrangement shown in Figure 1 is
preferable as consecutive words are in different modules and
can be fetched simultaneously.

Instead of splitting the list into 2 equal parts, the list
is accessed by n processors simultaneously using memory
interleaving, thus ensuring that they never access the same
memory locations as described through Figure 2. While
merging, all the memory points being merged at a time will
be at contiguous locations. Due to this, all the locations
pointed by different processors are brought into cache
simultaneously; merge module can access all the elements
in cache, hence increasing cache hit and performance of
sorting algorithm. Merge sort algorithm has been modified
accordingly as shown in Algorithm 1. According to the
modified algorithm, merging operation will become highly
efficient as values to be merged will be at contiguous location
and will be brought to cache simultaneously.

In order to increase the speed of memory reading and
writing operation, the main memory of 2" = N words can be
organized as a set of 2" = N independent memory modules
where each containing 2"~ words. If these M modules can
work in parallel or in a pipeline fashion, then ideally an M
fold speed improvement can be expected. The n-bit address
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High-order arrangement

0| 00 00 4| 01 00 8| 10 00 12| 11 00
1{ 00 01 5| 01 01 9] 10 01 13| 11 01
2| 00 10 6| 01 10 10| 10 10 14| 11 10
31 00 11 7| 01 11 11| 10 11 15( 11 11
MO M1 M2 M3
Low-order arrangement (interleaving)
0| 00 00 1| 00 01 21 00 10 31 00 11
4| 01 00 5 01 01 6| 01 10 71 01 11
8| 10 00 9] 10 01 10| 10 10 11 10 11
12| 11 00 13] 11 01 14| 11 10 15| 11 11
Mo M1 M2 M3

FiGURE 1: Interleaved structure.
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Now merging becomes easier as elements to be compared during merging lie in
same memory block, hence brought to cache together, hence cache hit and

performance increases.

FIGURE 2: Multiple processors accessing memory simultaneously.

is divided into an m-bit field to specify the module, and
another (n — m-) bit field to specify the word in the addressed
module.

(1) Interleaving allows a system to use multiple memory
modules as one.

(2) Interleaving can only take place between identical
memory modules.

(3) Theoretically, system performance is enhanced
because read and write activity occurs nearly
simultaneously across the multiple modules.

In our experiment, we have taken the size of data array as of
30 elements and LRU as the data replacement policy. As far
as cache configuration is concerned, we have taken SPM as a
16 bit 2-way set-associative cache and an L2 cache of 64 bit
2-way set-associative cache.

3.2. Observations. We have used SimpleScalar functional
simulators sim-cache and sim-fast to implement the above
modified merge sort algorithm. We use a system running

the Linux operating system. We evaluated and compared
cache hit ratio and cache miss rate. The percentage of
data accesses that result in cache hits is known as the
hit ratio of the cache. Figure 3(a) shows the hit ratio for
SPM in case of memory interleaving and comparing it
with the normal execution of the merge sort benchmark.
As it is clear from the graph hit ratio is increased from
98.55 (normal sorting) to 99.87 (sorting with memory
interleaving). This is a considerably good achievement as
hit ratio is very close to 100%. L2 cache hit ratio is
shown in Figure 3(b). It has also been proved that cache hit
ratio also increased from 96.54 in normal sorting to 99.74
in case of memory interleaving for modified merge sort
algorithm. Moreover, obtaining 100% hit ratio is practically
impossible.

Miss Rate is measured as 1-hit ratio. The first two
bars in Figure 4(a) show the SPM miss rate with normal
and interleaved execution. As shown, miss rate decreases
from 1.46 for normal sorting to 0.12 for sorting with
memory interleaving. Similarly, in case of L2 cache miss
rate also decreases from 1.46 to 0.26. This is a considerably
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SPM comparison-comparison of sorting algorithms L2 Cache hit ratio comparison

100 99.87 100 99.74
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FiGURE 3: (a) SPM and (b) L2 cache hit ratio.
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FIGURE 4: (a) SPM and (b) L2 cache miss rate, replacement rate and, writeback rate.

good achievement as obtaining nil miss rate is practically
impossible. We have deemed over DLI cache. The next two
bars in the graph are showing the comparison of replacement
rate for normal execution to the execution with interleaved
memory. [t also shows a significant decrease from 1.39 to 0.12
for SPM and from 2.14 to 0.15 for L2 cache. Replacement rate
indicates the rate of replacement due to cache aliasing and
cache miss. Lesser replacement rate is due to high cache hit,
which lowers down effective memory access time. Likewise,
the last two bars, are explaining the writeback rate for SPM

as well as for L2 cache. As shown in the bars, it has also
been decreased from 1.04 to 0.06 for SPM and from 1.81
to 0.06 for L2 cache. Low writeback rate indicates the rate
of replacement due to cache aliasing and cache miss is
low.

3.3.  Limitations. Although memory interleaving has
decreased the miss rate and shows significant improvement,
this approach has some limitations. The current study



Journal of Electrical and Computer Engineering

Sorting algorithm (modified merge sort)

#define MaxSize 7000
Algorithm (A [][], left, right, M, inter)

factor = (right — left + 1)/Pow (M, inter);
IF (factor > 3) THEN

/IThis loop partitions the elements into M processors

FOR (i = 0 to M DO)

next to previous elements.
Merge (A, left, right, M, inter);
ELSE
InsertionSort (A, left, n, right, Pow (M, inter — 1));
END

int j, p, Tmp, count;
Tmp = A[P];

Alj] =A[j — inter];
A[j] = Temp;
Modified Merge Algorithm

Algorithm Merge (A, left, right, M, inter)
{
plnter = Pow(M, inter);
FOR (i = 0; i < M; i++) pointer [i] = left + r*pInter/M;
N = (right — left + 1);
FORi=0tondo
FOR (j =0;j < M;++j)

TmpArray[i] = A[pointer|j];
index] = j;
IF(pointer[index J] + pInter > n — 1)
pointer[index J] = —1;
ELSE pointer[index J] + = plnter;
END For(7)
FOR(i = 0;i< n;++1)
Ali] = TmpArray[i];

/A is array of MaxSize elements, which need to be sorted from left to right position, M // is the number of processors, which
will sort elements of array in parallel, inter is degree // of interleaving.

Sort Individual elements in the partitioned array with
starting position as I and end position till factor or
factor + 1, each element placed with “inter” positions

Algorithm of insertion sort is modified so that each element is placed with “inter” positions next to previous element

FOR (P = i+ inter, count = 1; count < N, P <= right; P = P + inter, ++count)

FOR (j = P; j >=1 && j — inter >=i && A[j — inter]>Tmp; j = j — inter)

IF((pointer[j] ! = —1) && (TmpArray[i]> A[pointer[j]))

ArcoriTHM 1: Modified algorithms.

does not involve studying algorithmic complexity of new
proposed algorithms, as their complexity is high. It is solely
based on assumption that we have increased CPU power
with high computation rate; only reduced parameter is
memory access time. Moreover, a current study is based
on SimpleScalar simulator, which can be implemented on
SimpleScalar architecture. In addition, as this simulator
simulates system calls to capture memory image, there are
some system calls that are not allowed by simulator, which

leads to inhibit the use of certain advanced system features.
Furthermore, we cannot implement multiple processors on
a single benchmark as required by our problem statement.

4. Architecture of Memory Map Simulator

The target architecture is a shared memory architecture
for a multiprocessor system [27]. The platform consists of
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FIGURE 5: Proposed simulator architecture.

computation cores and private cache (one for each pro-
cessor) and of a shared memory for interprocessor com-
munication. The multiprocessor platform is homogeneous
and consists of data caches. Figure 5 shows the architectural
template of the multiprocessor simulation platform to be
used in this study. It consists of

(1) a configurable number of processors,
(2) their private cache memories,
(3) a shared memory,

(4) memory controller.

We have implemented different features in this multipro-
cessor memory simulator. These features are discussed as
follows.

We have used physical cache addressing model, that
is, physical address is used to map cache address. Direct
addressing scheme is used to map cache block to memory
block. Different processors use shared memory to interact
among each other. It allows concurrent execution of single
program. It maintains the exclusive access to parts of
memory by different processors to avoid cache coherence and
uses writeback strategy to maintain cache and memory in
synchronization [28].

Multiple processors or threads can concurrently execute
many algorithms without requiring access to memory at
simultaneous parts. However, it allows processes to interact
using shared memory. For example, merge sort requires
processors to sort the data independently, however later these
processors need to merge the data by mutual interaction.
Moreover, meta data related to variable is mapped with
logical address; it facilitates easy access to cache, memory
[29]. It consists of the following attributes:

(1) variable name,
(2) variable type,
(3) variable size,
(4) variable index,
(5) invalid flag,
(6) dirty flag,
(7) processor flag.
We have also implemented some general operations on

memory map multiprocessor simulator, which are described
below.

(1) Memory allocation: memory is represented as an
array of byte stream. It maintains the free memory
pool and used block list. While allocating space for
a variable, it looks for first free pool blocks that
has equaled or of more size. It uses Java Reflection
API for calculation of size of various primitive types
and classes. It converts variables to byte and type
depending upon the type of variable. Variable is
converted to stream of byte array and vice versa.
Moreover, an invalid bit flag has also been set and
reset. Before any value is set into memory, it is
marked as invalid.

(2) Memory query: for any query, it first maps physical
address to logical address. Then processor cache is
checked whether block containing physical address is
present. If yes, it is a hit, and data is read from cache.
If no, it is a miss, then it finds out whether cache block
occupies other memory block or not. If yes, block
needs to be set into memory. Hence, it fetches the
data from memory.

(3) Memory update: in memory update operation, firstly
physical address will be mapped to logical address.
Processor cache is checked for the presence of block
containing physical address. If block is present, it is a
hit, and hence after updating cache, dirty flag is set to
1. If block is absent, it is a miss. Therefore, it finds out
whether cache block occupies other memory block
with dirty flag set, and if yes, block needs to be set
into memory. Dirty flag of replaced block is zero. It
updates the data in memory and brings the block to
cache.

Flowchart shown in Figure 6 describes the whole operation
in detail. It explains the working flow of memory map
multiprocessor simulator.

5. Testbed and Experimental Setup

In the implemented architecture on our memory map
simulator, we have taken private cache [30] associated with
each processor and no shared cache with one shared main
memory as shown in Figure 7. The configuration of private
cache is direct mapped L2 cache of block sizes 32, 64, and 128
bits. We have implemented 2-way set-associative LRU and
FIFO replacement policies. We have taken three benchmarks
to run on this architecture, namely, merge sort, bubble sort
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F1GURE 6: Flowchart showing operations in memory map.
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and average calculation in an array of 30 elements. In the
similar fashion, we implemented and compared memory
interleaving with normal execution of these benchmarks. We
run simulations several times in order to find the correct
value.

We have used Java technology (i.e., JDK 1.6) for sim-
ulations and Microsoft Excel for drawing the graphs on
Windows XP platform. We have used the java.lang.reflect
class to determine the size of various data types. We have
used our custom convert utility package for converting
various data types into bytes and vice versa. Free pool class
acts as memory controller, it looks for free space which
can be allocated and uses Hashmap to provide 2 levels
of hashing:association of variable with memory position

and association of variable with metadata, maintaining
attributes related to variable, cache coherence, process asso-
ciation, and memory. Using CMap class, we map memory
address to cache address using direct addressing mode
technique.

6. Experimental Results

As shown in Figure 7, the basic system configuration consists
of a variable number of cores (each having direct-mapped L2
cache of 32 bits, 64 bits, and 128 bits block sizes), one-shared
memory (256 KB). The interconnect is an AMBA-compliant
communication architecture. The above given architecture
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C: \Program Files\Java\jdk1.6.0-25\bin>java src/MMap
Arrl[0] =1

Arrl[1] =2

Arrl[2] =3

Arrl[3] =4

Arrl[4] =5

Arrl[5] =6

Arrl[6] =7

Arrl[7] =8

Arr1[8] =9

Arrl[9] =10

Arr1[10] =11

Arrl[11] =12

Arrl[12] =13

Arr1[13] =14

Arrl[14] =15

Arrl[15] =16

Arrl[16] =17

Arrl[17] =18

Arrl[18] =19

Arr1[19] =20

Arr1[20] =21

Arrl[21] =22

Arrl[22] = 23

Arrl[23] =24

Arrl[24] =25

Arr1[25] =26

Arr1[26] =27

Arrl[27] =28

Arr1[28] = 29

Arr1[29] =30

Arrl[30] = 31

Number of Access for process 1 is 652
Number of Hits for process 1 is 637
Number of Miss for process 1 is 15

C:\Program Files\Java\jdk1.6.0_25\bin>java src/MMap
Arrl[0] =1

Arrl[1] =2

Arrl[2] =3

Arrl[3] =4

Arrl[4] =5

Arrl[5] =6

Arrl[6] =7

Arrl[7] =8

Arrl[8] =9

Arrl[9] =10

Arrl[10] =11

Arrl[11] =12

Arrl[12] =13

Arrl[13] =14

Arrl[14] =15

Arrl[15] =16

Arrl[16] =17

Arrl[17] =18

Arr1[18] =19

Arrl[19] =20

Arr1[20] =21

Arrl[21] =22

Arrl[22] =23

Arrl[23] =24

Arrl[24] =25

Arrl[25] =26

Arrl[26] =27

Arrl[27] =28

Arrl[28] =29

Arr1[29] =30

Arr1[30] = 31

Number of Access for process 1 is 209
Number of Hits for process 1 is 193
Number of Miss for process 1 is 16
Number of Access for process 2 is 189
Number of Hits for process 2 is 173
Number of Miss for process 2 is 16
Number of Access for process 3 is 169
Number of Hits for process 3 is 153
Number of Miss for process 3 is 16

FIGURE 8: Screen shots for plain and interleaved merge sort execution on memory map simulator block size of 128 bits.

Merge sort-interleaving
80

797

784

777

76

757

Hit ratio (%)

74

737

72

Block size-32 Block size-64 Block size-128

B 2-set LRU
M 2-set FIFO

FiGure 9: Hit ratio of replacement policy comparison—merge

interleaving.

has been implemented on memory map multiprocessor sim-
ulator. Final value has been taken after running simulation
10 times.

Figure 8 shows the screen shots for merge sort exe-
cution on memory map simulator with or without using
interleaving. As seen in the figure, we have taken array
size of 30 elements. The simulator calculates number of
accesses to the memory, number of hits, and number of
misses in the memory when implementing simple merge
sort algorithm. In a similar fashion, memory map evaluates
number of memory accesses, misses, and hits when numbers
of processors are three and memory is interleaved. Later on,
we have evaluated hit ratio and miss ratio,

i : No. of hits
Hit Ratio = ’
No. of memory accesses
. (1)
Miss Ratio = No of miss

No of memory accesses’

as well as in interleaved execution. These two bars (As
shown in Figures 9 and 10) are clearly showing the better
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Merge sort-plain

Hit ratio (%)

Block size-64

Block size-32

Block size-128

B 2-set LRU
MW 2-set FIFO

FiGure 10: Hit ratio of replacement policy comparison—merge sort
plain.

C:\Program Files\Java\jdk1.6.0-25\bin>java src/MMap
Arrl[0] =1

Arrl[1] =2

Arrl[2] =3

Arrl[3] =4

Arrl[4] =5

Arrl[5] =6

Arrl[6] =7

Arrl[7] =8

Arrl[8] =9

Arrl[9] =10

Arr1[10] =11

Arrl[11] =12

Arrl[12] =13

Arrl[13] = 14

Arrl[14] =15

Arrl[15] =16

Arrl[16] =17

Arrl[17] =18

Arr1[18] = 19

Arr1[19] = 20

Arrl[20] =21

Arrl[21] =22

Arrl[22] =23

Arrl[23] =24

Arrl[24] = 25

Arr1[25] = 26

Arrl[26] =27

Arrl[27] =28

Arr1[28] =29

Arr1[29] =30

Arr1[30] = 31

Number of Access for process 1 is 958
Number of Hits for process 1 is 928
Number of Miss for process 1 is 30

FIGURE 11: Screen shot for bubble sort execution on memory map
simulator with block size of 32 bits.

Journal of Electrical and Computer Engineering

Bubble sort

100

Hit ratio (%)

Block size-64

Block size-32

Block size-128

B 2-set LRU
B 2-set FIFO

Ficure 12: Hit ratio of replacement policy comparison—bubble
sort.

TaBLE 1: Experimental results.

Block size 2-Set LRU  2-Set FIFO Algorithm

Block Size-32  78.46% 76.89% Average-Interleaving
Block Size-64  76.03% 78.58% Average-Interleaving
Block Size-128  81.11% 83.46% Average-Interleaving
Block Size-32  70.59% 71.17% Average-Plain
Block Size-64  83.67% 84.42% Average-Plain
Block Size-128  90.92% 91.77% Average-Plain
Block Size-32  75.39% 75.14% Bubble Sort
Block Size-64  85.90% 85.74% Bubble Sort
Block Size-128  92.31% 92.22% Bubble Sort

Block Size-32  76.28% 75.79%  Merge Sort-Interleaving
Block Size-64  74.44% 73.93%  Merge Sort-Interleaving
Block Size-128  79.16% 76.50%  Merge Sort-Interleaving
Block Size-32  67.12% 67.17% Merge Sort-Plain
Block Size-64  80.67% 81.14% Merge Sort-Plain
Block Size-128  88.40% 88.74% Merge Sort-Plain

performance of LRU policy in comparison to FIFO when
using interleaved memory and almost similar behavior in
normal execution. LRU policy reaches 79% hit ratio with
128 bits block size when interleaved in a multiprocessor
environment and almost 90% without interleaving with 128
bits block size.

Bubble sort execution of 30 elements on memory map
simulator is shown in Figure 11. It clearly shows the values of
memory accesses, number of hits, and number of misses. Hit
and miss ratio are evaluated from the above given formulas
and stored in Table 1.

Figure 12 drawn on the basis of results obtained in
Figure 11 shows the comparison of hit ratio in two replace-
ment policies in bubble sort using three different 32-bit,
64-bit, and 128-bit size private caches. The first two bars
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C:\Program Files\Java\jdk1.6.0_25\bin>java src/MMap
Number of Access for process 1 is 137

Number of Hits for process 1 is 129

Number of Miss for process 1 is 8

Average for Numbers is 14.0

C:\Program Files\Java\jdk1.6.0_25\bin>java src/MMap
Number of Access for process 1 is 48
Number of Hits for process 1 is 37
Number of Miss for process 1 is 11
Number of Access for process 2 is 47
Number of Hits for process 2 is 37
Number of Miss for process 2 is 10
Number of Access for process 2 is 50
Number of Hits for process 2 is 40
Number of Miss for process 2 is 10
Average for Numbers is 14.0

FIGURE 13: Screen shot for plain and interleaved execution of average calculation on memory map simulator with block size of 32 bits.

Average interleaving
86

84

82 1

80

78 1

Hit ratio (%)

76

74 A

Block size-32

Block size-64 Block size-128

B 2-set LRU
M 2-set FIFO

FiGurg 14: Hit ratio of replacement policy comparison—average
interleaving.

Average plain

Hit ratio (%)
w
<]

Block size-32

Block size-64 Block size-128

B 2-set LRU
M 2-set FIFO

Figure 15: Hit ratio of replacement policy comparison—average
plain.

are showing the result when cache size is of 32 bits and
LRU outperforms FIFO when compared to cache hit rate.
Similarly, when cache block size increases from 32 bits to 64
bits, cache hit rate increases from 78.3 to 85.9 and further to
92.3 when block size reaches 128 bits. There is no significance
of interleaving in bubble sort due to locality of reference
property.

Figure 13 clearly explains the experimental results for
average calculation of 30 elements array with and without
memory interleaving with 2 processors. Again the results are
tabulated in Table 1. Results obtained for average benchmark
are shown in Figures 14 and 15. Figure 14 shows results for
interleaved memory for calculating average and results of
noninterleaved execution are drawn in Figure 15 when the
cache block sizes are 32 bits, 64 bits, and 128 bits. There is no
increase in cache hit rate for average when not interleaved.
However, when the cache size increases from 32 bits to 128
bits, cache hit significantly increases from 78% to 83% for
interleaved memory. Table 1 stores the value of different
scenarios.

7. Conclusion and Future Work

It has been shown that certain algorithms such as bubble
sort may have little bit better cache performance than
other algorithms such as merge sort due to locality of
reference property. Moreover, LRU proves an outstand-
ing performance in merge sort algorithm using memory
interleaving while FIFO shows better performance in the
calculation of average evaluation. This may be due to the
overhead in keeping track of used pages which is not
required in average calculation. In addition, as cache block
size increases from 32 bits to 128 bits, hit ratio increases
considerably. Sequential processes outperform concurrent
processes using interleaving and private cache, when block
size is more. This simulator is suitable for algorithms where
no two processors need to access the same memory parts
simultaneously. Further, proposed multiprocessor simulator
evaluates similar results as that obtained from SimpleScalar
simulator using memory interleaving proving the legitimacy
of memory map multiprocessor simulator with private cache
architecture.

Significant work remains to be done, as only two cache
replacement algorithms LRU and FIFO are implemented
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till now and some other policies need to be implemented.
Further, currently we are evaluating only hit and miss ratio,
will implement more statistics like energy consumption,
memory traces, and so forth, in future work.
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