
https://doi.org/10.1007/s11036-021-01827-0

Mobile Networks-on-Chip Mapping Algorithms for Optimization
of Latency and Energy Consumption

Arvind Kumar1 · Vivek Kumar Sehgal1 ·Gaurav Dhiman2 · S. Vimal3 · Ashutosh Sharma4 · Sangoh Park5

Accepted: 8 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
With the advancement in technology, it is now possible to integrate hundreds of cores onto single silicon semiconductor
chip or silicon die. In order to provide communication between these cores, large number of resources are required and
it leads to the communication problem in System-on- Chip (SoC), which is solved by introduction of Networks-on-Chip
(NoC). NoC proves to be most efficient in terms of flexibility, scalability and parallelism. In this paper, the proposed
mapping algorithms, Horological Mapping (HorMAP), Rotational Mapping (RtMAP) and Divide and Conquer Mapping
(DACMAP) for mapping of tasks onto cores, basically concentrate on the optimization of latency, queuing time, service
time and energy consumption of topology at constant bandwidth required. The experimental results discussed in this paper
shows the comparison of proposed algorithms with traditional random mapping algorithm. In this paper, 2D mesh topology
with XY routing is considered for the simulation of proposed algorithms.

Keywords System-on-chip · Networks-on-Chip · NoC topology · Mapping algorithm · Energy consumption

1 Introduction

Various semiconductor industries continues to build a kind
of chip that can accommodate a high density of very large-
scale integrated circuits (VLSI). In order to integrate all
essential components such as IP cores, which includes
RAM, counters, interfaces, voltage regulator etc., and
System-on-Chip (SoC) is the methodology to be used for
this purpose [1, 28]. SoC integrates all these components
onto a single chip. In past few years, as number of cores
are increasing, the design structure of SoC becomes more
complex. Due to complexity, SoC design are less flexible
and lead to problem of communication between different
cores. Networks-on-Chip (NoC) was introduced as design
concept for SoC with support of communication, providing
better and powerful solution to connect different intellectual
property IP cores through scalable interconnection network
[2–4, 16]. NoC architecture comprises of interconnected
devices like processors (IP cores, DSP, ASIC etc.), routers,
network interfaces, and communication links or channels

� Gaurav Dhiman
gdhiman0001@gmail.com

Extended author information available on the last page of the article.

as shown in Fig. 1. Communication between different
cores is achieved by sending and receiving packets over
interconnection network. NoC offers flexible mechanism
by supporting different interconnection networks and fault
tolerance. Interconnection network communicates through
various communication protocols which are useful for
enhancing the flexibility of systems when merged with
VLSI [5, 6, 17].

On-chip interconnected networks has benefits over
shared wiring and buses, i.e., high-bandwidth utilization,
less latency, low power consumption, scalability and
flexibility. A lot of research work have been done in
area of NoC in order to optimize the design and, the
main area where designing need to be more focused are
topology generation, scheduling, mapping, routing and
floorplanning [7, 22]. Each area has its own important role
in order to provide better performance of multiprocessor
systems. In this paper, we mainly focused on mapping
of task on 2D NoC architecture. Task mapping comprises
of finding best placement or mapping of task in such a
way so that mapping fulfill set of certain requirements
like less energy consumption, reduction in congestion and
less latency keeping constant bandwidth constraints. There
are two approaches for mapping of tasks on the cores,
i.e. static or dynamic task mapping [8, 9, 23]. Static task
mapping approach states that tasks should be placed at

/ Published online: 18 September 2021

Mobile Networks and Applications (2022) 27:637–651

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-021-01827-0&domain=pdf
http://orcid.org/0000-0002-6343-5197
mailto: gdhiman0001@gmail.com

Fig. 1 NoC Mesh topology architecture

design time. As different tasks are executed at design
time, static mapping uses different composite algorithms
to investigate the SoC resources, which further results in
optimized solutions such as less energy consumption and
efficient performance of multiprocessor SoC. The major
drawback of static mapping approaches are that they do not

Fig. 2 Logical Application Trace graph

have capability to handle newly arrived tasks or application,
which may be loaded during run-time. In order to tackle this
problem in future, dynamic or run-time mapping techniques
are introduced, which can map dynamic tasks onto the
topology at run-time. In this paper, we have proposed
mapping algorithms, HorMAP, RtMAP and DACMAP for
mapping of tasks onto topology having different cores,
so that latency, queuing time, service time and energy
consumption of topology are minimized.

2 Related work

There are various mapping algorithm developed by different
researchers to provide better performance in terms of energy
consumption, latency, thermal behavior, and bandwidth
constraints that should be minimized. Ning et al. [10]
proposed a mapping algorithm named GA-MMAS, which
is combination of Genetic Algorithm (GA) and MAX-MIN
Ant System (MMAS), to optimize energy consumption
for NoC. Jang et al. [11] proposed A3MAP which is
Architecture-Aware Analytic Mapping algorithm that can

Fig. 3 NoC Architecture Characterization Graph

638 Mobile Netw Appl (2022) 27:637–651

be applied to regular mesh architecture with homogeneous
cores as well as on irregular mesh or custom architecture
with heterogeneous cores. At first, author developed an
interconnection matrix for modelling any task graph and
network, then task mapping problem is converted to MIQP
(Mixed Integer Quadratic Programming). As MIQP is
NP-hard problem, then author proposed two heuristics
techniques, a successive relaxation algorithm (A3MAP-SR)
and a genetic algorithm (A3MAP-GA) to reduce amount of
traffic by comparing regular and irregular mesh, and custom
network. Yin et al. [12] proposes an application mapping
technique that incorporates domain knowledge into genetic
algorithm (GA) to minimize the energy consumption of
NoC communication.

The GA is initialized with knowledge on network parti-
tion whereas the genetic crossover operator is guided with
communication demands. The effects of domain knowledge
GA on initial population and genetic operator are analyzed
in terms of the solution quality and convergence speed.
Fen et al. [13] developed GAMR, which is genetic algo-
rithm based mapping and routing technique for 2D regular
Network on chip (NoC) architecture under bandwidth con-
straint. The main focus of author is to minimize energy
consumption and maximize bandwidth link utilization of
the NoC design. GAMR mapping maps IP cores of appli-
cation onto NoC topology which leads to generation of a
deterministic deadlock free minimal routing path for every
communication trace.

Wang explores the bandwidth and latency based IP map-
ping that a set of IP cores onto the tiles of mesh NoC
topology in order to minimize the power consumption
having inter-core communications [14]. By analyzing dif-
ferent applications communication characteristics with their

communication trace graphs, author recognizes two con-
nectivity templates first one is graphs with tightly coupled
vertices and other one with distributed vertices. Author
developed different mapping approaches for these tem-
plates, in which tightly coupled vertices are mapped onto
topology tiles that are very close to one another and in
other case, the distributed vertices are mapped according to
graph partition scheme given by author. Murali et al. [15]
introduced NMAP, a fast algorithm for mapping the cores
on a mesh interconnection architecture under bandwidth
constraints in order to minimizing the average communi-
cation delay. The NMAP algorithm is designed for single
minimum-path routing and also for split traffic routing. The
algorithm is applied to a DSP benchmark design and sim-
ulation was done by author using xpipes library. Yang et
al. [18] divided NoC-based MPSoC design process into
two steps that is, scheduling subtasks to appropriate pro-
cessing elements having appropriate types and quantity
and then mapping those processing elements onto NoC
topology. Particle swarm optimization (PSO) was used to
achieve first step with less amount of task execution time,
less task running and transfer cost. The outcome of first
step was communication diagram and second step shows
least network transmission delay and least resource con-
sumption as well as power consumption. Qianqi et al. [19]
finds the Pareto optimal solutions rather than a single
solution which are usually obtained through scalarization.
Author proposed fault-tolerant routing and improved par-
ticle swarm optimization to meet NoC requests and have
capability of searching solutions. Proposed methods solved
tradeoff between high performance and reliability of the
system. Srinivasan et al. [20] present a technique to recon-
figure the network dynamically among different use-cases

Fig. 4 NoC mapping technique

639Mobile Netw Appl (2022) 27:637–651

and explain the how to integrate Dynamic Voltage and Fre-
quency Scaling (DVS/DFS) techniques with those use-case
centric NoC design. This dynamically reconfiguration of the
NoC along with integration of DVS/DFS schemes result-
ing in less power consumption for NoC systems. Mehran et
al. [21] proposed SPIRAL algorithm for mapping of tasks
on different cores, which minimizes energy consumption.
For implementing SPIRAL algorithm, author used 2D mesh
topology along with XY routing and used MATLAB tool
in order to evaluate the performance of proposed SPIRAL
algorithm. SMAP, a tool for generating random graphs,
was used by researchers. Author have compared SPIRAL

algorithm along with random mapping and genetic map-
ping algorithm to show improved result in terms of energy
consumption. If spiral mapping algorithm is used and there
are very few task to be mapped then also in case of the
spiral mapping the middle core is chosen to map the task and as
themiddle core is farther from the task queue and hence the pro-
cessing gets slower and mapping the task takes lots of
time.

Marcon et al. [24] proposed combination of communica-
tion dependence as well as computation model(CDCM) for
application mapping on regular NoCs. Using CDCM tech-
nique, author estimated 40% reduction in execution time

Fig. 5 Flowchart representation of application mapping onto topology

640 Mobile Netw Appl (2022) 27:637–651

Fig. 6 NoC topology tile

and 20% reduction in energy consumption. Celik has dis-
cussed the effect of mapping of application on NoC with the
help of network traffics that encapsulates the self-similarity
[25]. Author considered queuing delay and packet loss
rate parameters in order to analyze the effect of applica-
tion mapping. Jiawen et al. [26] proposed logistic function
based adaptive genetic algorithm (LFAGA) for energy effi-
cient mapping of application on 3D NoC. The result of
LFAGA is compared with chaos-genetic mapping algo-
rithm (CGMAP), which saves 18.6% of energy consump-
tion. Harmanani proposed an effective routing algorithm,
whose main concern is to minimize blocking in routing
[27]. The author uses 2D mesh topology and benchmarks
like VOPD, DSP filter, LinearP15 in order to simulate the
results.

The rest of the paper is organized as: Section 3 includes
the problem formulation and mathematical representation of
the proposed approach. Section 4 explains existing random
mapping algorithm. Section 5 contains brief explanation
about proposed approach. The experimental results are
included in Section 6 followed by conclusion and future
work mentioned in Section 7.

3 Problem formulation

Before formulating mapping problem, we assume that in
order to perform mapping, we are given with application
that is characterized by set of tasks which performs
scheduling onto NoC cores. For appropriate understanding
of mapping problem strategies, some important definition
need to be explained.

Definition 1 A Logical Application Trace Graph (LATG)
G = (At , Et) is an directed acyclic graph, where at ∈ At

represents task from list of application tasks and ci,j ∈ Et

is an directed arc between application tasks, that shows
communication dependency between tasks at1 and at2.
Logical application trace graph is depicted in Fig. 2. Each
directed edge or arc has one property:-

– v(ci,j) represents volume bits transferred between from
arc ci to cj .

Definition 2 NoC Architecture Characterization Graph
(NACG)G = (T , LT) represents undirected graph as shown

Fig. 7 Latency flow in single
hop

641Mobile Netw Appl (2022) 27:637–651

in Fig. 3, where vertex node ti , tj ∈ T shows tiles in NoC
architecture, whereas lk = li,j = (ti , tj) ∈ LT represents
routing path between ti and tj . Routing path in NACG
consists of two properties :-

– e(li,j) is average energy consumption of task in bits
from ti and tj .

– Lat(li,j) represents average latency of task from ti and
tj .

– band(li,j) is defined as bandwidth of link between ti
and tj .

Definition 3 A mapping function (Ω) is represented as
Ω : At → T , that shows mapping of application tasks from
LATG onto tiles available in NACG, where at ∈ At and
Ω(at) ∈ T and Ω(at) characterizes mapped tile in NACG.
Fig. 4 shows mapping of application tasks onto NoC tile
based architecture.

Finally, the formulation of mapping problem is as
follows:
Given: An LATG G = (At , Et) and NACG G = (T , LT),
Evaluate mapping function Ω : At → T , that maps
task at ∈ At in LATG to tile ti ∈ T in NACG, such
that energy consumption and average latency is minimized.
Fig. 5 represents the flow of mapping of application task
onto topology in order to get optimized results in terms of
energy consumption and average latency.

3.1 Energymodel

The objective function is to minimize the energy consump-
tion, which can be mathematically represented as:

min

⎧
⎨

⎩

∑

∀at∈At

eΩ(at) +
∑

∀ci,j ∈Et

v(ci,j)

×
|RΩ(at1),Ω(at2)|∑

li,j ∈RΩ(at1),Ω(at2)

e(RΩ(at1),Ω(at2))

⎫
⎬

⎭
(1)

Fig. 8 Latency flow in two hop from source to destination core

Fig. 9 Load balancing in random mapping algorithm

satisfying conditions as

∀at ∈ At, ∀Ω(at) ∈ T (2)

∀at1 �= at2, ∀Ω(at1) �= Ω(at2) (3)

The average energy consumption for transferring task
from ti to tj can be represented as follows:

E
ti,tj
task = N×numhops×ELink+N×(numhops−1)×ERouter

(4)

where, ELink and ERouter represents energy consump-
tion of link and energy consumption of router. In order to
compute ERouter , we have to compute energy consump-
tion of buffer (EBuff er), energy consumption of cross-
bar switch (ECrossbar) and energy consumption of arbiter

Fig. 10 Horological mapping algorithm

642 Mobile Netw Appl (2022) 27:637–651

Fig. 11 Load balancing in horological mapping algorithm

(EArbiter). EArbiter is further divided into two parts : (i)
ECrossbar Allocation, energy consumption of switch alloca-
tion and (ii) EV C Allocation, energy consumption of virtual
channel allocation.ELink can be computed as gievn in Eq. 7.
Energy consumption of topology is calculated for all N tasks
is given in Eq. 8.

ERouter = EBuff er + ECrossbar + EArbiter (5)

EArbiter = ECrossbar Allocation + EV C Allocation (6)

ELink = PLink

F req.
(7)

ET otal =
N∑

i=1

Etaski
(8)

Fig. 12 Load balancing in rotational mapping algorithm

3.2 Latencymodel

The mapping function for minimization of average latency
of topology can be mathematically formulated as:

min

⎧
⎨

⎩

∑

∀at∈At

LatΩ(at) +
∑

∀ci,j ∈Et

v(ci,j)

×
|RΩ(at1),Ω(at2)|∑

li,j ∈RΩ(at1),Ω(at2)

Lat (RΩ(at1),Ω(at2))

⎫
⎬

⎭
(9)

satisfying conditions as

∀at ∈ At, ∀Ω(at) ∈ T (10)

∀at1 �= at2, ∀Ω(at1) �= Ω(at2) (11)

The latency from tile ti to tile tj can be computed
according to Eq. 12. The overall latency for all N tasks is
calculated by Eq. 13.

Lat
ti ,tj
task = N ×numhops ×LatLink +N ×(numhops −1)×LatRouter

(12)

LatT otal =
N∑

i=1

Lattaski
(13)

Figure 6 shows the 3 × 3 NoC topology in the form of
tile, where each tile consist of cores (that can be IP core,
DSP core etc.) and routers (consists of crossbar switch,
routing algorithm and arbitration logic). Latency of single
task to be transferred across channel are Dinjection and
Dejection respectively and latency of a task across router
are Dswitch, Drouting and Dwaiting . In Fig. 7, we have
considered link injection latency (Dinjection), latency of first
router (Dswitch + Drouting), inter-tile latency (Dwaiting)
which is defined as how long, the task takes to arrive to the
destination from time the first bit is sent out from source for
a single hop, second router latency (Drouting+Dswitch), and
link ejection latency (Dejection). Latency flow of single hop
can be calculated according to Eq. 14:

Latency single hop = Dinjection + (Drouting + Dswitch) + Dwaiting

+(Drouting + Dswitch) + Dejection (14)

In order to calculate the latency from source to
destination core, we have assumed that as task arrives to
destination core, then the task is immediately accessible
for processing by destination core. In Fig. 8, the latency
involved, is considered from source IP core to destination
IP core passing through routers are Rsource, Rintermediate

and RDestination. The latency of task having two hops
between source and destination core (Lsource→destination) is
calculated as given in Eq. 15, where Wsource, Wdestination

and Wintermediate represents the waiting time in routers.

643Mobile Netw Appl (2022) 27:637–651

Fig. 13 Grid Divison into sub-grid

The average latency of task (L) can be calculated in
Eq. 16, where Psource→destination is probability of task to be
generated.

Lsource→destination = Dinjection + (Drouting + Wsource
inj→port + Dswitch)

+Dwaiting + (Drouting + Wintermediate
port→port + Dswitch)

+Dwaiting + (Drouting + Wdestination
port→ejc + Dswitch)

+Dejection + (m − 1)(Dswitch + Dwaiting) (15)

Fig. 14 Divide and conquer mapping algorithm

Fig. 15 Load balancing in divide and conquer mapping algorithm

L =
∑

source

∑

destination

Psource→destination × Lsource→destination

(16)

4 Existing randommapping algorithm

There are many issues involved using random mapping algorithm,
such as load balancing as shown in Fig. 9, latency, service time
and queuing time are not handled by random algorithm for NoC.
In random algorithm, tasks are mapped on the cores randomly as
discussed in Algorithm 1 . The worst case of the algorithm is,
when every time the same core is chosen for mapping the task.
As all tasks are mapped on the same core, so, the new tasks to be
mapped will remain in the queue and wait for an infinite period
of time till the core is not ready to process the new task. Once
the core is available task is mapped on the core. In the best case

Fig. 16 Average latency (in ns) of mapping algorithms in mesh
topology

644 Mobile Netw Appl (2022) 27:637–651

of random algorithm for mapping, the randomly chosen cores will
have an equal probability to be chosen, and task will be mapped
on to these cores uniformly. There are rare chances to obtain the
best case of the random algorithm. Let us consider a scenario
that every time the last core of the grid is chosen to map the
tasks. If such a case exist then latency involved to map the tasks
on the cores will be very high. So mapping the task on to the
cores in case of random algorithm consumes a large amount of
latency, service time, queuing time and the energy consumption.
To improve the performance of the mapping algorithm in this
paper, the horological, rotational and divide and conquer mapping
algorithms are proposed.

Fig. 17 Queuing Time of mesh topology (a) random mapping (b) horological mapping (c) rotational mapping (d) divide and conquer mapping

645Mobile Netw Appl (2022) 27:637–651

5 Proposed approach

In this section the three proposed approaches are discussed which
proves to be better than the existing random mapping algorithm
in terms of latency, load balancing and energy consumption. First
approach discussed is horological mapping algorithm, in which
the cores are visited one by one guaranteeing load balancing over
the cores of the grid. Second approach is the rotational mapping
algorithm. In this the task are assigned to the cores in rotation one
by one guaranteeing the least latency involved during mapping of
tasks. The third algorithm proposed in the paper is the divide and
conquer mapping algorithm, which provides an assurity of load
balancing on the grid.

5.1 Horological algorithm

As the name suggest, in this mapping algorithm the tasks are
mapped horologically on the cores one by one. As the task are
assigned to the cores, then the core will process these task, and
after the processing of task, the core gets ready to execute the
next task in the queue. In this, the cores are allotted an core id
horologically. The first task in the queue is allocated to the first
core, second task to the second core and so on. When the task on
some core is completed, then a new task is allocated to this core.
This algorithm produces good results in terms of load balancing on
the cores, but the accessing time of the core increases as we moves
towards the last core, with the last core having the maximum
access time. So the accessing time of the cores is increased moving
towards the last core. Fig. 10 shows the allocation of task on 8 ×
8 mesh topology. For an instance, suppose there are 8 tasks which
are to be mapped on the cores then even if the core with core id
8 is closer to the queue the task will not be assigned to it, instead
tasks will be assigned to the cores having core id 0 to core id 7.
Horological mapping proves to be better than the random mapping
in terms of load balancing as shown in Fig. 11, queuing time
and service time. It also resolve the issue of bottleneck existing
in random mapping algorithm. Hence the horological mapping
algorithm proves to be better over the random mapping algorithm.
Horological mapping algorithm is given in Algorithm 2.

Fig. 18 Total queuing time (in ns) of mapping algorithms in mesh
topology

5.2 Rotational mapping algorithm

Rotational mapping algorithm is proposed in this paper in order to
minimize the latency involved during the mapping of the task on to
the core, but there is no assurity of load balancing in this mapping
algorithm as shown in Fig. 12. In rotational algorithm, task are
mapped on the cores in the rotational manner. The basic concern of
the proposed approach is to reduce the amount of time required for
mapping task on the core. In order to achieve the goal, it is required
to map the task on the core which is placed nearest to the task
allocation queue, so whenever task has to be mapped, it is mapped
on to the core which is nearest to the allocation queue and is in
ready state, i.e. it is ready to accept the task for execution. For this
purpose, the ports of routers are considered to be very important. In
rotational, task to be mapped is routed on to the elements (routers
or cores) attached to the ports of the router. For each router starting
from port zero to the last port, task are passed to each port in an
sequential order. Once all the ports are visited then this procedure
repeats from first port of the router to the last port. In this way the
algorithm is capable of mapping multiple task on the cores till the
task allocation queue is not empty. As the procedure repeats for
each router considering all the ports every time hence the algorithm
is called as rotational algorithm. Rotational mapping algorithm is
given in Algorithm 3.

646 Mobile Netw Appl (2022) 27:637–651

Fig. 19 Service Time of mesh topology (a) random mapping (b) horological mapping (c) rotational mapping (d) divide and conquer mapping

5.3 Divide and conquer mapping algorithm

In divide and conquer mapping algorithm, the main emphasis
is on load balancing on n × n mesh topology. As the name
suggest, in this algorithm first 2D Mesh topology is divided
vertically into two (nearly equal) parts and then the division
is carried out horizontally. After each vertical and horizontal
division the topology is divided into 4 sub-grids of nearly equal
dimensions(rows × columns) as shown in Fig. 13. Different tasks
from task list, which are maintained in queue, are being mapped
onto sub-grids in such a way that load is equally balanced on
the mesh topology. For this purpose each time the task has to be
mapped, the grids and sub-grids are further divided both vertically
and horizontally. The task is assigned to the core belonging to

that sub-grid in which there are least number of task mapped. In
this way the task mapped on the cores of sub-grid are balanced,
hence there is an assurity of load balancing during the mapping
of the task to the cores. For an instance let us consider a simple
scenario for mapping task on the 8 × 8 mesh topology, first
task from task list is mapped onto first core of first sub-grids.
Second task from task list, is mapped onto 5th core belonging to
second sub-grids. In the similar way, 3rd task mapped onto 33th
core belonging to third sub-grids and next task mapped onto 37th
core which belongs to fourth sub-grids. So in this way, all task
is mapped onto mesh topology as shown in Fig. 14, assuring the
researcher to get a NoC architecture with complete load balancing
in Fig. 15. Divide and conquer mapping algorithm is given in
Algorithm 4.

647Mobile Netw Appl (2022) 27:637–651

6 Experimental results

For implementation purpose, we have used OMNET++ simulator
along with the use of in-built mapping package. In order to
implement proposed mapping algorithms, we have considered
the 2-dimensional 8 × 8 mesh topology for NoC. Initially,
the application tasks are maintained in the task list, which can
be the queued. From that task list, tasks are mapped on the
cores, following the proposed mapping algorithms as mentioned
in section 4. We have perform simulation varying the number
of tasks from 64 to 128 and compared the results in terms
of latency, queuing time, service time and energy consumption.
Fig. 16 shows average latency of proposed mapping algorithms for
mesh topology, and results are compared with random mapping
algorithm.

Figure 17 gives graphical analysis of queuing time for random
and proposed mapping algorithms, and comparison of total

Fig. 20 Total service time (in ns) of mapping algorithms in mesh
topology

Table 1 Energy of router (in pJ) at different load

S. No. Load Energy of Router (in pJ)

1 0.2 16.8

2 0.4 27.138

3 0.6 37.46

4 0.8 47.78

5 1 58.09

queuing time is given in Fig. 18. Results obtained for service time
required by each task, using OMNET++ simulator, are shown in
Fig. 19. Best mapping algorithm, in terms of total service time can
be obtained by the comparative analysis of mapping algorithms as
shown in Fig. 20.

In order to compute the energy consumption of topology, we
have used Orion 2.0 simulator. With the help of orion simulator,
we calculate the energy consumption of link represented as ELink

and energy consumption of router represented as ERouter . Table 1
shows the energy of router at different loads. Table 2 represents the
energy consumption of link at different link length and different
load. With the help of Eq. 4, we compute the energy consumption
of individual core as well as energy consumption of topology as
shown in Fig. 21 -22. Table 3 shows the comparison of proposed
and random mapping algorithm in terms of average latency, total
queuing time and total service time for mesh topology.

7 Conclusion and future work

In this paper, we have proposed the mapping algorithms for
tile based NoC mesh topology that maps application tasks onto
NoC tiles and develops a function such that energy consumption
and average latency is minimized satisfying some performance
constraints.The processing tiles with high computational power in
big little approach are mostly used in ARM based SoC like Apple’s
M1 processor. These task mapping algorithms can be dynamically
applied to these clusters of processing cores with optimized QoS.
As future work, our main emphasis is to apply these mapping
algorithms as machine learning blended algorithms over different
NoC topologies dynamically. The possible further extension may
be the formulation of an efficient mapping algorithm for different
3D NoC tile based architectures.

Table 2 Energy of link (in pJ) at different load and link length (in mm)

Link Length

Load 1 mm 2 mm 3 mm 4 mm 5 mm 6 mm

0.2 7.65 15.31 22.97 30.63 38.28 45.94

0.4 12.10 24.20 36.30 48.40 60.50 72.60

0.6 16.54 33.08 49.62 66.17 82.71 99.20

0.8 20.98 41.97 62.95 83.94 104.93 125.91

1 25.42 50.085 76.28 101.71 127.14 152.57

648 Mobile Netw Appl (2022) 27:637–651

Fig. 21 Energy consumption of tasks in (a) random mapping (b) horological mapping (c) rotational mapping (d) divide and conquer mapping

Table 3 Comparison of average Latency, total queuing time and total service time of mapping algorithms (in ns)

S. No. Mapping algorithms Average latency Total queuing time Total service time

1 Random 565.31 797.82 411.81

2 Horological 546.78 732.33 252.05

3 Rotational 466.95 602.42 202.11

4 Divide and Conquer 526.78 687.17 241.29

649Mobile Netw Appl (2022) 27:637–651

Fig. 22 Comparison of energy consumption (in pJ) of mapping
algorithms

References

1. Saleh R, Wilton S, Mirabbasi S, Hu A, Greenstreet M, Lemieux G,
Pande PP, Grecu C, Ivanov A (2006) System-on-chip: reuse and
integration. Proceedings of the IEEE 94(6):1050-1069

2. Dafali R, Diguet JP, Sevaux M (2008) Key research issues
for reconfigurable network-on-chip, international conference on
reconfigurable computing and FPGAs (ReConFig) Cancun, pp
181–186

3. Bjerregaard T, Mahadevan S (2006) A survey of research and
practices of network-on-Chip. ACM Computing Surveys 1(1):1–
51

4. Liu S, Wang S, Liu X, Gandomi AmirH., Daneshmand M,
Muhammad K, de Albuquerque VHC (2021) Human memory
update strategy: a multi-layer template update mechanism for
remote visual monitoring. IEEE Trans Multimed, pp. 1–11

5. Pavlidis VF, Friedman EG (2007) 3-D Topologies for networks-
on-chip. IEEE Trans Very Large Scale Integr (VLSI) Syst
15(10):1081–1090

6. Benini L, De Micheli G (2002) Networks on chip: A new SoC
paradigm. IEEE Computer 35(1):70–78

7. Marculescu R, Hu J, Ogras UY (2005) Key research problems
in NoC design: a holistic perspective. Third IEEE/ACM/IFIP
international conference on hardware/software codesign and
system synthesis (CODES+ISSS), Jersey City, NJ, USA, pp 69–74

8. Carvalho E, Marcon C, Calazans N, Moraes F (2009) Evaluation
of static and dynamic task mapping algorithms in NoC based
MPSoCs. International symposium on system-on-chip, tampere,
pp 87–90

9. Liu S, Wang S, Liu X, Lin Chin-Teng, Lv Z (2020) Fuzzy
detection aided real-time and robust visual tracking under complex
environments. IEEE Trans Fuzzy Syst 29(1):90–102

10. Wu N, Mu Y, Ge F (2012) GA-MMAS: an energy- and latency-
aware mapping algorithm for 2D network-on-chip. IAENG Int J
Comput Sci 39(1)

11. Jang W, Pan DZ (2012) A3MAP: Architecture-Aware Analytic
Mapping for Networks-on-Chip. ACM Trans Des Autom Electron
Sys 17(3):1 - 22. Article No. 26

12. Tei YZ, Hau YW, Shaikh-Husin N, Marsono MN (2014) Net-
work partitioning domain knowledge multiobjective application
mapping for large-scale network-on-chip. Appl Comput Intell Soft
Comput 2014:1–11

13. Fen GE, Ning WU (2010) Genetic algorithm based mapping
and routing approach for network on chip architectures. Chin J
Electron 19(1):91–96

14. Wang X, Yang M, Jiang Y, Liu P (2009) Power-aware mapping
for network-on-chip architectures under bandwidth and latency
constraints. 4th International conference on embedded and
multimedia computing, Jeju, pp. 1–6

15. Murali S, De Micheli G (2004) Bandwidth-constrained mapping
of cores onto NoC architectures, design, automation and test in
Europe conference and exhibition 2:896–901

16. Oliva D, Esquivel-Torres S, Hinojosa S, Pérez-Cisneros M.,
Osuna-Enciso V, Ortega-Sánchez N, Dhiman G, Heidari AA
(2021) Opposition-based moth swarm algorithm. Expert Sys Appl
184:115481

17. Subramanian S, Sankaralingam C, Dhiman G, Singh H (2021)
Hysteretic controlled inter-leaved buck-converter based AC-DC
micro-grid system with enhanced response. Materials Today:
Proceedings

18. Yang Peng-Fei, Wang Q (2014) Effective task scheduling and IP
mapping algorithm for heterogeneous NoC-Based MPSoC. Math
Problems Eng 2014:1–8

19. Le Q, Yang G, Hung WNN, Song X, Zhang X (2015) Pareto
optimal mapping for tile-based network-on-chip under reliability
constraints. Int J Comput Mathematics 92(1):41–58

20. Murali S, Coenen M, Radulescu A, Goossens K, De Micheli G
(2006) Mapping and configuration methods for multi-use-case
networks on chips. Asia and South Pacific conference on design
automation, Yokohama

21. Mehran A, Saeidi S, Khademzadeh A, Afzali-Kusha A (2007)
Spiral : a heuristic mapping algorithm for network on chip. IEICE
Electronic Express 4(15):478–484

22. Haque AB, Bhushan B, Dhiman G (2021) Conceptualizing smart
city applications: Requirements, architecture, security issues, and
emerging trends. Expert Systems

23. Kothai G, Poovammal E, Dhiman G, Ramana K, Sharma A,
AlZain MA, Gaba GS, Masud M (2021) A new hybrid deep
learning algorithm for prediction of wide traffic congestion in
smart cities. Wirel Commun Mob Comput 2021

24. Marcon C, Calazans N, Moraes F, Susin A, Reis T, Hessel F
(2005) Exploring NoC mapping strategies: an energy and timing
aware technique, design automation and test in Europe. 1:502–507

25. Celik C, Bazlamacci CF (2012) Effect of application mapping on
network-on-chip performance. 20th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing
(PDP) Garching, pp 465–472

26. Jiawen W, Li LI, Zhongfeng W, Rong Z, Yuang Z (2014) Energy-
efficient mapping for 3D NoC using logistic function based
adaptive genetic algorithms. Chin J Electron 23(2):254–262

27. Harmanani HM, Farah R (2008) A method for efficient mapping
and reliable routing for NoC architectures with minimum
bandwidth and area. Circuits and systems and TAISA conference,
Montreal, QC, pp 29–32

28. Houssein EH, Hussain K, Abualigah L, Elaziz MA, Alomoush W,
Dhiman G, Djenouri Y, Cuevas E (2021) An improved opposition-
based marine predators algorithm for global optimization and mul-
tilevel thresholding image segmentation. Knowl-Based Systems:
107348

650 Mobile Netw Appl (2022) 27:637–651

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Affiliations

Arvind Kumar1 · Vivek Kumar Sehgal1 · Gaurav Dhiman2 · S. Vimal3 · Ashutosh Sharma4 · Sangoh Park5

Arvind Kumar
er.arvindkumar1989@gmail.com

Vivek Kumar Sehgal
vivekseh@ieee.org

S. Vimal
svimalphd@gmail.com

Ashutosh Sharma
sharmaashutosh1326@gmail.com

Sangoh Park
sopark@cau.ac.kr

1 Department of Computer Science and Engineering, Jaypee
University of Information Technology, Waknaghat, India

2 Department of Computer Science, Government Bikram College of
Commerce, Patiala, India

3 Department of Computer Science and Engineering, Ramco
Institute of Technology, Tamil Nadu, India

4 Southern Federal University, Rostov-on-Don, Russia
5 School of Computer Science, Engineering, Chung-Ang University,

Seoul, South Korea

651Mobile Netw Appl (2022) 27:637–651

http://orcid.org/0000-0002-6343-5197
mailto: er.arvindkumar1989@gmail.com
mailto: vivekseh@ieee.org
mailto: svimalphd@gmail.com
mailto: sharmaashutosh1326@gmail.com
mailto: sopark@cau.ac.kr

	Mobile Networks-on-Chip Mapping Algorithms for Optimization of Latency and Energy Consumption
	Abstract
	Introduction
	Related work
	Problem formulation
	Energy model
	Latency model

	Existing random mapping algorithm
	Proposed approach
	Horological algorithm
	Rotational mapping algorithm
	Divide and conquer mapping algorithm

	Experimental results
	Conclusion and future work
	References
	Affiliations

