
Research Article
Performance Evaluation of New Joint EDF-RM Scheduling
Algorithm for Real Time Distributed System

Rashmi Sharma and Nitin

Department of Computer Science & Engineering and Information & Communication Technology,
Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India

Correspondence should be addressed to Nitin; delnitin@ieee.org

Received 27 May 2013; Accepted 25 November 2013; Published 22 January 2014

Academic Editor: WaiKeung Wong

Copyright © 2014 R. Sharma and Nitin.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In Real Time System, the achievement of deadline is the main target of every scheduling algorithm. Earliest Deadline First (EDF),
Rate Monotonic (RM), and least Laxity First are some renowned algorithms that work well in their own context. As we know,
there is a very common problem Domino’s effect in EDF that is generated due to overloading condition (EDF is not working well
in overloading situation). Similarly, performance of RM is degraded in underloading condition. We can say that both algorithms
are complements of each other. Deadline missing in both events happens because of their utilization bounding strategy. Therefore,
in this paper we are proposing a new scheduling algorithm that carries through the drawback of both existing algorithms. Joint
EDF-RM scheduling algorithm is implemented in global scheduler that permits task migration mechanism in between processors
in the system. In order to check the improved behavior of proposed algorithm we perform simulation. Results are achieved and
evaluated in terms of Success Ratio (SR), Average CPUUtilization (ECU), Failure Ratio (FR), andMaximumTardiness parameters.
In the end, the results are compared with the existing (EDF, RM, and D R EDF) algorithms. It has been shown that the proposed
algorithm performs better during overloading condition as well in underloading condition.

1. Introduction and Motivation

Real TimeDistributed System is a distributed systemwith real
time properties. We can say that RTDS is a combination of
RTS and distributed system (Figure 1). Properties of real time
tasks are applied on the distributed system or concept of a
distributed system is implemented on RTS. The following is
the first appearance of two main components of RTDS.

1.1. Real Time System (RTS). RTS is a system in which exe-
cution of tasks has some time restrictions (deadline) [1–3].
Based on the execution of real time task RTS falls into the
following categories.

(i) Hard RTS. Task execution by assigning deadline is
restrictive. Missing deadline will produce incurable
results for the entire system [4].

(ii) SoftRTS.Althoughmissing deadline is not enviable in
RTS, but in soft RTS tasks could miss some deadline
that will not affect the working of system [5].

(iii) Firm RTS. If tasks complete their execution before the
deadline, they gain more rewards [4, 6]. It is a special
type of soft RTS.

EDF, RM, and Least Laxity First are some basic schedul-
ing algorithms that execute real time tasks on the basis of their
deadline, interarrival period, tardiness, and so forth. Every
scheduling algorithm is having some drawbacks, for example,
EDF is not functioningwell in overloading condition andRM
in underloading condition [7, 8].

1.2. Distributed System (DS). Distributed system is an
arrangement of several processors/nodes followed by some
interconnection topologies. The distribution of load to var-
ious processors increases the performance of the entire
system. In DS, on the basis of nodes utilization load is
balanced in between processors [9–11]. Task migration and
duplication are two methodologies that help in balancing the
processor load.

Hindawi Publishing Corporation
Journal of Engineering
Volume 2014, Article ID 485361, 13 pages
http://dx.doi.org/10.1155/2014/485361

2 Journal of Engineering

Distributed
system

Real time
uniprocessor 5

Real time
uniprocessor 4

Real time
uniprocessor 6

Real time
uniprocessor 3

Real time
uniprocessor 1

Real time
uniprocessor 2

Figure 1: Real time distributed system.

Node 1 Node 2 Node 3

Taska

Taskb

Taskc

Taskd

Taske

Taskf

Taskg

Taskh

Taski

Taskj

Taskk

Taskl

(a)

Node 1 Node 2 Node 3

New task

Waiting task queue

Taska

Taskg

Taskh Taski

Taskm

Taskk

Taskp

(b)

Figure 2: Distributed system scheduling.

(i) Load Migration. In order to balance the load of DS
task migration methodology relocates the victim task
from one processor (source) to another processor (des-
tination).This technique can be applied to dependent
(DAG) as well as independent tasks [12, 13].

(ii) Task Duplication. Task duplication method is given on
the basis of computation to communication ratio (CCR)
in between processors.This technique is mostly appli-
cable on dependent tasks (DAG) in order to balance
the load as well as minimize the execution cost of
complete DAG [14, 15].

Moreover, Tasks in a distributed system are assigned to
processors by using the following schedulers (Figure 2).

(i) Partitioned Scheduler.Tasks aremapped to processors
deterministically for execution. Scheduler statically
assigns tasks to processors and migration of task
instance is prohibited here [16, 17].

(ii) Global Scheduler. All tasks are kept in a global queue
fromwhere tasks to other processors will be assigned for
the death penalty.This scheduler dynamically assigns
tasks to nodes and allows task migration in between
processors [17, 18]. Global scheduler is appealing in
such systems where average as well as the worst
case response time (WCRT) is important. In queuing

theory, single queue scheduling generates healthier
average response time as compared to queue per
processing scheduler [17, 19]. Hence, in RTDS this
scheduler is superior to partitioned scheduler.

In this paper we have explained a new joint EDF-RM
scheduling algorithm which behaves optimally in both cir-
cumstances (underloading as well as overloading). Here,
the utilization bound of RM is used to boundary limit
of the global queue instead of processors 𝜌UB and tasks
will be assigned to randomly selected processors. Moreover,
for the execution of tasks the EDF scheduling is used on
every processor. Our proposed algorithm is divided into the
following two modules:

(a) real time job assignment in distributed system (using
global scheduler);

(b) real time task execution on allotted processors of
distributed system (including task migration).

Reason behindusingRMutilization bound is to safeguard
our system from overloading condition. Additionally, in
order to deal dynamically with tasks the EDF scheduling
algorithm is implemented. Load balancing in RTDS is availed
by using the global scheduler because task migration is
permissible in this scheduler.

Journal of Engineering 3

Table 1: Symbols and definitions.

Symbols Definition
𝑇 Task-set
𝜏arrival Task arrival time
𝜏period Interarrival period of task
𝜏dline Task deadline
𝜏utilization Per task utilization
𝜏priority Task priority
𝜏𝑝,𝑎 Task 𝑎 of 𝑝 processor
𝜌utilization Per processor utilization
𝜌UB Processor upper bound
𝐸𝜌utilization Efficient processor utilization
SR Success Ratio
FR Failure Ratio
MR Migration ratio
𝐴 preemption Average number of preemptions
𝐵𝑄 Boundary limit of global task queue
TST Total time of scheduling
tard𝜏𝑖 Tardiness of given task

The remainder of the paper is organized as follows.
Existing real time scheduling algorithms have been discussed
in Section 2. Section 3 explains the proposed joint EDF-
RM scheduling algorithm. In Section 4, performances of
EDF, RM, D O EDF, and D R EDF [8] along with proposed
algorithmhave been analyzedwith simulation results. Finally,
the conclusion is presented in Section 5.

Before moving towards the next section, let us have a
glance on the symbols that are utilized in the entire compo-
sition. Table 1 demonstrates these symbols and their denota-
tion.

2. Preliminaries and Background

Before giving the elucidation of our proposed work we would
like to enlighten scheduling algorithms associated with our
work. This paper uses RM and EDF scheduling algorithms
together and tries to resolve the downside of EDF (Domino’s
effect) and RM as well. As we know that in distributed system
load balancing is an important issue. Hence, proposed algo-
rithm also amplifies the working capability in overloading or
underloading situations. These above stated two situations
(loading conditions) are checked by recalculations of per
task/processor utilization.

2.1. Real Time Schedulers. Tasks having real time properties
and scheduled on RTS are real time tasks. Scheduling is done
by two types of scheduler modules.

(i) Dynamic Scheduler.Dynamic scheduler assigns prior-
ities to tasks at run time. This scheduler reevaluates
the information like priorities, resource availability
after the arrival of current task. Due to the dynamism
of tasks priority, already running tasks have to be
preempted by the arrival of new task [20].

(ii) Static Scheduler. Under this scheduler, priorities of
tasks are predefined or we can say static. It cannot be
altered by the arrival of new tasks. Priority of 𝜏𝑚 >
𝜏𝑛, where 𝑚 < 𝑛. Generally, this scheduler works
on dependent tasks because communication cost in
between tasks is reduced [20].

Let us consider that 𝑇 is a set of 𝑛 real time tasks 𝑇 =
{𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5, . . . , 𝜏𝑛} arriving on processor 𝜌. Hence,

𝜏utilization =
𝜏wcet
𝜏period
,

𝜌utilization =
𝑛

∑

𝑖=1

𝜏𝑖 utilization.

(1)

RTS works with dynamic as well as static tasks. The
EDF scheduling algorithm works well with dynamic and RM
schedule static tasks efficiently. We are dealing with RTDS in
this paper; therefore we consider the case of overloading in
each case.

2.2. Earliest Deadline First Scheduling Algorithm. EDF is a
dynamic scheduler that follows the principle: the nearer the
deadline the higher the priority of task [21, 22]. It assigns
priorities to tasks dynamically. Consider

𝜏priority ∝
1

𝜏dline
. (2)

Before assigning the priorities to the task, scheduler first
checks the acceptance test by inspecting the utilization value
of task as well as processor. Here task-set 𝑇 is schedulable

if 𝜌utilization ≤ 1. (3)

Let us consider the following examples that explain the
behavior of EDF in overloading case in both single and
multiple processors (distributed computing).

2.2.1. Example of EDF inUniprocessor. Aswe havementioned
in Algorithm 1 and Table 2 the arrival of new tasks preempts
already running tasks. In Figure 3 the deadline of task 𝜏3 is
shorter than the task 𝜏2 and therefore newly arrived task 𝜏3
preempts 𝜏2 task because 𝜏2 task has missed the deadline.

2.2.2. Example of EDF in Distributed System. In case of
distributed system, overloaded processor can migrate the
victim task to other processors (destination processor) [23].

According to Table 3 and Figure 4, 𝜏utilization is 0.45 which
qualifies the acceptance test of schedulability but due to task
utilization 𝜌utilization becomes 1.15 which is greater than 1.
Due to the arrival of this third task 𝜌1 becomes overloaded
and future tasks will also miss their deadline. Therefore, by
applying the migration terminology scheduler checks per
processor utilization andmigrate victim task to the processor
having a time slot for its execution (𝜌utilization < 1). In the
above example 𝜌2 has available time slot and its utilization is
also less than 1. In distributed system there is somemigration
cost 𝛼, that is, time taken by task to migrate from one
processor (source) to another (destination).

4 Journal of Engineering

Table 2: Arrival time, wcet, period, and deadline of tasks 𝜏1, 𝜏2, and 𝜏3.

Tasks Estimate arrival time Computation time (wcet) Period Deadline 𝜏utilization =
𝜏wcet

𝜏period

𝜏1 0 1 3 3 0.33
𝜏2 1 2 5 5 0.4
𝜏3 3 1.8 4 4 0.45

Table 3: Arrival time, wcet, period, deadline, and node for assignment of tasks 𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5, and 𝜏6.

Tasks Arrival time Computation time (wcet) Period Deadline 𝜏utilization =
𝜏wcet

𝜏period
Processor

𝜏1 0 1 3 3 0.33 𝜌1

𝜏2 1 2 5 5 0.4 𝜌1

𝜏3 3 1.8 4 4 0.45 𝜌1

𝜏4 5 3 6 6 0.5 𝜌2

𝜏5 1 0.5 2 2 0.25 𝜌3

𝜏6 2 2 4 4 0.5 𝜌3

EDF scheduling algorithm in uniprocessor
BEGIN
(1) If 𝜏utilization ≤ 1
(2) If 𝜌utilization ≤ 1
(3) The task is schedulable and

(4) assign 𝜏priority of task on given processor
(5) Else task is non-schedulable
END
EDF scheduling algorithm in distributed system
BEGIN
(1) If 𝜏utilization ≤ 1
(2) If 𝜌utilization ≤ 1
(3) then task is schedulable and assign 𝜏priority of task

on given processor
(4) Else migrate the task
(5) Else task is non-schedulable
END

Algorithm 1

2.3. Rate Monotonic Scheduling Algorithm. RM scheduling
algorithm comes under static scheduler (static priority) and
follows the principle: the shorter the interarrival period the
higher the priority of task [23, 24]:

𝜏priority ∝
1

𝜏period
. (4)

Before assigning the priorities to the task, scheduler first
checks the acceptance test by inspecting the utilization value
of task as well as processor. For this algorithm 𝑇 task-set is
schedulable on a given processor [25]

iff 𝜌UB ≤ 𝑛 (2
1/𝑛
− 1) , (5)

where 𝑛 is total number of tasks

2.3.1. Example of RM in Uniprocessor. Now next is the
implementation of RM scheduling algorithm on the data
of Table 2. In overloading condition neither EDF nor RM
performs well [7].

The upper bound of RM represents schedulability bound
of the number of tasks, and as 𝑛 increases, it decreases with 𝑛
(number of jobs). While we compute 𝜌UB for any number of
tasks (as the number of processors increases towards infinity),
the value of 𝜌UB remains 0.6931472035974151.Thismeans that

Lim
𝑛→∞
𝑛 (
𝑛
√2 − 1) = ln 2 ≈ 0.693,

𝜏1 utilization =
𝜏wcet
𝜏period
=
1

3
= 0.33,

𝜏2 utilization = 0.4, 𝜏3 utilization = 0.45,

𝜌utilization =
2

∑

𝑖=1

𝜏𝑖 utilization = 0.33 + 0.4 = 0.73,

(6)

0.693 ≤ 𝜌utilization ≤ 1 but after the arrival of 3rd task
𝜌utilization becomes 1.15 which is greater than 1. Acceptance test
of RM shows that any task-set is able to schedule through
if 𝜌utilization ≤ 0.693, but not all tasks can be scheduled if
0.693 < 𝜌UB ≤ 1 [7]. Therefore, we can say that all tasks may
or may not be scheduled by RM.

In addition, in case of RM, tasks having the least priority
miss the deadline due to preemption of higher priority tasks
in overloading case, since RM assigns priorities statically
(priority of task will not change throughout the execution
process) on the basis of 𝜏period. In Figure 5 tasks priority is in
order 𝜏1 > 𝜏2 > 𝜏3 and also according to Table 4 the execution
of third task 𝜏3 is doubtful. Hence, each new arrival of 𝜏1 after
every periodic cycle preempts task 𝜏2 or 𝜏3. Similarly task 𝜏2
preempts 𝜏3. Also the arrival of 3rd task exceeds 𝜌utilization > 1
and its priority is also third. As a result, 𝜏3 has missed its
deadline. Therefore, we can say that tasks containing the east
priority fail to meet the deadline in overloading situation.

Journal of Engineering 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Preemption
of 𝜏1 on 𝜏3

Preemption
of 𝜏1 on 𝜏2

Preemption
of 𝜏3 on 𝜏2

𝜏2 missing the
deadline

Time

Occurrence of preemption
Missing deadline

Normal scheduling

𝜏2

𝜏1

𝜏3

Figure 3: EDF scheduling on single processor.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

tasks
tasks
tasks

Victim task

Preemption occurrence
𝛼

𝛼

𝜏2

𝜏1

𝜏3

𝜏4

𝜏5

𝜏6

and

𝜏1,3

Missing deadline
Migrated task

𝜏utilization = 0.45

𝜌utilization > 1

𝜌1

𝜌2

𝜌3

𝜌1
𝜌2
𝜌3

Migration time + 𝜏arrival

Figure 4: EDF scheduling algorithm in RTDS.

6 Journal of Engineering

Table 4: Shows some values of 𝜌UB on different number of tasks 𝑛.

Number of
tasks (𝑛) Tasks 𝜏utilization =

𝜏wcet

𝜏period
𝜌utilization =

3

∑

𝑛=1

𝜏𝑛 utilization 𝜌UB = 𝑛 × (2
1/𝑛
− 1)

Comparison of
𝜌utilization with 𝜌UB

Conclusion

1 𝜏1 0.33 0.33 1.0 0.33 ≤ 1.0 𝜏1 is schedulable
2 𝜏2 0.4 0.43 0.8284 0.43 ≤ 0.82 𝜏2 is schedulable
3 𝜏3 0.45 0.88 0.7797 0.88 ≥ 0.77 𝜏3 can be schedulable

RM scheduling algorithm in uniprocessor
BEGIN
(1) If 𝜏utilization ≤ 1
(2) If 𝜌UB ≤ 𝑛 (21/𝑛 − 1)
(3) task is schedulable and

assign 𝜏priority of task on given processor
(4) Else task is non-schedulable
END
RM scheduling algorithm in Distributed system
BEGIN
(1) If 𝜏utilization ≤ 1
(2) If 𝜌UB ≤ 𝑛 (21/𝑛 − 1)
(3) then task is schedulable and

assign 𝜏priority of task on given processor
(4) else migrate the task
(5) Else task is non-schedulable
END

Algorithm 2

2.3.2. Example of RM in Real Time Distributed System. As
we have computed that arrival of 3rd task exceeds the range
of 𝜌utilization, therefore in 𝜌1 task 𝜏3 is a victim task that
initiates overloading situation in its source processor. Initially
𝜌2 processor is idle and 𝜌3 utilization is 0.75. Therefore, on the
basis of utilization criteria 𝜌2 becomes a destination processor
for giving victim task and it will be executed on 𝜌2 processor.
After the arrival of migrated task 𝜏1,3 in 𝜌2, its utilization
becomes 0.45 and its priority is 1, but after the arrival of 𝜏4 task
𝜌2 utilization becomes 0.95 which is again greater than 0.693. In
our given example 𝜏period = 𝜏dline; therefore RM behaves like
EDFbut if 𝜏period ̸= 𝜏dline, thenRMbehaves different thanEDF.

2.4. D O EDF andD R EDF Scheduling Algorithm. Themain
motive behind the derivation of these two scheduling algo-
rithms is Domino’s effect problem of EDF that is created only
in overloading condition.Wekeep in ourmind thatwe should
not let the processor shoot in such away that causes Domino’s
effect.

The D O EDF scheduling algorithm assigns static prior-
ities 0 and 1 to jobs (Figure 6). Such static priorities will be
used in overloading condition. In overloading condition, this
scheduling algorithmdiscards those tasks that are expected to
miss the deadline and their static priority is 0. On the other
side, tasks with firm timing constraint and are expected to
miss the deadline with static priority 1, are allowed to execute
[8].

The D R EDF scheduling algorithm is an amalgamation
of both dynamic and static scheduling algorithms, that is,
EDF and RM (Figure 7). As we know, EDF is working well
in underloaded situation, but its performance reduces expo-
nentially in overloading condition. Similarly, RM behaves
normally in underloaded condition but performs well in
overloaded situation. Hence, according to given algorithm
initially processor uses EDF for task execution, but when
tasks start missing deadline due to overloading condition,
the scheduler switches towards RM algorithm. As tasks
continuouslymeet the deadline, then itmeans that the system
is in underloaded condition now and then scheduler again
switches towards EDF algorithm [8].

3. Proposed Joint EDF-RM
Scheduling Algorithm

3.1.TheAlgorithm. This proposed algorithm is a combination
of RM and EDF scheduling algorithms. As we knows in RM
the upper bound of processor is computed by 𝑛(21/𝑛 − 1),
where 𝑛 is a number of tasks. In our proposed algorithm this
upper bound of RM will be a boundary limit of global task
queue𝐵𝑄 of global scheduler. If cumulative utilization of tasks
is less than or equal to 𝐵𝑄 will distribute towards randomly
selected processors of the system for execution, otherwise
that task will be discarded.

The second scheduling algorithm EDF is working for the
execution of assigned tasks on a particular processor. The
positive side of using global scheduler is permitted to task
migration in between processors. Figure 9 explains the task
migration methodology in between processors.

3.2. Joint EDF-RM Scheduling Algorithm. Proposed Joint
EDF-RMscheduling algorithm is divided into following three
modules:

(1) maintenance of global task queue
(2) execution of assigned tasks on allotted processors
(3) migration of tasks in between processors if needed (if

overloading alarm generates).

Following Algorithm 3 explains all above-stated three
modules.

3.3. Significance of the Above-Stated Proposed Algorithm.
System assumed here is loosely coupled distributed system
in which all processors share identical architecture (homoge-
neous RTDS). Threshold limit of each processor is fixed and

Journal of Engineering 7

𝜏3

𝜏2

𝜏1

𝜏3 missing
deadline

𝜏1 preempts 𝜏3 𝜏1 preempts 𝜏2 𝜏1 preempts 𝜏2

Occurrence of preemption
Missing deadline

Normal scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

𝜏2 preempts

Figure 5: RM scheduling on single processor.

Input: Random arrival of tasks with 𝜏arrival, 𝜏wcet, 𝜏period, 𝜏dline
Output: Number of tasks meet/miss the deadline along with another parameters

BEGIN
GlobalScheduler() // Global task Queue

(1) The aperiodic // Periodic arrival of tasks with arrival time, wcet,

assigned deadline and period

(2) tasku = wcet/Period;

(3) UB=n∗(Math.pow(2, 1.0/n)-1);

(4) IF tasku<=UB

(5) Generated task is schedulable

(6) pselection(task)

(7) Else
(8) The task is non-schedulable

pselection(task) // Random Selection of Processors

(1) Random Selection of Processor

(2) PQueue(task);

PQueue(task) // Processors local queue

(1) Assign priorities to tasks on the basis of deadline

(2) taskpriority ∝
1

taskpriority
(3) TaskExecution(task)

TaskExecution(task) // Task Execution by using EDF Scheduler

(1) If tasku<=1
(2) U= U+ tasku //Cumulative accumulation of task utilization

(3) If (U<=.810) //Processor utilization

(4) The task is ready for execution

(5) Else
(6) Task Migration (task, tasku)

Taskmigration(task, tasku) // Task Migration on the basis of a processor

utilization factor

(1) Sort all processor utilization

(2) Assign task to the processor having least a utilization factor

(3) PQueue(task);

END

Algorithm 3: Joint EDF-RM scheduling algorithm.

8 Journal of Engineering

0 1

Hard/soft real time task frame format under D O EDF

Static
priority

Static
priority

Tasks with static priority 1 expected to miss the
deadline are allowed to execute task.

Firm real time task frame format under D O EDF

Tasks with static priority 0 expected to miss the
deadline will be discarded from the system.

𝜏arrival 𝜏wcet 𝜏period 𝜏dline 𝜏arrival 𝜏wcet 𝜏period 𝜏dline

Figure 6: Real time tasks frame format according to D O EDF scheduling algorithm.

in order to execute the tasks, the EarliestDeadline First (EDF)
scheduling is employed by every processor. In given system
all tasks are independent and their 𝜏period ≥ 𝜏dline. Based on
the priority of task, higher priority job can preempt the lower
priority task. One central scheduler (global scheduler) is used
that maintains the global task queue for the entire system.
As we recognize that global scheduler allows task migration
in between processors, therefore for every processor we have
set one utilization threshold value that generates alarms for
migration of task.This entire system deals with soft as well as
firm real time tasks.

In Figure 8, there is a global scheduler that maintains a
waiting task queue globally. In order to avoid the problem of
overloading, limited amount of tasks arrives on the queue and
its boundary limit is determined by using a RM scheduling
algorithm. Tasks having 𝜏utilization+∑

𝑛−1

𝑖=1
𝜏𝑖 utilization ≤ 𝑖×(2

1/𝑖
−

1) will be easily executable or if 𝜏utilization + ∑
𝑛−1

𝑖=1
𝜏𝑖 utilization ≤

𝑖 × (2
1/𝑖
− 1) ≤ 1, then not all tasks will be executable.

As the queue behaves on the basis of first in first out, tasks
are randomly assigned to processors. Each processor executes
tasks by using an EDF scheduling algorithm. Small change we
have done in this existing algorithm is migration threshold
limit. This migration threshold limit decides the migration
of task from given processor. In Figure 9 𝜌1 processor uti-
lization is 𝜌1 utilization = 𝜏𝑖 utilization + 𝜏2 utilization + 𝜏3 utilizaion +
𝜏(𝑛−2) utilization = 0.61 ≤ 0.810, And after the arrival of 𝜏𝑛−1
processor utilization becomes 𝜌1 utilization + 𝜏(𝑛−1) utilization =
0.70 ≤ 0.810, but arrival of 𝜏𝑛 reaches utilization towards
𝜌1 utilization + 𝜏(𝑛) utilization ≥ 0.810 < 1. Arrival of further tasks
will increase 𝜌1 utilization by 1; after that, all tasks start missing
deadline which causes a Domino effect. After migration
threshold alarm, processor checks the utilization values of
other processors. And then migrate the task to the processor
having the least utilization. 𝜌2 processor is a destination node
given in Figure 9.

Theorem1. If the upper bound of global task queue is 𝑛×(21/𝑛−
1), then overloading of processor is reduced.

Proof. Given set of 𝑛 aperiodic tasks 𝜏1, 𝜏2, 𝜏3, 𝜏4, . . . , 𝜏𝑛
arrives in a global task queue, whose periods and execution
times are 𝜏1 period, 𝜏2 period, 𝜏3 period, 𝜏4 period, . . . , 𝜏𝑛 period and
𝜏1wcet, 𝜏2wcet, 𝜏3wcet, 𝜏4wcet, . . . , 𝜏𝑛wcet, respectively. 𝜏1 utilization,
𝜏2 utilization, 𝜏3 utilization, 𝜏4 utilization, . . . , 𝜏𝑛 utilization are per task

Begin

Dynamic arrival of
tasks with

D O EDF frame

If (two tasks
continuously Yes

Yes

No

No

RM scheduling executes tasks

End

If (five tasks
continuously

meet the
deadline)

EDF scheduling executes tasks

miss the
deadline)

Figure 7: D R EDF scheduling algorithm flowchart.

utilization. We are considering here 𝜏deadline ≤ 𝜏period.
There are 4 processors present in our RTDS with 𝜌1 utilization,
𝜌2 utilization, 𝜌3 utilization, and 𝜌4 utilization being their respective
utilizations. Global scheduler randomly selects processors for
the allocation of tasks but tasks, follow FCFS discipline for
allocation.

We are taking three cases in order to proof given theorem

Case I. Global queue has infinite limit as the global queue is
containing no acceptance test of task. Without checking its
utilization, based on FCFS 𝜏1 task assigned to the randomly

Journal of Engineering 9

New taskGlobal task
waiting queue

Task inTask out

Global task queue
bound follows RM

n × (21/n − 1)

For each processor
EDF scheduling

algorithm is used
for task execution.

Alarm threshold for
migration is 0.810

Random selection
of processors

𝜌1 𝜌2 𝜌3 𝜌4 𝜌p

utilization bound
limit, that is,

Taskp

Taskm

Taskr
Tasks Taskl Taskv Taskv

Tasku

Taskj

Taskq

Taskb Taskc Taskd Taske Taskf Taski

Taskj

Tasku

Taskt

Taskk

Taskq

Taska

Taskn

· · ·

· · ·

...
...

...
...

...

Figure 8: Architecture of proposed algorithm.

selected processor 𝜌2 whose 𝜌2 utilization < 1, and after the
assignment of 𝜏1, two conditions can occur:

𝜌2 utilization = {
𝜌2 utilization + 𝜏1 utilization, if 𝜏1 utilization ≤ 1,
𝜌2 utilization, otherwise,

(7)

𝜌2 utilization + 𝜏1 utilization

= {
schedule 𝜏1, if ≤ 1,
miss the deadline or overload, otherwise,

(8)

overload = {migration, if 𝜌𝑛 processor < 1,
wait for execution, otherwise.

(9)

In this case there are more chances of overloading on
every processor.

Case II. Boundary limit of global queue is 1, that is,
∑
𝑛

𝑖=1
𝜏𝑖 utilization ≤ 1.
Here only those tasks are allowed to enter in a global task

queue whose 𝜏utilization ≤ 1.
If tasks in a queue are waiting for an assignment and the

arrival of new task increases the boundary limit by 1, then all
upcoming tasks will not be allowed for admission:

𝐵𝑄 = {
allowed for execution, if ≤ 1,
Queue is full, otherwise.

(10)

In this case (7) is satisfied only on 1st condition; that is,

𝜌utilization = 𝜌utilization + 𝜏utilization. (11)

This case gives a guarantee of schedulability of every task.
Equations (8) and (9) behave similar to 1st case.The limitation

of the EDF scheduling algorithm is that if one task starts
missing deadline, then upcoming tasks also miss deadline
continuously (Domino’s effect).

Case III. Global queue has boundary limit 𝑛 × (21/𝑛 − 1).
Tasks having ∑𝑛

𝑖=1
𝜏𝑛 utilization ≤ 𝑛 × (2

1/𝑛
− 1) are allowed

to execute on assigned processors. As we know the value of

𝑛 × (2
1/𝑛
− 1) = {

1, for 𝑛 = 1,
< 1, for 𝑛 tends ∞.

(12)

According to RM scheduling, every task is schedulable if
its 𝜏utilization ≤ 𝑛 × (2

1/𝑛
− 1), but its execution is doubtful if it

is in between 𝑛×(21/𝑛−1) and 1.Therefore, here queue allows
only those tasks for further execution whose 𝜏utilization ≤ 𝑛 ×
(2
1/𝑛
− 1). Consider

𝑛

∑

𝑖=1

𝜏𝑖 utilization ≤ 𝑛 × (2
1/𝑛
− 1) ∀𝑛,

𝐵𝑄 = {
allowed for execution, if ≤ 𝑛 × (21/𝑛 − 1) ,
tasks are non-schedulable, otherwise.

(13)

After the allocation of tasks on the processor, it will execute
tasks by using EDF:

𝜌utilization = {
schedule tasks, if ≤ 1,
overloading occur, if > 1.

(14)

But in 3rd case very rare tasks utilization reaches 1 but not
beyond 1. Hence, we can say that if the upper bound of global
task queue is 𝑛 × (21/𝑛 − 1), then overloading of processor is
reduced.

10 Journal of Engineering

task

≥ 0.81 ≤ 1

= 0.70

= 0.61

= 0.52

= 0.67

= 0.65

< 0.810 ≤ 1;

hence it becomes destination node

𝜏1,n

𝜏3 𝜏3

𝜏2

𝜏1

Task 𝜏n crosses the migration

𝜏n

𝜏n−1

𝜏n−2

𝜏2

𝜏1

𝜏3

𝜏2

𝜏1

𝜏m

𝜌1 𝜌2 𝜌3

threshold limit; hence, it is a victim
after migration

+

+ 𝜏n−

Migration (𝜏1,n, 𝜌2)

𝜌2 utilization

𝜌2 utilization

𝜌3 utilization

𝜌2 utilization

𝜌2 utilization

𝜌1 utilization

𝜌1 utilization

𝜌1 utilization

1 utilization

𝜏n utilization

Figure 9: Migration scenario in proposed algorithm.

0
0.5
1

1.5
2

2.5
3

3.5
4

300 600 900 1200 1500 1800 2100Av
er

ag
e C

PU
 U

til
iz

at
io

n

Number of transactions

Average CPU Utilization versus number of transactions

EDF
RM

D R EDF
Joint EDF-RM

Number of processors = 8

(a)

0 500 1000 1500 2000 2500

EDF
RM

D R EDF
Joint EDF-RM

0

0.5

1

1.5

2

2.5

3

3.5

Av
er

ag
e C

PU
 U

til
iz

at
io

n

Number of transactions

Average CPU Utilization versus number of transactions
Number of processors = 10

(b)

Figure 10: Average CPU Utilization versus number of transactions on 8 and 10 processors.

4. Performance Analysis and
Simulation Results

In order to evaluate our proposed scheduling algorithm we
have used Eclipse Java EE IDE.The operation of the proposed
study is measured by calculating the Average CPU Utiliza-
tion, Success Ratio, Failure Ratio, and Maximum Tardiness.
The simulation is done with more than 26000 transactions
on 10 processors of RTDS, but in simulation results we
have mentioned transactions up to 2100. Before making
the demonstration of calculating simulation results, let us
discuss those parameters that determine the performance

of joint EDF-RM scheduling algorithm with some existing
algorithms (EDF, RM, D O EDF, and D R EDF).

4.1. Average CPU Utilization (𝐴𝜌 utilization). It is defined as

𝐴𝜌 utilization =
𝑛

∑

𝑖=1

𝜌𝑖 utilization
𝑛
, (15)

where the number of processors (𝜌) varies from 1 to 𝑛.
In Figure 10, the CPU utilization in proposed joint EDF-

RM scheduling algorithm is lesser than the other three
algorithms. As (1) explains, processor utilization is dependent

Journal of Engineering 11

0
10
20
30
40
50
60
70
80
90

300 600 900 1200 1500 1800 2100

SR
 (%

)

Number of transactions

Number of transactions versus Success Ratio

EDF
RM

D R EDF
Joint EDF-RM

Number of processors = 3

(a)

Number of transactions versus Success Ratio

300 600 900 1200 1500 1800 2100

Number of transactions

EDF
RM

D R EDF
Joint EDF-RM

35
30

40
45
50
55
60
65
70

SR
 (%

)

Number of processors = 5

(b)

0
10
20
30
40
50
60
70
80

SR
 (%

)

300 600 900 1200 1500 1800 2100

Number of transactions

EDF
RM

D R EDF
Joint EDF-RM

Number of transactions versus Success Ratio
Number of processors = 8

(c)

300 600 900 1200 1500 1800 2100

Number of transactions

EDF
RM

D R EDF
Joint EDF-RM

0
10
20
30
40
50
60
70
80
90
1000

SR
 (%

)

Number of transactions versus Success Ratio
Number of processors = 10

(d)

Figure 11: Number of transactions versus Success Ratio on 3, 5, 8, and 10 Processors.

on particular tasks utilization and further tasks utilization
is dependent on the worst case execution time (𝜏wcet) and
interarrival period (𝜏period) of tasks as well. Additionally, the
𝜏wcet and 𝜏period are generated randomly in given simulation.
Due to all these factors of real time tasks the Average
CPU Utilization can vary from time to time. For example,
in Figure 10 𝐴𝜌 utilization of 8 processors for 300 tasks is
0.16338866 and on the other side for 10 processors it is
0.4004137. Similarly, In EDF 𝐴𝜌 utilization of 8 processors
for 2100 tasks is 3.287974 whereas for 10 processors it is
3.0410550. Hence, the value of Average CPU Utilization is
uncertain, but as compared to previous existing algorithm,
proposed joint EDF-RM algorithm gives better 𝐴𝜌 utilization
because of migration threshold limit of all processors along
with the boundary limit of global task queue.

4.2. Success Ratio (SR). Consider

SR =
Successfully scheduled tasks
Total number of tasks arrival

. (16)

Meeting with the deadline is very imperative for all real
time tasks; therefore we have computed success ratio that tells
the percentage of successful implementation of tasks from
total transactions.

After simulating thousands of tasks, we find that EDF,
RM and D R EDF scheduling algorithms’ Success ratio can

vary howeverwe sometimes find that our proposed algorithm
has a higher Success Ratio than the existing algorithms
(Figure 11). Reason behind its best performance is a threshold
value of task migration.

4.3. Failure Ratio (FR). Consider

FR = Tasks miss the deadline
Total number of tasks arrival

. (17)

This parameter computes the other side of coin, that
is, percentage of those tasks which are unable to meet the
deadline. Missing deadline is also a big task in front of
all algorithms (Figure 12). Therefore, we also compute the
Failure Ratio that tells us the occurrence of missing deadline.

4.4. Maximum Tardiness. As we know, tardiness is the late-
ness occurring in tasks execution; that is,

tardiness = TST − 𝜏deadline,

Max Tardiness = max (tard𝜏𝑖) , where 𝑖 ∈ 𝑇.
(18)

While missing a deadline, we have computed the time
after which task successfully executes. Figure 13 explains that
the proposed algorithm has Minimum Tardiness compared
to existing algorithms.

12 Journal of Engineering

0

2

4

6

8

10

12

14

300 600 900 1200 1500 1800 2100

FR
 (%

)

Number of transactions

Number of transactions versus Failure Ratio

EDF
RM

D R EDF
Joint EDF-RM

Number of processors = 3

(a)

Number of transactions versus Failure Ratio
Number of processors = 5

300 600 900 1200 1500 1800 2100

Number of transactions

EDF
RM

D R EDF
Joint EDF-RM

0

2

4

6

8

10

12

FR
 (%

)

(b)

0

2

4

6

8

10

12

300 600 900 1200 1500 1800 2100

FR
 (%

)

Number of transactions

Number of transactions versus Failure Ratio

EDF
RM

D R EDF
Joint EDF-RM

Number of processors = 8

(c)

0

2

4

6

8

300
600 900 1200

1500 1800 2100

FR
 (%

)

Number of transactions

Number of transactions versus Failure Ratio

300
600 900 1200

Number of processors = 10

EDF
RM

D R EDF
Joint EDF-RM

(d)

Figure 12: Number of transactions versus Failure Ratio on 3, 5, 8 and 10 processors.

400

410

420

430

440

450

460

300 600 900 1200 1500 1800 2100

Number of transactions

Number of transactions versus Maximum Tardiness
Number of processors = 8

EDF
RM

D R EDF
Joint EDF-RM

M
ax

im
um

 T
ar

di
ne

ss
 (m

s)

(a)

Number of transactions versus Maximum Tardiness
Number of processors = 10

420

425

430

435

440

445

450

300 600 900 1200 1500 1800 2100

Number of transactions

EDF
RM

D R EDF
Joint EDF-RM

M
ax

im
um

 T
ar

di
ne

ss
 (m

s)

(b)

Figure 13: Number of transactions versus Maximum Tardiness on 8 and 10 processors.

5. Conclusion and Future Work

Proposed scheduling algorithm is the combination of EDF
and RM scheduling algorithms that rise above the over-
loading problem of any processor. We have set the thresh-
old limit 0.81 that generates alarm for the migration of
upcoming tasks because overloading on task is restricted. We

simulate this work for homogeneous system; in the future
we will implement it on heterogeneous arrangement. One
main problem occurs when running tasks are preempted
by higher priority new tasks because running tasks miss
the deadline. Hence, in future we will work on preemp-
tion technique of scheduling algorithms with fault tolerant
techniques.

Journal of Engineering 13

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. W. S. Liu, Real-Time Systems, Pearson Education, New Delhi,
India, 2003.

[2] P. Li and B. Ravindran, “Fast, best-effort real-time scheduling
algorithms,” IEEE Transactions on Computers, vol. 53, no. 9, pp.
1159–1175, 2004.

[3] C. L. Liu and J. W. Layland, “Scheduling algorithms for mul-
tiprogramming in hard real-time environment,” Journal of the
ACM, vol. 20, no. 1, pp. 46–61, 1973.

[4] J. A. Stankovic and K. Ramamritham, Tutorial Hard Real-Time
Systems, IEEE Computer Society Press, 1988.

[5] M. Joseph, Real-Time Systems: Specification, Verification and
Analysis, Prentice Hall, New York, NY, USA, 1996.

[6] P. A. Laplante, Real-Time Systems Design and Analysis: An Engi-
neer Handbook, IEEE Computer Society, IEEE Press, 1993.

[7] G. C. Buttazzo, “Rate monotonic versus EDF: judgment day,”
Real-Time Systems, vol. 29, no. 1, pp. 5–26, 2005.

[8] A. Shah and K. Kotecha, “Efficient scheduling algorithms for
real-time distributed systems,” in Proceedings of the 1st Interna-
tional Conference on Parallel, Distributed and Grid Computing
(PDGC ’10), pp. 44–48, Solan, India, October 2010.

[9] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Dis-
tributed Systems: Concepts and Design, Addison-Wesley, New
York, NY, USA, 5th edition, 2011.

[10] S. Dhakal, M. M. Hayat, J. E. Pezoa, C. Yang, and D. A. Bader,
“Dynamic load balancing in distributed systems in the presence
of delays: a regeneration-theory approach,” IEEE Transactions
on Parallel and Distributed Systems, vol. 18, no. 4, pp. 485–497,
2007.

[11] R. Sharma and Nitin, “Optimal method for migration of tasks
with duplication,” in Proceedings of the 14th International Con-
ference on Modelling and Simulation, pp. 510–515, 2012.

[12] T. T. Y. Suen and J. S. K. Wong, “Efficient task migration algo-
rithm for distributed systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 3, no. 4, pp. 488–499, 1992.

[13] R. Sharma andNitin, “Taskmigrationwith EDF-RMscheduling
algorithms in distributed systems,” in Proceedings of the Inter-
nation Conference on Advances in Computing and Communica-
tions, pp. 182–185, 2012.

[14] S. Darbha and D. P. Agrawal, “A task duplication based scalable
scheduling algorithm for distributed memory systems,” Journal
of Parallel and Distributed Computing, vol. 46, no. 1, pp. 15–27,
1997.

[15] R. Sharma and Nitin, “Duplication with task assignment in
mesh distributed system,” in Proceedings of the World Congress
on Information and Communication Technologies (WICT ’11),
pp. 672–676, Mumbai, India, December 2011.

[16] N. Fisher, S. Baruah, and T. P. Baker, “The partitioned schedul-
ing of sporadic tasks according to static-priorities,” in Proceed-
ings of the 18th Euromicro Conference on Real-Time Systems
(ECRTS ’06), pp. 118–127, Dresden, Germany, July 2006.

[17] T. P. Baker, “A comparison of global and partitioned EDF
schedulability tests for multiprocessor,” TR-051101, 2005.

[18] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis
of global scheduling algorithms on multiprocessor platforms,”

IEEE Transactions on Parallel and Distributed Systems, vol. 20,
no. 4, pp. 553–566, 2009.

[19] L. Kleinrock, Queueing Systems—Volume 2: Computer Applica-
tions, Wiley-Interscience, New York, NY, USA, 1976.

[20] A.Gantman, P.N.Guo, J. Lewis, and F. Rashid, “Scheduling real-
time tasks in distributed systems: a survey,” 1998.

[21] O. U. P. Zapata and P. M. Alvarez, “Edf and RMmultiprocessor
scheduling algorithms: survey and performance evaluation,”
Seccion de Computacion Av. IPN, 2508, 2005.

[22] K. Ramamritham, J. A. Stankovic, and P. F. Shiah, “Efficient
scheduling algorithms for real-time multiprocessor systems,”
IEEE Transactions on Parallel andDistributed Systems, vol. 1, no.
2, pp. 184–194, 1990.

[23] J. H. Anderson, V. Bud, and U. C. Devi, “An EDF-based restric-
ted-migration scheduling algorithm for multiprocessor soft
real-time systems,” in Proceedings of the 17th Euromicro Confer-
ence on Real-Time Systems (ECRTS ’05), pp. 199–208, July 2005.

[24] J. Lehoczky, L. Sha, and Y. Ding, “Rate monotonic scheduling
algorithm: exact characterization and average case behavior,” in
Proceedings of the Real-Time Systems Symposium, pp. 166–171,
December 1989.

[25] V. N. Darera and L. Jenkins, “Utilization bounds for RM
scheduling on uniform multiprocessors,” in Proceedings of the
12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA ’06), pp. 315–321,
Sydney, Australia, August 2006.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

