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In Real Time System, the achievement of deadline is the main target of every scheduling algorithm. Earliest Deadline First (EDF),
Rate Monotonic (RM), and least Laxity First are some renowned algorithms that work well in their own context. As we know,
there is a very common problem Domino’s effect in EDF that is generated due to overloading condition (EDF is not working well
in overloading situation). Similarly, performance of RM is degraded in underloading condition. We can say that both algorithms
are complements of each other. Deadline missing in both events happens because of their utilization bounding strategy. Therefore,
in this paper we are proposing a new scheduling algorithm that carries through the drawback of both existing algorithms. Joint
EDF-RM scheduling algorithm is implemented in global scheduler that permits task migration mechanism in between processors
in the system. In order to check the improved behavior of proposed algorithm we perform simulation. Results are achieved and
evaluated in terms of Success Ratio (SR), Average CPUUtilization (ECU), Failure Ratio (FR), andMaximumTardiness parameters.
In the end, the results are compared with the existing (EDF, RM, and D R EDF) algorithms. It has been shown that the proposed
algorithm performs better during overloading condition as well in underloading condition.

1. Introduction and Motivation

Real TimeDistributed System is a distributed systemwith real
time properties. We can say that RTDS is a combination of
RTS and distributed system (Figure 1). Properties of real time
tasks are applied on the distributed system or concept of a
distributed system is implemented on RTS. The following is
the first appearance of two main components of RTDS.

1.1. Real Time System (RTS). RTS is a system in which exe-
cution of tasks has some time restrictions (deadline) [1–3].
Based on the execution of real time task RTS falls into the
following categories.

(i) Hard RTS. Task execution by assigning deadline is
restrictive. Missing deadline will produce incurable
results for the entire system [4].

(ii) SoftRTS.Althoughmissing deadline is not enviable in
RTS, but in soft RTS tasks could miss some deadline
that will not affect the working of system [5].

(iii) Firm RTS. If tasks complete their execution before the
deadline, they gain more rewards [4, 6]. It is a special
type of soft RTS.

EDF, RM, and Least Laxity First are some basic schedul-
ing algorithms that execute real time tasks on the basis of their
deadline, interarrival period, tardiness, and so forth. Every
scheduling algorithm is having some drawbacks, for example,
EDF is not functioningwell in overloading condition andRM
in underloading condition [7, 8].

1.2. Distributed System (DS). Distributed system is an
arrangement of several processors/nodes followed by some
interconnection topologies. The distribution of load to var-
ious processors increases the performance of the entire
system. In DS, on the basis of nodes utilization load is
balanced in between processors [9–11]. Task migration and
duplication are two methodologies that help in balancing the
processor load.
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Figure 1: Real time distributed system.
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Figure 2: Distributed system scheduling.

(i) Load Migration. In order to balance the load of DS
task migration methodology relocates the victim task
from one processor (source) to another processor (des-
tination).This technique can be applied to dependent
(DAG) as well as independent tasks [12, 13].

(ii) Task Duplication. Task duplication method is given on
the basis of computation to communication ratio (CCR)
in between processors.This technique is mostly appli-
cable on dependent tasks (DAG) in order to balance
the load as well as minimize the execution cost of
complete DAG [14, 15].

Moreover, Tasks in a distributed system are assigned to
processors by using the following schedulers (Figure 2).

(i) Partitioned Scheduler.Tasks aremapped to processors
deterministically for execution. Scheduler statically
assigns tasks to processors and migration of task
instance is prohibited here [16, 17].

(ii) Global Scheduler. All tasks are kept in a global queue
fromwhere tasks to other processors will be assigned for
the death penalty.This scheduler dynamically assigns
tasks to nodes and allows task migration in between
processors [17, 18]. Global scheduler is appealing in
such systems where average as well as the worst
case response time (WCRT) is important. In queuing

theory, single queue scheduling generates healthier
average response time as compared to queue per
processing scheduler [17, 19]. Hence, in RTDS this
scheduler is superior to partitioned scheduler.

In this paper we have explained a new joint EDF-RM
scheduling algorithm which behaves optimally in both cir-
cumstances (underloading as well as overloading). Here,
the utilization bound of RM is used to boundary limit
of the global queue instead of processors 𝜌UB and tasks
will be assigned to randomly selected processors. Moreover,
for the execution of tasks the EDF scheduling is used on
every processor. Our proposed algorithm is divided into the
following two modules:

(a) real time job assignment in distributed system (using
global scheduler);

(b) real time task execution on allotted processors of
distributed system (including task migration).

Reason behindusingRMutilization bound is to safeguard
our system from overloading condition. Additionally, in
order to deal dynamically with tasks the EDF scheduling
algorithm is implemented. Load balancing in RTDS is availed
by using the global scheduler because task migration is
permissible in this scheduler.
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Table 1: Symbols and definitions.

Symbols Definition
𝑇 Task-set
𝜏arrival Task arrival time
𝜏period Interarrival period of task
𝜏dline Task deadline
𝜏utilization Per task utilization
𝜏priority Task priority
𝜏𝑝,𝑎 Task 𝑎 of 𝑝 processor
𝜌utilization Per processor utilization
𝜌UB Processor upper bound
𝐸𝜌utilization Efficient processor utilization
SR Success Ratio
FR Failure Ratio
MR Migration ratio
𝐴 preemption Average number of preemptions
𝐵𝑄 Boundary limit of global task queue
TST Total time of scheduling
tard𝜏𝑖 Tardiness of given task

The remainder of the paper is organized as follows.
Existing real time scheduling algorithms have been discussed
in Section 2. Section 3 explains the proposed joint EDF-
RM scheduling algorithm. In Section 4, performances of
EDF, RM, D O EDF, and D R EDF [8] along with proposed
algorithmhave been analyzedwith simulation results. Finally,
the conclusion is presented in Section 5.

Before moving towards the next section, let us have a
glance on the symbols that are utilized in the entire compo-
sition. Table 1 demonstrates these symbols and their denota-
tion.

2. Preliminaries and Background

Before giving the elucidation of our proposed work we would
like to enlighten scheduling algorithms associated with our
work. This paper uses RM and EDF scheduling algorithms
together and tries to resolve the downside of EDF (Domino’s
effect) and RM as well. As we know that in distributed system
load balancing is an important issue. Hence, proposed algo-
rithm also amplifies the working capability in overloading or
underloading situations. These above stated two situations
(loading conditions) are checked by recalculations of per
task/processor utilization.

2.1. Real Time Schedulers. Tasks having real time properties
and scheduled on RTS are real time tasks. Scheduling is done
by two types of scheduler modules.

(i) Dynamic Scheduler.Dynamic scheduler assigns prior-
ities to tasks at run time. This scheduler reevaluates
the information like priorities, resource availability
after the arrival of current task. Due to the dynamism
of tasks priority, already running tasks have to be
preempted by the arrival of new task [20].

(ii) Static Scheduler. Under this scheduler, priorities of
tasks are predefined or we can say static. It cannot be
altered by the arrival of new tasks. Priority of 𝜏𝑚 >
𝜏𝑛, where 𝑚 < 𝑛. Generally, this scheduler works
on dependent tasks because communication cost in
between tasks is reduced [20].

Let us consider that 𝑇 is a set of 𝑛 real time tasks 𝑇 =
{𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5, . . . , 𝜏𝑛} arriving on processor 𝜌. Hence,

𝜏utilization =
𝜏wcet
𝜏period
,

𝜌utilization =
𝑛

∑

𝑖=1

𝜏𝑖 utilization.

(1)

RTS works with dynamic as well as static tasks. The
EDF scheduling algorithm works well with dynamic and RM
schedule static tasks efficiently. We are dealing with RTDS in
this paper; therefore we consider the case of overloading in
each case.

2.2. Earliest Deadline First Scheduling Algorithm. EDF is a
dynamic scheduler that follows the principle: the nearer the
deadline the higher the priority of task [21, 22]. It assigns
priorities to tasks dynamically. Consider

𝜏priority ∝
1

𝜏dline
. (2)

Before assigning the priorities to the task, scheduler first
checks the acceptance test by inspecting the utilization value
of task as well as processor. Here task-set 𝑇 is schedulable

if 𝜌utilization ≤ 1. (3)

Let us consider the following examples that explain the
behavior of EDF in overloading case in both single and
multiple processors (distributed computing).

2.2.1. Example of EDF inUniprocessor. Aswe havementioned
in Algorithm 1 and Table 2 the arrival of new tasks preempts
already running tasks. In Figure 3 the deadline of task 𝜏3 is
shorter than the task 𝜏2 and therefore newly arrived task 𝜏3
preempts 𝜏2 task because 𝜏2 task has missed the deadline.

2.2.2. Example of EDF in Distributed System. In case of
distributed system, overloaded processor can migrate the
victim task to other processors (destination processor) [23].

According to Table 3 and Figure 4, 𝜏utilization is 0.45 which
qualifies the acceptance test of schedulability but due to task
utilization 𝜌utilization becomes 1.15 which is greater than 1.
Due to the arrival of this third task 𝜌1 becomes overloaded
and future tasks will also miss their deadline. Therefore, by
applying the migration terminology scheduler checks per
processor utilization andmigrate victim task to the processor
having a time slot for its execution (𝜌utilization < 1). In the
above example 𝜌2 has available time slot and its utilization is
also less than 1. In distributed system there is somemigration
cost 𝛼, that is, time taken by task to migrate from one
processor (source) to another (destination).
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Table 2: Arrival time, wcet, period, and deadline of tasks 𝜏1, 𝜏2, and 𝜏3.

Tasks Estimate arrival time Computation time (wcet) Period Deadline 𝜏utilization =
𝜏wcet

𝜏period

𝜏1 0 1 3 3 0.33
𝜏2 1 2 5 5 0.4
𝜏3 3 1.8 4 4 0.45

Table 3: Arrival time, wcet, period, deadline, and node for assignment of tasks 𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5, and 𝜏6.

Tasks Arrival time Computation time (wcet) Period Deadline 𝜏utilization =
𝜏wcet

𝜏period
Processor

𝜏1 0 1 3 3 0.33 𝜌1

𝜏2 1 2 5 5 0.4 𝜌1

𝜏3 3 1.8 4 4 0.45 𝜌1

𝜏4 5 3 6 6 0.5 𝜌2

𝜏5 1 0.5 2 2 0.25 𝜌3

𝜏6 2 2 4 4 0.5 𝜌3

EDF scheduling algorithm in uniprocessor
BEGIN
(1) If 𝜏utilization ≤ 1
(2) If 𝜌utilization ≤ 1
(3) The task is schedulable and

(4) assign 𝜏priority of task on given processor
(5) Else task is non-schedulable
END
EDF scheduling algorithm in distributed system
BEGIN
(1) If 𝜏utilization ≤ 1
(2) If 𝜌utilization ≤ 1
(3) then task is schedulable and assign 𝜏priority of task

on given processor
(4) Else migrate the task
(5) Else task is non-schedulable
END

Algorithm 1

2.3. Rate Monotonic Scheduling Algorithm. RM scheduling
algorithm comes under static scheduler (static priority) and
follows the principle: the shorter the interarrival period the
higher the priority of task [23, 24]:

𝜏priority ∝
1

𝜏period
. (4)

Before assigning the priorities to the task, scheduler first
checks the acceptance test by inspecting the utilization value
of task as well as processor. For this algorithm 𝑇 task-set is
schedulable on a given processor [25]

iff 𝜌UB ≤ 𝑛 (2
1/𝑛
− 1) , (5)

where 𝑛 is total number of tasks

2.3.1. Example of RM in Uniprocessor. Now next is the
implementation of RM scheduling algorithm on the data
of Table 2. In overloading condition neither EDF nor RM
performs well [7].

The upper bound of RM represents schedulability bound
of the number of tasks, and as 𝑛 increases, it decreases with 𝑛
(number of jobs). While we compute 𝜌UB for any number of
tasks (as the number of processors increases towards infinity),
the value of 𝜌UB remains 0.6931472035974151.Thismeans that

Lim
𝑛→∞
𝑛 (
𝑛
√2 − 1) = ln 2 ≈ 0.693,

𝜏1 utilization =
𝜏wcet
𝜏period
=
1

3
= 0.33,

𝜏2 utilization = 0.4, 𝜏3 utilization = 0.45,

𝜌utilization =
2

∑

𝑖=1

𝜏𝑖 utilization = 0.33 + 0.4 = 0.73,

(6)

0.693 ≤ 𝜌utilization ≤ 1 but after the arrival of 3rd task
𝜌utilization becomes 1.15 which is greater than 1. Acceptance test
of RM shows that any task-set is able to schedule through
if 𝜌utilization ≤ 0.693, but not all tasks can be scheduled if
0.693 < 𝜌UB ≤ 1 [7]. Therefore, we can say that all tasks may
or may not be scheduled by RM.

In addition, in case of RM, tasks having the least priority
miss the deadline due to preemption of higher priority tasks
in overloading case, since RM assigns priorities statically
(priority of task will not change throughout the execution
process) on the basis of 𝜏period. In Figure 5 tasks priority is in
order 𝜏1 > 𝜏2 > 𝜏3 and also according to Table 4 the execution
of third task 𝜏3 is doubtful. Hence, each new arrival of 𝜏1 after
every periodic cycle preempts task 𝜏2 or 𝜏3. Similarly task 𝜏2
preempts 𝜏3. Also the arrival of 3rd task exceeds 𝜌utilization > 1
and its priority is also third. As a result, 𝜏3 has missed its
deadline. Therefore, we can say that tasks containing the east
priority fail to meet the deadline in overloading situation.
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Table 4: Shows some values of 𝜌UB on different number of tasks 𝑛.

Number of
tasks (𝑛) Tasks 𝜏utilization =

𝜏wcet

𝜏period
𝜌utilization =

3

∑

𝑛=1

𝜏𝑛 utilization 𝜌UB = 𝑛 × (2
1/𝑛
− 1)

Comparison of
𝜌utilization with 𝜌UB

Conclusion

1 𝜏1 0.33 0.33 1.0 0.33 ≤ 1.0 𝜏1 is schedulable
2 𝜏2 0.4 0.43 0.8284 0.43 ≤ 0.82 𝜏2 is schedulable
3 𝜏3 0.45 0.88 0.7797 0.88 ≥ 0.77 𝜏3 can be schedulable

RM scheduling algorithm in uniprocessor
BEGIN
(1) If 𝜏utilization ≤ 1
(2) If 𝜌UB ≤ 𝑛 (21/𝑛 − 1)
(3) task is schedulable and

assign 𝜏priority of task on given processor
(4) Else task is non-schedulable
END
RM scheduling algorithm in Distributed system
BEGIN
(1) If 𝜏utilization ≤ 1
(2) If 𝜌UB ≤ 𝑛 (21/𝑛 − 1)
(3) then task is schedulable and

assign 𝜏priority of task on given processor
(4) else migrate the task
(5) Else task is non-schedulable
END

Algorithm 2

2.3.2. Example of RM in Real Time Distributed System. As
we have computed that arrival of 3rd task exceeds the range
of 𝜌utilization, therefore in 𝜌1 task 𝜏3 is a victim task that
initiates overloading situation in its source processor. Initially
𝜌2 processor is idle and 𝜌3 utilization is 0.75. Therefore, on the
basis of utilization criteria 𝜌2 becomes a destination processor
for giving victim task and it will be executed on 𝜌2 processor.
After the arrival of migrated task 𝜏1,3 in 𝜌2, its utilization
becomes 0.45 and its priority is 1, but after the arrival of 𝜏4 task
𝜌2 utilization becomes 0.95 which is again greater than 0.693. In
our given example 𝜏period = 𝜏dline; therefore RM behaves like
EDFbut if 𝜏period ̸= 𝜏dline, thenRMbehaves different thanEDF.

2.4. D O EDF andD R EDF Scheduling Algorithm. Themain
motive behind the derivation of these two scheduling algo-
rithms is Domino’s effect problem of EDF that is created only
in overloading condition.Wekeep in ourmind thatwe should
not let the processor shoot in such away that causes Domino’s
effect.

The D O EDF scheduling algorithm assigns static prior-
ities 0 and 1 to jobs (Figure 6). Such static priorities will be
used in overloading condition. In overloading condition, this
scheduling algorithmdiscards those tasks that are expected to
miss the deadline and their static priority is 0. On the other
side, tasks with firm timing constraint and are expected to
miss the deadline with static priority 1, are allowed to execute
[8].

The D R EDF scheduling algorithm is an amalgamation
of both dynamic and static scheduling algorithms, that is,
EDF and RM (Figure 7). As we know, EDF is working well
in underloaded situation, but its performance reduces expo-
nentially in overloading condition. Similarly, RM behaves
normally in underloaded condition but performs well in
overloaded situation. Hence, according to given algorithm
initially processor uses EDF for task execution, but when
tasks start missing deadline due to overloading condition,
the scheduler switches towards RM algorithm. As tasks
continuouslymeet the deadline, then itmeans that the system
is in underloaded condition now and then scheduler again
switches towards EDF algorithm [8].

3. Proposed Joint EDF-RM
Scheduling Algorithm

3.1.TheAlgorithm. This proposed algorithm is a combination
of RM and EDF scheduling algorithms. As we knows in RM
the upper bound of processor is computed by 𝑛(21/𝑛 − 1),
where 𝑛 is a number of tasks. In our proposed algorithm this
upper bound of RM will be a boundary limit of global task
queue𝐵𝑄 of global scheduler. If cumulative utilization of tasks
is less than or equal to 𝐵𝑄 will distribute towards randomly
selected processors of the system for execution, otherwise
that task will be discarded.

The second scheduling algorithm EDF is working for the
execution of assigned tasks on a particular processor. The
positive side of using global scheduler is permitted to task
migration in between processors. Figure 9 explains the task
migration methodology in between processors.

3.2. Joint EDF-RM Scheduling Algorithm. Proposed Joint
EDF-RMscheduling algorithm is divided into following three
modules:

(1) maintenance of global task queue
(2) execution of assigned tasks on allotted processors
(3) migration of tasks in between processors if needed (if

overloading alarm generates).

Following Algorithm 3 explains all above-stated three
modules.

3.3. Significance of the Above-Stated Proposed Algorithm.
System assumed here is loosely coupled distributed system
in which all processors share identical architecture (homoge-
neous RTDS). Threshold limit of each processor is fixed and
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Input: Random arrival of tasks with 𝜏arrival, 𝜏wcet, 𝜏period, 𝜏dline
Output: Number of tasks meet/miss the deadline along with another parameters

BEGIN
GlobalScheduler() // Global task Queue

(1) The aperiodic // Periodic arrival of tasks with arrival time, wcet,

assigned deadline and period

(2) tasku = wcet/Period;

(3) UB=n∗(Math.pow(2, 1.0/n)-1);

(4) IF tasku<=UB

(5) Generated task is schedulable

(6) pselection(task)

(7) Else
(8) The task is non-schedulable

pselection(task) // Random Selection of Processors

(1) Random Selection of Processor

(2) PQueue(task);

PQueue(task) // Processors local queue

(1) Assign priorities to tasks on the basis of deadline

(2) taskpriority ∝
1

taskpriority
(3) TaskExecution(task)

TaskExecution(task) // Task Execution by using EDF Scheduler

(1) If tasku<=1
(2) U= U+ tasku //Cumulative accumulation of task utilization

(3) If (U<=.810) //Processor utilization

(4) The task is ready for execution

(5) Else
(6) Task Migration (task, tasku)

Taskmigration(task, tasku) // Task Migration on the basis of a processor

utilization factor

(1) Sort all processor utilization

(2) Assign task to the processor having least a utilization factor

(3) PQueue(task);

END

Algorithm 3: Joint EDF-RM scheduling algorithm.
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Figure 6: Real time tasks frame format according to D O EDF scheduling algorithm.

in order to execute the tasks, the EarliestDeadline First (EDF)
scheduling is employed by every processor. In given system
all tasks are independent and their 𝜏period ≥ 𝜏dline. Based on
the priority of task, higher priority job can preempt the lower
priority task. One central scheduler (global scheduler) is used
that maintains the global task queue for the entire system.
As we recognize that global scheduler allows task migration
in between processors, therefore for every processor we have
set one utilization threshold value that generates alarms for
migration of task.This entire system deals with soft as well as
firm real time tasks.

In Figure 8, there is a global scheduler that maintains a
waiting task queue globally. In order to avoid the problem of
overloading, limited amount of tasks arrives on the queue and
its boundary limit is determined by using a RM scheduling
algorithm. Tasks having 𝜏utilization+∑

𝑛−1

𝑖=1
𝜏𝑖 utilization ≤ 𝑖×(2

1/𝑖
−

1) will be easily executable or if 𝜏utilization + ∑
𝑛−1

𝑖=1
𝜏𝑖 utilization ≤

𝑖 × (2
1/𝑖
− 1) ≤ 1, then not all tasks will be executable.

As the queue behaves on the basis of first in first out, tasks
are randomly assigned to processors. Each processor executes
tasks by using an EDF scheduling algorithm. Small change we
have done in this existing algorithm is migration threshold
limit. This migration threshold limit decides the migration
of task from given processor. In Figure 9 𝜌1 processor uti-
lization is 𝜌1 utilization = 𝜏𝑖 utilization + 𝜏2 utilization + 𝜏3 utilizaion +
𝜏(𝑛−2) utilization = 0.61 ≤ 0.810, And after the arrival of 𝜏𝑛−1
processor utilization becomes 𝜌1 utilization + 𝜏(𝑛−1) utilization =
0.70 ≤ 0.810, but arrival of 𝜏𝑛 reaches utilization towards
𝜌1 utilization + 𝜏(𝑛) utilization ≥ 0.810 < 1. Arrival of further tasks
will increase 𝜌1 utilization by 1; after that, all tasks start missing
deadline which causes a Domino effect. After migration
threshold alarm, processor checks the utilization values of
other processors. And then migrate the task to the processor
having the least utilization. 𝜌2 processor is a destination node
given in Figure 9.

Theorem1. If the upper bound of global task queue is 𝑛×(21/𝑛−
1), then overloading of processor is reduced.

Proof. Given set of 𝑛 aperiodic tasks 𝜏1, 𝜏2, 𝜏3, 𝜏4, . . . , 𝜏𝑛
arrives in a global task queue, whose periods and execution
times are 𝜏1 period, 𝜏2 period, 𝜏3 period, 𝜏4 period, . . . , 𝜏𝑛 period and
𝜏1wcet, 𝜏2wcet, 𝜏3wcet, 𝜏4wcet, . . . , 𝜏𝑛wcet, respectively. 𝜏1 utilization,
𝜏2 utilization, 𝜏3 utilization, 𝜏4 utilization, . . . , 𝜏𝑛 utilization are per task

Begin

Dynamic arrival of
tasks with

D O EDF frame

If (two tasks
continuously Yes

Yes

No

No

RM scheduling executes tasks

End

If (five tasks
continuously

meet the
deadline)

EDF scheduling executes tasks

miss the
deadline)

Figure 7: D R EDF scheduling algorithm flowchart.

utilization. We are considering here 𝜏deadline ≤ 𝜏period.
There are 4 processors present in our RTDS with 𝜌1 utilization,
𝜌2 utilization, 𝜌3 utilization, and 𝜌4 utilization being their respective
utilizations. Global scheduler randomly selects processors for
the allocation of tasks but tasks, follow FCFS discipline for
allocation.

We are taking three cases in order to proof given theorem

Case I. Global queue has infinite limit as the global queue is
containing no acceptance test of task. Without checking its
utilization, based on FCFS 𝜏1 task assigned to the randomly
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Figure 8: Architecture of proposed algorithm.

selected processor 𝜌2 whose 𝜌2 utilization < 1, and after the
assignment of 𝜏1, two conditions can occur:

𝜌2 utilization = {
𝜌2 utilization + 𝜏1 utilization, if 𝜏1 utilization ≤ 1,
𝜌2 utilization, otherwise,

(7)

𝜌2 utilization + 𝜏1 utilization

= {
schedule 𝜏1, if ≤ 1,
miss the deadline or overload, otherwise,

(8)

overload = {migration, if 𝜌𝑛 processor < 1,
wait for execution, otherwise.

(9)

In this case there are more chances of overloading on
every processor.

Case II. Boundary limit of global queue is 1, that is,
∑
𝑛

𝑖=1
𝜏𝑖 utilization ≤ 1.
Here only those tasks are allowed to enter in a global task

queue whose 𝜏utilization ≤ 1.
If tasks in a queue are waiting for an assignment and the

arrival of new task increases the boundary limit by 1, then all
upcoming tasks will not be allowed for admission:

𝐵𝑄 = {
allowed for execution, if ≤ 1,
Queue is full, otherwise.

(10)

In this case (7) is satisfied only on 1st condition; that is,

𝜌utilization = 𝜌utilization + 𝜏utilization. (11)

This case gives a guarantee of schedulability of every task.
Equations (8) and (9) behave similar to 1st case.The limitation

of the EDF scheduling algorithm is that if one task starts
missing deadline, then upcoming tasks also miss deadline
continuously (Domino’s effect).

Case III. Global queue has boundary limit 𝑛 × (21/𝑛 − 1).
Tasks having ∑𝑛

𝑖=1
𝜏𝑛 utilization ≤ 𝑛 × (2

1/𝑛
− 1) are allowed

to execute on assigned processors. As we know the value of

𝑛 × (2
1/𝑛
− 1) = {

1, for 𝑛 = 1,
< 1, for 𝑛 tends ∞.

(12)

According to RM scheduling, every task is schedulable if
its 𝜏utilization ≤ 𝑛 × (2

1/𝑛
− 1), but its execution is doubtful if it

is in between 𝑛×(21/𝑛−1) and 1.Therefore, here queue allows
only those tasks for further execution whose 𝜏utilization ≤ 𝑛 ×
(2
1/𝑛
− 1). Consider

𝑛

∑

𝑖=1

𝜏𝑖 utilization ≤ 𝑛 × (2
1/𝑛
− 1) ∀𝑛,

𝐵𝑄 = {
allowed for execution, if ≤ 𝑛 × (21/𝑛 − 1) ,
tasks are non-schedulable, otherwise.

(13)

After the allocation of tasks on the processor, it will execute
tasks by using EDF:

𝜌utilization = {
schedule tasks, if ≤ 1,
overloading occur, if > 1.

(14)

But in 3rd case very rare tasks utilization reaches 1 but not
beyond 1. Hence, we can say that if the upper bound of global
task queue is 𝑛 × (21/𝑛 − 1), then overloading of processor is
reduced.



10 Journal of Engineering

task

≥ 0.81 ≤ 1

= 0.70

= 0.61

= 0.52

= 0.67

= 0.65

< 0.810 ≤ 1;

hence it becomes destination node

𝜏1,n

𝜏3 𝜏3

𝜏2

𝜏1

Task 𝜏n crosses the migration

𝜏n

𝜏n−1

𝜏n−2

𝜏2

𝜏1

𝜏3

𝜏2

𝜏1

𝜏m

𝜌1 𝜌2 𝜌3

threshold limit; hence, it is a victim
after migration

+

+ 𝜏n−

Migration (𝜏1,n, 𝜌2)

𝜌2 utilization

𝜌2 utilization

𝜌3 utilization

𝜌2 utilization

𝜌2 utilization

𝜌1 utilization

𝜌1 utilization

𝜌1 utilization

1 utilization

𝜏n utilization

Figure 9: Migration scenario in proposed algorithm.
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Figure 10: Average CPU Utilization versus number of transactions on 8 and 10 processors.

4. Performance Analysis and
Simulation Results

In order to evaluate our proposed scheduling algorithm we
have used Eclipse Java EE IDE.The operation of the proposed
study is measured by calculating the Average CPU Utiliza-
tion, Success Ratio, Failure Ratio, and Maximum Tardiness.
The simulation is done with more than 26000 transactions
on 10 processors of RTDS, but in simulation results we
have mentioned transactions up to 2100. Before making
the demonstration of calculating simulation results, let us
discuss those parameters that determine the performance

of joint EDF-RM scheduling algorithm with some existing
algorithms (EDF, RM, D O EDF, and D R EDF).

4.1. Average CPU Utilization (𝐴𝜌 utilization). It is defined as

𝐴𝜌 utilization =
𝑛

∑

𝑖=1

𝜌𝑖 utilization
𝑛
, (15)

where the number of processors (𝜌) varies from 1 to 𝑛.
In Figure 10, the CPU utilization in proposed joint EDF-

RM scheduling algorithm is lesser than the other three
algorithms. As (1) explains, processor utilization is dependent
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Figure 11: Number of transactions versus Success Ratio on 3, 5, 8, and 10 Processors.

on particular tasks utilization and further tasks utilization
is dependent on the worst case execution time (𝜏wcet) and
interarrival period (𝜏period) of tasks as well. Additionally, the
𝜏wcet and 𝜏period are generated randomly in given simulation.
Due to all these factors of real time tasks the Average
CPU Utilization can vary from time to time. For example,
in Figure 10 𝐴𝜌 utilization of 8 processors for 300 tasks is
0.16338866 and on the other side for 10 processors it is
0.4004137. Similarly, In EDF 𝐴𝜌 utilization of 8 processors
for 2100 tasks is 3.287974 whereas for 10 processors it is
3.0410550. Hence, the value of Average CPU Utilization is
uncertain, but as compared to previous existing algorithm,
proposed joint EDF-RM algorithm gives better 𝐴𝜌 utilization
because of migration threshold limit of all processors along
with the boundary limit of global task queue.

4.2. Success Ratio (SR). Consider

SR =
Successfully scheduled tasks
Total number of tasks arrival

. (16)

Meeting with the deadline is very imperative for all real
time tasks; therefore we have computed success ratio that tells
the percentage of successful implementation of tasks from
total transactions.

After simulating thousands of tasks, we find that EDF,
RM and D R EDF scheduling algorithms’ Success ratio can

vary howeverwe sometimes find that our proposed algorithm
has a higher Success Ratio than the existing algorithms
(Figure 11). Reason behind its best performance is a threshold
value of task migration.

4.3. Failure Ratio (FR). Consider

FR = Tasks miss the deadline
Total number of tasks arrival

. (17)

This parameter computes the other side of coin, that
is, percentage of those tasks which are unable to meet the
deadline. Missing deadline is also a big task in front of
all algorithms (Figure 12). Therefore, we also compute the
Failure Ratio that tells us the occurrence of missing deadline.

4.4. Maximum Tardiness. As we know, tardiness is the late-
ness occurring in tasks execution; that is,

tardiness = TST − 𝜏deadline,

Max Tardiness = max (tard𝜏𝑖) , where 𝑖 ∈ 𝑇.
(18)

While missing a deadline, we have computed the time
after which task successfully executes. Figure 13 explains that
the proposed algorithm has Minimum Tardiness compared
to existing algorithms.
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Figure 12: Number of transactions versus Failure Ratio on 3, 5, 8 and 10 processors.
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Figure 13: Number of transactions versus Maximum Tardiness on 8 and 10 processors.

5. Conclusion and Future Work

Proposed scheduling algorithm is the combination of EDF
and RM scheduling algorithms that rise above the over-
loading problem of any processor. We have set the thresh-
old limit 0.81 that generates alarm for the migration of
upcoming tasks because overloading on task is restricted. We

simulate this work for homogeneous system; in the future
we will implement it on heterogeneous arrangement. One
main problem occurs when running tasks are preempted
by higher priority new tasks because running tasks miss
the deadline. Hence, in future we will work on preemp-
tion technique of scheduling algorithms with fault tolerant
techniques.
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