
AIR TRAFFIC MANAGEMENT

Enroll no. – 101445

Name - Vibhor Saxena

Supervisor - Prof. Dr. Satya Prakash Ghrera

 May, 2014

Submitted

In

 Partial fulfillment of Degree of Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

 AND

INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY ,

WAKNAGHAT.

- 1 -

Table of Contents

Index Page No.
1) INTRODUCTION 6

 -What is Air Traffic Management?

 -Need for Air Traffic Management.

2) PROBLEM STATEMENT AND MOTIVATION 7

3) LITERATURE REVIEW 8

 -Fairness Landing Algorithm

 - Compromise immune algorithm (CIA)

 - Optimal take-off and landing algorithm

 - Flight Arrival Scheduling Strategy

4) PROPOSED SOLUTION 22

5) SIMULATION 43

6) TESTING OUTCOMES 48

7) FUTURE WORKS 50

8) REFERENCES ` 52

- 2 -

CERTIFICATE

This is to certify that the work entitled-“AIR TRAFFIC MANAGEMENT” submitted

by VIBHOR SAXENA-101445 in partial fulfillment for award for degree of Bachelor

of Technology in Information Technology of JAYPEE UNIVERSITY OF

INFORMATION TECHNOLOGY has been carried out under my supervision. This

work has not been submitted partially or wholly to any other University for any award

of this or any other degree.

Prof. Dr. Satya Prakash Ghrera

 (HOD computer science dept.)

Department of Computer Science Engineering and Information Technology

Jaypee University of Information Technology

Waknaghat

- 3 -

Acknowledgement

“It is not possible to prepare a project without the assistance &

Encouragement of other people. This one is certainly no exception.”

On the very outset of this report, we would like to extend our sincere & heartfelt

obligation towards all the personages who have helped us in this endeavor. Without

their active guidance, help, cooperation & encouragement, we would not have made

headway in the project.

We would like to show our greatest appreciation to Prof. Dr. Satya Prakash Ghrera

. We feel motivated every time we get his encouragement. For his coherent guidance

throughout the tenure of the project, we feel fortunate to be taught by Prof. Dr. Satya

Prakash Ghrera , who gave us his unwavering support. Besides being our mentor, he

taught us that there is no substitute for hard work.

We will be always in debt of Mr. Punit Gupta for providing us his timely help and

guidance.

We owe our heartiest thanks to Brig. (Retd.) S.P. Ghrera (HOD, CES/IT Department)

who has always inspired us to take initiatives and showed us the path for achieving our

goal.

In the light of new developments and recent findings, we devote the task that was asked

from us at Jaypee University of Information Technology to “GPS BASED AIR

TRAFFIC MANAGEMENT”.

VIBHOR SAXENA-101445

- 4 -

Summary

Air traffic management systems are used to maintain the safe, orderly and

expeditious flow of air traffic in the global air traffic control system. The position of air

traffic system is one that requires highly specialized knowledge, skills, and abilities.

System apply separation rules to keep aircraft at a safe distance from each other in

their area of responsibility and move all aircraft safely and efficiently through their

assigned sector of airspace, as well as on the ground. Because system have an

incredibly large responsibility while on duty (often in aviation, "on position") and make

countless split-second decisions on a daily basis, the ATC systems are consistently

regarded around the world as one of the most mentally challenging careers, and can be

notoriously stressful depending on many variables (equipment, configurations, weather,

traffic volume, human factors, etc.).Also as we know that by time the air traffic is also

increasing at very fast rate, and so is the delays of flight, and flight cancelation, because

of human intervention the air traffic management is not very fast and accurate, so we

are trying is to create a scheduling algorithm with minimum delay and minimum human

intervention. So we are creating this algorithm by using multithreading, so that we

could get minimum delays in our flight management. Currently we are taking a

scenario from Delhi IGI Airport.

Signature of Student Signature of Supervisor

Name: Vibhor Saxena Name: Prof. Dr. Satya Prakash

Ghrera

Date Date

- 5 -

Chapter - I

Introduction

What is Air Traffic Management?

Air traffic management is an aviation term encompassing all systems that assist

aircraft to depart from an aerodrome, transit airspace, and land at a destination

aerodrome, including Air traffic control (ATC), Air Space Management (ASM), Air

Traffic Services (ATS), and Air Traffic Flow Management (ATFM) , Flight Scheduling

and Capacity Management.

The increasing emphasis of modern ATM is on interoperable and harmonized systems

that allow an aircraft to operate with the minimum of performance change from one

airspace to another. ATC systems have traditionally been developed by individual

States that concentrated on their own requirements, creating different levels of service

and capability around the world. Many Air Navigation Service Providers (ANSPs) do

not provide an ATC service that matches the capabilities of modern aircraft,

so ICAO has developed the Aviation System Block Upgrade (ASBU) initiative in order

to harmonize global planning of technology upgrades.

Need for Air Traffic Mananagement

1) To regulate planes on their desired paths

2) To prevent collision of planes in mid air

3) To give guidance and help to plane when it is in mid air.

4) To help the pilots locate the exact location of runway and helping in landing the

plane.

5) To help automated updating of flight delay and suspension

- 6 -

Chapter-II

Problem Statement and Motivation

There are several algorithms which provide flight scheduling for Airport Traffic

Control System(ATCS) in an undertaken scenario but are not valid for all the different

scenarios of Air Traffic Control System .

To create an algorithm which optimize the air traffic management system and can work

in different scenario like emergency landing , collision time of two planes , different

planes according to their weight etc.Also to minimize the human intervention by

creating this algorithm this algorithm cuts human work and increases efficiency and

reduces human error.

- 7 -

Chapter-III

Literature Survey

We have studied four algorithms which implement different scheduling algorithms for

scheduling flights in an airport . the four algorithms which we studied are:-

1) Fairness In Flight Landing Scheduling

2) Compromise Immune Algorithm (CIA)

3) Optimal Take off and Landing Algorithm

4) Flight Arrival Scheduling Strategy

- 8 -

[1] ALGORITHM 1:

Fairness In Flight Landing Scheduling
Yong Wang, Feng Wang, Dan Wang, Zhenghu Gong and Jiangchuan Liu “Revisit

the Fairness Issues in Flight Landing Scheduling” 15th International IEEE

Conference on Intelligent Transportation Systems, Anchorage, Alaska, USA,

September 16-19, 2012

Flight landing optimization at the terminal area is an ongoing challenge for air traffic

controllers. The current schedule scheme is first-come-first-served (FCFS). There are

studies focusing on how to minimize the total cost or maximize the throughput. These

schemes are short of fairness consideration. In this paper, we start from a real recent

example to show that a lack of consideration of long-term fairness may cause

significant problems in certain emergency situations. We propose new definitions of

fairness between different airlines which consider the history fairness information. We

then study the fairness in flight landing problem (FFLP). We show that the problem is

NP-hard to solve. Therefore, we develop a fast heuristic. Our experiment results show

that our algorithm achieves a 50.4% gain on long-term fairness.

Constraints
We consider that there are n flights to be scheduled and denote them as F = {f1, . . . ,

fn}, ordered by their ETA. Besides the ETA for flight fi, which we denote as ETAi,

there are also three other constraints as follows:

1)Arrival Time Windows:

A flight must land between its earliest and latest possible landing time. This time

window constraint can be dependent on the technical and operational reasons such as

fuel limitation, maximum allowed delay, or maximum or minimum airspeed [9]. We

use Ei and Li to denote the earliest and latest possible time of arrival of the flightfi

respectively. So, the STAi must satisfy ∀fi ∈ F, Ei ≤ STAi ≤ Li .

- 9 -

2) Separation Requirements:-

 The Federal Aviation Administration (FAA) regulates the minimum spacing between

two successive landing flights in order to avoid the danger of wake turbulence [10]. The

flights are classified into three weight classes (heavy, large, and small) based on the

maximum takeoff weight by the FAA. The matrix of minimum separation times (in

seconds) is shown in Table I. We use S to denote the matrix of minimum separation

times and the minimum separation time of two consecutive flights fi and fj is thus

S[Wi,Wj], where Wi and Wj are the weight class of flight fi and fj respectively. The

STAi must satisfy ∀fi, fj ∈ F, if STAi < STAj , then STAj − STAi ≥ S[Wi,Wj].

3) Precedence Constraint:
 The landing flights may be imposed on precedence over others due to overtaking

constraints, airline preferences, or high priority flights [12]. We use ≺ to denote the

precedence relations between two flights. fi and fj means fi has higher priority than fj

and fi must land before fj . That is ∀fi, fj ∈ F, if fi <= fj , then STAi < STAj .

Obviously, if fi > fj and fj < fk, then fi < fk.

 Fairness Definition

Let A = {A1,A2, · · · ,Am} be the set of airlines, Aj be

the set of flights from airline j, where Aj ∈ A. |Aj | = m

represents the number of flights in Aj . Let ci(ti) be the cost

of fi landing at time ti, Cj be the total cost of all the flights

from airline Aj , so Cj = P fi∈Aj ci(ti).

In this paper, fairness in flight landing is measured by the difference between the

current cost Cj and the unaffected cost Cuj . Cu j is defined as the cost of airline Aj

being scheduled while ignoring all the other flights from other airlines. The

corresponding affected-extra-cost Ca j of airline Aj is defined as the cost caused by the

presence of other airlines. According to the definitions above, we have Ca j = Cj – Cu j

.

Definition 1 (Fairness): the average affected extra cost of an airline.

- 10 -

Let Fj be the fairness value of airline Aj , then Fj = Ca j/Wj =(Ci - Cuj)/Wj .

Here Wj denotes the weight of the flights in the airline. The definition of fairness in

previous works is unfair as we have shown an example in the introduction. But under

our new definition, the scheduling sequence of the two airlines could be viewed as

being scheduled individually and there is no influence on each other. And therefore, the

fairness of the two airlines are both equal to 0.

Advantages
• Consider aircrafts of variable sizes that is heavy, large & small.

• Consider aircrafts of different airlines.

• Algorithm is best for solving emergency scheduling scenarios .

• It shows 50.4% gain on total cost & fairness as compared to FCFS.

It consider history compensation in fairness scheduling scheme that is a if one flight

from an airline is delayed at a time, compensation will be made in later scheduling on

the flights from the same airline

Disadvantages
• Algorithm is only designed for landing of an aircraft thus misses flight take-off

scenario.

• Does not include the scenario were a flight is delayed beyond its scheduling

time.

• Assume the cost of flight is as linear function rather than a complex function.

- 11 -

[2] Algorithm 2

Compromise immune algorithm (CIA)
Jianli Ding, Jinling Ji, Heyi “Wang Optimization of Airport Flight Arrival and

Departure Based on Compromise Immune Algorithm” IEEE Transactions on

Control Systems 2007.

The essence of optimization of airport flight arrival and departure is to seek optimal

sequencing of flight arrival and departure and reduce flight delay. In this paper

according to the rule of “Flight arrival has priority over flight departure” and the limit

of airport capacity, optimal schedule of airport flight arrival and departure is achieved

through compromise immune algorithm (CIA), and flight delay is minimized.

Experimental results show that CIA has great ability of problem solving and is

especially suitable for solving practical problems of combinational optimization.

CIA is developed on the basis of combing the compromise method of optimizing

several objectives. The compromise method decides the point closest to the ideal point

using some kind of distance measuring method. To many complex problems, it is

difficult to find the ideal point. CIA replaces the ideal point with the concept of proxy

ideal point. The proxy ideal point is the point relating to current genetic generation

instead of the ideal point of given problems. In other words, the proxy ideal point is

computed according to part of the discovered solution space instead of the whole

solution space. In each generation it is easy to acquire proxy ideal point. With advance

of evolution process, the proxy ideal point will get close to the real ideal point.

The model is an integral programming model and uses CIA to seek solution. See Figure

1 for algorithm description. . In this paper’s algorithm, population size is 200; crossover

probability is 0.3; mutation probability is 0.2; iteration times are 4. In the initial

population, select the individual with minimum total time of delay as the proxy ideal

point, and meanwhile set the regret value of every individual as  =1; While

population, update proxy ideal point, and meanwhile individual’s regret value varies

with the change of individual’s delay time. Table 1 lists the results of flight

- 12 -

optimization within each time interval. For easy comparison, s the final traffic flow

allocation approaches. In comparison with the initial

IMPORTANT POINTS

• CIA is developed on the basis of combing the compromise method of

optimizing several objectives.

• In this, time is divided into several 15 min intervals . Flights within the same

time interval are free of strict sequencing restriction, which actually allows great

freedom to arrange flights.

• It uses two variable arrival capacity & departure capacity , that is the no. of

planes that can be easily accommodated in a given time interval.

Advantages
• Airport’s arrival and departure requirements and optimal allocation of arrival

and departure capacities within given time are considered together.

• As compared to FCFS it produce least cost of flight delays.

• It take into consideration the that “Flight arrival has priority over flight

departure”.

• Disadvantages

• Does not consider any difference in types of plane.

• Does not provide any mechanism for dealing emergency situations.

• When compared with genetic algorithm it produces more number of delays.

- 13 -

- 14 -

[3] ALGORITHM 3

 Optimal take-off and landing algorithm.
Andrea D’Ariano, Paolo D’Urgolo, Dario Pacciarelli and Marco Pranzo” Optimal

sequencing of aircrafts take-off and landing at a busy airport” 13th International

IEEE Annual Conference on Intelligent Transportation Systems,Madeira Island,

Portugal, September 19-22, 2010

This paper studies the problem of sequencing aircraft take-off and landing operations at

congested airports. We introduce and analyze alternative detailed formulations and

solution algorithms for scheduling arrival and departure times of the aircrafts, such that

the delay with respect to the scheduled times is minimized. The aircraft scheduling

problem (ASP) is viewed as an extension of the job shop scheduling problem with

additional real-world constraints and formulated by using alternative graphs. Two

alternative formulations model the required time separation among aircrafts in air

segments and runways according to safety regulations and differ for the level of detail

used to represent the holding circles. Scheduling rules, heuristic and exact methods are

implemented and tested on practical size instances of the Fiumicino airport, the busiest

airport in Italy. We show that two versions of an innovative branch and bound

algorithm are always able to find good solutions in a few seconds and often improve the

best solution computed by the scheduling heuristics. Optimality is proved in less than

two minutes for more than half of the instances.

From a logical point of view, ATC decisions can be broadly divided into:

 1)Routing decisions

2)Scheduling decisions

  Job Shop Schdeluing

Heuristics and Exat Algorithm

- 15 -

Sub-parts of aircraft scheduling algorithms evaluated in this algorithm

1)The Arc Greedy Heuristic (AGH)

2)Heuristic AMCC (Avoid Most Critical Completion time)

3)Heuristic AMSP (Avoid Most Similar Pair)

4)Branch and Bound (denoted as BB)

5)Job Greedy Heuristics

Figure – 2

Figure- 3

- 16 -

ADVANTAGE

• Optimal/near-optimal solutions are found in a few seconds of computation for

most of the instances and BB often outperforms the heuristics, including a

practical scheduling technique.

• On the other hand, BB is always able to find a good solution within a few

seconds.

DISADVANTAGE

• This paper don’t work on entrance delay in TMA

- 17 -

[4] ALGORITHM 4

Flight Arrival Scheduling Strategy
Shiwei Zhao ,Guo Wei , Huijuan Feng “Study on Optimizing Control of

Flight Arrival Scheduling Strategy” International symposium on

instrumentation & measurement , sensor networks and

automation(IMSNA),2012

Flights arrival scheduling problem is stubborn problem in air traffic control at present.

Through analyzing dynamic process of arriving flights, we make reasonable assumption

and split the problem into two parts. First sequence all arriving flights in certain period,

and adjust interval between arriving flights by model reference adaptive control.

Simulation results show that arriving flights become steadier and smooth, which supply

a new idea to deal with problem in ATC automation in future.

PROCESS OF FLIGHT ARRIVAL SCHEDULING

There are two parts in Process of flight arrival scheduling: flight sequencing and

interval between flights adjusting.[2] It is main duty of Flight arrival scheduling

controller that make the arrival flights from various airways to become one balanced

and smooth stream of arrival flights by air traffic control rules, to guarantee flights

landing well-ordered and peaceably. Air traffic controllers guide flights taking off or

landing with standard flight course, as shown in figure 1, and adjust interval between

flights according to maximum taking-off weight and minimum wake vortex separation.

During flight arrival process, there are major factors which have effect on flights arrival

scheduling, such as aircraft type, importance degree, urgency degree, and so on.

According to maximum taking-off weight, there are three aircraft types: heavy aircraft,

its maximum weight equal or above 136t; medium aircraft, its maximum weight

between 7t and 136t; light aircraft, its maximum weight equal or below 7t. Importance

degree is judged by property transport event by aircraft, such as special flight, official

flight, charter flight, and passenger flight and cargo flight etc. there are some accident

- 18 -

events appearing inevitably in flight process, urgency degree ranks them according to

impact of flight safety.

Adopting Fuzzy Reason Method and Building Flight Arrival

Stream Model.

• 1)NST (Norm Separation Time)

 NST = ETA(B) - ETA(A)

• 2)GSD (Groundspeed Difference)

 GSD = GroundSpeed(A) -GroundSpeed(B)

• 3)SPI (Standard Position Interval)

 SPI = D(B) - D(A)

• 4)IMD (Importance Degree)

 IMD = IM(B) - IM(A)

• 5)ORDER (flight arrival serial number)

Figure-4

- 19 -

Characters of process of flight arrival scheduling
Summarizing above analysis and actual situation in arrival flight scheduling, we could

reach following assumption, which could simplify analysis process.

Modern aircraft could execute control instructions completely; flights sequence could

be adjusted by waiting in holding area or surpassing other aircraft, interval between

flights could be adjusted flight parameters

Simulation aim is large and busy airport. To enhance efficiency, major aircrafts

accessing these airports is medium or above type aircrafts, such as B737, A320 etc,

light aircrafts taking off and landing on other neighboring smaller airports.

Advantage
• This method in sequencing arriving flights is verified by theory and proved

reasonable; - Compared to FCFS algorithm, improved FCFS algorithm based on

fuzzy reasoning is more efficient.

 Disadvantage
• We only consider some impact factors, in actual situation, many impact factors

should be considered, for example flight cancel ,route conditions, airport

clearance environment, neighboring airports interaction, and the performance of

the aircraft etc, those factors should be classified and dealt with in a reasonable

way.

- 20 -

Comparison Of The Above Four Algorithms

TABLE 1

Here we have compared the all the four algorithms which we have studied and draw a

very specific evaluations of them according to the parameters we have studied.

This evaluation show the which parameters are lacking in which algorithm and what are

the disadvantages of these algorithms.

- 21 -

Figure 1

- 22 -

Chapter-IV

Proposed Solution

We are creating an algorithm where we have taken arrival time, departure time , strip

length required for the flight to land and the weight of plane with weight which strip

can bear .

This has resulted in the scheduling algorithm and the following code represents the

simulation part of our algorithm.

For simulation we have used NETBEANS as tool for coding and providing classes for

our front end.

Proposed Algorithm working

Anytime a plane arrives to the airport it sends a landing request to the algorithm, well

before the time of its arrival, so as we all know that at a particular time there could be

many requests arriving to the algorithm, so we have distinguished these requests on the

basis of time of arrival on nano seconds difference so at a particular time only one

request is coming at the algorithm, we have then put these requests in the queue using

FIRST COME FIRST SERVE basis,

So our algorithm is working on multithreading, so whenever a planes requests its

arrival onto the airport it checks for all the possible landing option for that airplane, and

if the runway is busy, it then shifts its landing to other runway which is free or having

lesser queue, so in this way we can reduce the delay time, and increase the efficiency

for our algorithm.

- 23 -

But in case of an emergency , whenever a plane is having an emergency landing , then

till the plane gets landed properly and removed from the runway till then we shuts

down that runway for other flights, and try to accommodate them on other runways or

if not then we diverge them to nearby airport to reduce the amount of delay.

We have designed this algorithm also to reduce the amount of human intervention, all

this work is now done by humans which raise an human error also , so in order to

increase the safety and decrease the delays and flight cancelation we have created this

algorithm , because in future the amount of air traffic is only going to be increased.

FLOW CHART -1

- 24 -

- 25 -

CODE

Faults.java

package javaapplication2;

import java.util.ArrayList;

import java.util.List;

import javax.annotation.Resources;

import java.util.logging.Level;

import java.util.logging.Logger;

import java.sql.*;

import javax.swing.JTable;

public class Faults {

 Terminal s1=new Terminal();

 Terminal s2=new Terminal();

 Terminal s3=new Terminal();

public void func()

 {

 try

 {

 Class.forName("org.apache.derby.jdbc.ClientDriver");

 // Class.forName("org.apache.derby.jdbc.ClientDriver");

 Connection con = DriverManager.getConnection("jdbc:derby://localhost:1527/db",

"vibhor", "vibhor");

 Statement statement=con.createStatement();

ResultSet rs=statement.executeQuery("select * from untitled4 order by AR asc ");

- 26 -

req re3=new req();

while(rs.next())

{

requirement r1=new requirement();

 //System.out.print(rs.getString("AR"));

 r1.arrival_time=Integer.parseInt(rs.getString("AR"));

 System.out.print(rs.getString("DP"));

 r1.depart_time=Integer.parseInt(rs.getString("DP"));

 //r1.delay=1;

 r1.weight=Integer.parseInt(rs.getString("SWR"));

 r1.lenght=Integer.parseInt(rs.getString("SLR"));

 r1.id=Integer.parseInt(rs.getString("FN"));

 System.out.print(r1.id);

 re3.submit (r1);

// update_table();

}

 }catch(Exception e)

 {

 }}

 public void add_resource()

{

 resource r=new resource();

 r.name= "Indra Gandhi";

 r.capacity=70;

 s1.name="terminal1";

 s1.striplenght=12500;

 s1.weight=350;

 s1.terminal=20;

 s2.name="terminal2";

 s1.al_terminals=0;

 s2.striplenght=13780;

 s2.weight=500;

- 27 -

 s2.terminal=25;

 s2.al_terminals=0;

 s3.name="terminal3";

 s3.striplenght=14534;

 s3.weight=700;

 s3.terminal=25;

 s3.al_terminals=0;

 r.strip.add(s1);

 r.strip.add(s2) ;

 r.strip.add(s3);

 req r2=new req();

 r2.submit(r);

}

 /*

 public void add_requirement()

{System.out.println("Initializing Simulation");

 System.out.println("request generating");

 for(int i=0;i<70;i++)

{

 requirement r1=new requirement();

 r1.arrival_time=10;

 r1.depart_time=5;

 r1.delay=1;

 r1.weight=50;

 r1.lenght=8750;

 req re3=new req();

 r1.id=i;

 re3.submit (r1);

}

}

 */

 public void ss()

- 28 -

 {

 func();

 add_resource();

 schedule s=new schedule();

 s.start();

 }

 public static void main(String args[]) {

 Faults f=new Faults();

 f.ss();

 }

 }

Schdule.java

package javaapplication2;

import java.beans.Statement;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.text.SimpleDateFormat;

import java.util.Calendar;

import java.util.LinkedList;

import java.util.Queue;

import java.util.logging.Level;

- 29 -

import java.util.logging.Logger;

public class schedule extends Thread

{

req q=new req();

requirement r;

 @Override

 public void run()

 {

 System.out.println("scheduling algorithm started");

 while(true)

 {

 if(!q.queue.isEmpty())

 {

 r=q.queue.poll();

 shedule_algo(r);

 try {

 ///

 Thread.sleep(2000);

 } catch (InterruptedException ex) {

 Logger.getLogger(schedule.class.getName()).log(Level.SEVERE, null,

ex);

 }

 ///

 if(r.sched==0)

 {

 q.queue.add(r);

 }

 }

 else if(!q.to.isEmpty())

- 30 -

 {departure();

 }

 else

 {

 try {

 finalise(q);

 } catch (ClassNotFoundException ex) {

 Logger.getLogger(schedule.class.getName()).log(Level.SEVERE, null,

ex);

 } catch (SQLException ex) {

 Logger.getLogger(schedule.class.getName()).log(Level.SEVERE, null,

ex);

 }

 this.stop();

 }

 }

 }

 public void shedule_algo (requirement r1)

 {

 //System.out.println("scheduling started");

 int re;

 for(int i=0;i<req.conn.get(0).strip.size();i++)

 { // System.out.println("scheduling "+" id no. "+r1.id+" plane");

 Terminal t=req.conn.get(0).strip.get(i);

 re=check(t,q,r);

 if (re==1)

 { Calendar cal = Calendar.getInstance();

- 31 -

 cal.getTime();

 SimpleDateFormat sdf = new SimpleDateFormat("HH:mm:ss");

 System.out.println("");

 t.wait=1;

 thread o=new thread(t);

 System.out.println("plane id "+r.id+ " landed on" +" "+ t.name);

 t.al_terminals++;

 re= 1;

 r.s=t;

 r.sched=1;

 // cal.add(Calendar.MINUTE, +2);

 r.time = sdf.format(cal.getTime()) ;

 System.out.println(r.time);

 cal.add(Calendar.HOUR, +10);

 r.out_time=sdf.format(cal.getTime()) ;

 q.submit_allocate(r);

 q.submit_to(r);

 break;

 }

 }

 // while(!q.queue1.isEmpty())

 //System.out.println("plane"+r.id);

 //System.out.println("plane can't land on this airport due to its weight

requirments");

 }

 public int check(Terminal t,req q,requirement r)

 {

 int slenght1=t.striplenght;

- 32 -

 int sweight1=t.weight;

 int re=0;

 //System.out.println(sdf.format(cal.getTime()));

 if(t.wait==0)

 {

 if (r.lenght<=t.striplenght && r.weight<=t.weight)

 {

 System.out.println("trying plane "+r.id+" to accomodated on "+t.name);

 if(t.alert==1)

 {

 System.out.println("plane "+r.id+" can't be accommodated on "+t.name+

"due to emergency");

 // q.submit(r);

 re=0;

 }

 else if(t.al_terminals==t.terminal)

 {

 System.out.println("plane "+r.id+" can't be accommodated on "+t.name+

"due to unavailability of space");

 // q.submit(r);

 re=0;

 }

//

// else if(t.emg==r.flag)

// {

// // t.al_terminals=t.terminal;

// System.out.println("plane id "+r.id+ " landed on" +" "+ t.name);

// System.out.println(t.name+" blocked");

//

// t.alert=1;

// r.s=t;

//

- 33 -

// q.submit_allocate(r);

// re=1;

// }

 else

 {

 re= 1;

 }

 }else

 {

 System.out.println(r.id+" cannot be accomodated on "+t.name+" due to

parameters\n");

 }

 }

 else

 {

 System.out.println(r.id+" cannot be accomodated on "+t.name+" busy\n");

 }

 return re;

 }

 public void finalise (req q) throws ClassNotFoundException, SQLException

 {String s=" ";

System.out.println("plane"+s+"terminal"+s+"time"+s+"strip_lenght_req"+s+"weight");

 requirement r= new requirement();

 Class.forName("org.apache.derby.jdbc.ClientDriver");

 // Class.forName("org.apache.derby.jdbc.ClientDriver");

 Connection con =

DriverManager.getConnection("jdbc:derby://localhost:1527/db", "vibhor", "vibhor");

 java.sql.Statement st=con.createStatement();

 while(true)

- 34 -

 {

 if(!req.queue1.isEmpty())

 {

 r=req.queue1.poll();

 System.out.println(" "+r.id+s+r.s.name+s+r.time+s+r.lenght+s+s+r.weight);

 String d="insert into VIBHOR.UNTITLED7

VALUES('"+r.id+"','"+r.s.name+"','"+r.time+"','"+r.lenght+"','"+r.weight+"')";

 int rs=st.executeUpdate(d);

 }

 if(!req.dep.isEmpty())

 {

 r=req.dep.poll();

 System.out.println("

"+r.id+s+r.s.name+s+r.out_time+s+r.lenght+s+s+r.weight);

 String d="insert into VIBHOR.UNTITLED8

VALUES('"+r.id+"','"+r.s.name+"','"+r.out_time+"','"+r.lenght+"','"+r.weight+"')";

 int rs=st.executeUpdate(d);

 }

 else

 {

 break;

 }

 }

 output o=new output();

 o.setVisible(true);

 };

public void departure ()

{

int re;

requirement r1;

for(int j= 0 ; j<req.to.size();j++)

- 35 -

{r1=req.to.poll();

 try {

 ///

 Thread.sleep(2000);

 } catch (InterruptedException ex) {

 Logger.getLogger(schedule.class.getName()).log(Level.SEVERE, null,

ex);

 }

for(int i=0;i<req.conn.get(0).strip.size();i++)

 {

 Terminal t=req.conn.get(0).strip.get(i);

 re=check_dep(t,r1);

 if (re==1)

 {break;

 }

}

}

 }

public int check_dep(Terminal t,requirement r)

 {Calendar cal = Calendar.getInstance();

 req q=new req();

 cal.getTime();

 SimpleDateFormat sdf = new SimpleDateFormat("HH:mm:ss");

 int slenght1=t.striplenght;

 int sweight1=t.weight;

 int re=0;

 if (r.lenght<=t.striplenght && r.weight<=t.weight)

 {

 // if(t.al_terminals==t.terminal)

- 36 -

 // {

 // System.out.println("plane "+r.id+" can't be departured on "+t.name);

 //q.submit(r);

 // re=0;

 System.out.println("");

 System.out.println("plane id "+r.id+ " departured on" +" "+ t.name);

 t.al_terminals--;

 re= 1;

 r.s=t;

 cal.add(Calendar.HOUR, +10);

 r.out_time = sdf.format(cal.getTime()) ;

 q.submit_dep(r);

 }

 return re;

 }

}

Req.java

package javaapplication2;

/*

- 37 -

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

import javaapplication2.requirement;

import javaapplication2.resource;

import java.util.ArrayList;

import java.util.LinkedList;

import java.util.List;

import java.util.Queue;

public class req {

 static Queue<requirement> queue = new LinkedList<requirement>();

 static Queue<requirement> queue1 = new LinkedList<requirement>();

 static List<resource> conn=new ArrayList<resource>();

 static Queue<requirement> to = new LinkedList<requirement>();

 static Queue<requirement> dep = new LinkedList<requirement>();

 public void submit(requirement e)

 {System.out.print(e.id+"\n");

 queue.add(e);

- 38 -

}

 public void submit(resource e)

 {System.out.print(e.name+"\n");

 conn.add(e);

}

 public void submit_allocate(requirement f)

 {

 queue1.add(f);

}

 public void submit_dep(requirement r1)

 {

 dep.add(r1);

}

 public void submit_to(requirement r1)

 {

 to.add(r1);

}

- 39 -

}

Requirement.java

public class requirement {

 String type;

 int arrival_time;

 int depart_time;

 int delay;

 int weight;

 int lenght;

 Terminal s;

 int id;

 String time;

 String out_time;

 int flag=0;

 int sched=0;

}

Resource.java

public class resource {

String name;

int capacity;

List<Terminal> strip=new ArrayList<Terminal>();

}

Waiting.java

package javaapplication2;

import java.util.logging.Level;

- 40 -

import java.util.logging.Logger;

/**

 *

 * @author Vibhor

 */

public class waiting extends Thread {

 private requirement r1;

 private req q;

public waiting (requirement r)

{this.r1 = r;

 this.start();

}

 @Override

public void run()

{

 System.out.println("is processing");

 // Thread.sleep(1);

 System.out.println("plane ready for take off");

 q.submit_to(r1);

}

}

Terminal.java

public class Terminal {

 String name;

 int striplenght;

 int weight ;

 int terminal;

 int al_terminals=0;

 int emg=1;

- 41 -

 int alert=0;

 static int wait=0;

}

Thread.java

public class thread implements Runnable{

Terminal t1;

 public thread (Terminal t)

 {t.wait=1;

 t1=t;

 Thread thread = new Thread(this);

 thread.start();

 t.wait=0;

 }

 public void run()

 {

 System.out.println(t1.name + "under process");

 try

 {

 Thread.sleep(5000);

 System.out.println("This is completed");

 t1.wait=0;

 }

 catch (InterruptedException e)

 {

 Thread.currentThread().interrupt();

 }

 }

- 42 -

}

Currenttime.java

import java.text.SimpleDateFormat;

import java.util.Calendar;

public class currentTime {

 public static void main(String[] args) {

 Calendar cal = Calendar.getInstance();

 cal.getTime();

 SimpleDateFormat sdf = new SimpleDateFormat("HH:mm:ss");

 System.out.println(sdf.format(cal.getTime()));

 }

}

- 43 -

Chapter-V

SIMULATION WORKFLOW

• An Request Is Generated By Aircraft Stating Various Requirements For

Landing

• Priority Queue

• FCFS

• Scheduling Module Is Called

• Parameter Check

• Strip Allotment

• A Check For Any Emergency Constraint

• Block Terminal

• Put Flights On Hold For That Terminal

• STEP 1

• Flights that cannot land except the blocked terminal , are put on hold or diverted

to nearby airport

• STEP 2

• Other terminals will still be functioning

• STEP 3

• Now ,the finalise function is called , entry of log into database

• STEP 4

• Retrieval of value from database and put into another priority queue

• STEP 5

• This queue is for the flights waiting for departure and who has sent the

departure request.

• STEP 6

• Check function is also used , in order to allot strip for take off

• STEP 7

- 44 -

• It checks if the strip is free ,if not then assign to other free strip of higher

capacity

• STEP 8

• Finally as the plane takes off it is entered into another queue called take off

• STEP 9

• An automated output is generated.

SIMULATION WORKFLOW

Screenshot 1 – opening of project

- 45 -

Screenshot 2 – requests for takeoff and landing

Screenshot 3 – landing request generator

- 46 -

Screenshot 4 – take-off request generator

Screenshot 5 – resources available at airport

- 47 -

Screenshot 6 – simulation button , simulation starts

Screenshot 7 – final output

- 48 -

Chapter-VI

Testing outcomes
IGI Airport New Delhi
We have tried to test our algorithm with a data of 100 aircrafts from the real time based

data of IGI AIRPORT DELHI , and calculated the amount of delays and how our

algorithm is performing when given a real scenario.

We are concidering 3 runways from IGI AIRPORT. With specifications

Figure -5

Runway Statistics
Runwany No. Direction Length

1 10/28 12,000ft

2 9/27 9,229ft

3 11/29 14,534ft

Table 2

- 49 -

Terminal 1 – domestic

Terminal 1 facilities are currently used by GoAir, IndiGo, SpiceJet and are split into

two areas, Terminal 1D for departures and Terminal 1C for arrivals.

Terminal 2
Terminal 2 will work in tandem with T3, until the proposed T4 terminal is built, upon

which it will be demolished as per the proposed master plan.

Terminal 3 – domestic and international
 It occupies an area of 502,000 m2 (5,400,000 sq ft), with a capacity to handle 34

million passengers annually.

Capacity

Terminal NO. of Flight

T-1 20

T-2 25

T-3 25

Table 3

Beijing Capital International Airport

Runway Statistics

Runway No. Direction Length

1 18L/36R 12,500ft

2 18R/36L 11,300ft

3 01/19 12,500ft

Table 4

Terminal 1
Terminal 1 reopened for a second time on June 27, 2008, and became the operational
base for all domestic flights operated by the HNA Group

Terminal 2
Domestic and international flights.
Terminal 3
For International Flights Only.

- 50 -

Outcome –

Anytime a plane arrives to the airport it sends a landing request to the algorithm, well

before the time of its arrival, so as we all know that at a particular time there could be

many requests arriving to the algorithm, so we have distinguished these requests on the

basis of time of arrival on nano seconds difference so at a particular time only one

request is coming at the algorithm, we have then put these requests in the queue using

FIRST COME FIRST SERVE basis,

So our algorithm is working on multithreading, so whenever a planes requests its

arrival onto the airport it checks for all the possible landing option for that airplane, and

if the runway is busy, it then shifts its landing to other runway which is free or having

lesser queue, so in this way we can reduce the delay time, and increase the efficiency

for our algorithm.

But in case of an emergency , whenever a plane is having an emergency landing , then

till the plane gets landed properly and removed from the runway till then we shuts

down that runway for other flights, and try to accommodate them on other runways or

if not then we diverge them to nearby airport to reduce the amount of delay.

We a=have designed this algorithm also to reduce the amount of human intervention,

all this work is now done by humans which raise an human error also , so in order to

increase the safety and decrease the delays and flight cancelation we have created this

algorithm , because in future the amount of air traffic is only going to be increased.

TESTING 1 –

We tested our algorithm on an dataset of 20 aircrafts.

Dataset 

- 51 -

Flight No. Arrival time Type
Departure
Time

Emergency
Cons.

Strip length
Req.

Strip
Weight
Req.

1 1 1 1 0 10000 234
2 2 2 2 0 11000 345
3 2 2 2 0 11500 453
4 2 2 2 0 12000 450
5 3 3 3 0 12000 564

123 1 1 1 0 12000 323
124 2 2 2 0 13000 432
125 2 2 2 0 14000 444
126 1 1 1 0 13000 345
127 1 1 1 0 11000 334

6 1 1 1 0 11500 345
7 1 11 1 0 12000 453
8 1 1 1 0 12900 345
9 1 1 1 0 12500 345

10 1 1 1 0 13000 344
234 2 2 2 0 14000 232
235 2 2 2 0 12300 432
236 2 2 2 0 11000 342
237 1 1 1 0 9000 232
238 2 2 2 0 11323 342

The algorithm worked fine and landed all the aircrafts in very less time, with very less
delays.

 The output window we get is

- 52 -

Output-1

TESTING 2 – now we tested our algorithm on a dataset of 55 aircrafts.

Dataset

Flight No. Arrival time Type
Departure
Time

Emergency
Cons.

Strip
length
Req.

Strip
Weight
Req.

1 1 1 1 0 10000 234
2 2 2 2 0 11000 345
3 2 2 2 0 11500 453
4 2 2 2 0 12000 450
5 3 3 3 0 12000 564

123 1 1 1 0 12000 323
124 2 2 2 0 13000 432
125 2 2 2 0 14000 444
126 1 1 1 0 13000 345
127 1 1 1 0 11000 334

6 1 1 1 0 11500 345
7 1 11 1 0 12000 453
8 1 1 1 0 12900 345
9 1 1 1 0 12500 345

10 1 1 1 0 13000 344

- 53 -

234 2 2 2 0 14000 232
235 2 2 2 0 12300 432
236 2 2 2 0 11000 342
237 1 1 1 0 9000 232
238 2 2 2 0 11323 342

11 1 1 1 0 12000 333
12 1 1 1 0 13000 432
13 1 1 1 0 11000 222
14 1 1 1 0 14000 332
15 1 1 1 0 9000 123

345 1 1 1 0 12345 123
346 1 1 1 0 8900 223
347 1 1 1 0 7890 232
348 1 1 1 0 13453 343
349 1 1 1 0 10000 343

11111 1 1 1 0 11111 223
1122 1 1 1 0 12000 333

16 1 1 1 0 12300 221
17 1 1 1 0 9000 223
18 1 1 1 0 10000 212
19 1 1 1 0 13000 332
20 2 2 1 0 11500 432
21 1 1 1 0 10500 123
22 2 2 2 0 9000 232
23 2 2 2 0 9400 332
24 1 1 1 0 12000 334
25 2 2 2 0 7890 221

567 1 1 1 0 12345 112
568 2 2 2 0 12322 224
569 1 1 1 0 12400 234
678 1 1 1 0 12000 443
679 1 1 1 0 12390 332
666 2 2 2 0 10900 221
667 1 1 1 0 8900 232
668 1 1 1 0 12000 345
669 1 1 1 0 13000 224
778 1 1 1 0 11000 342
779 1 1 1 0 14001 211

The output generated was 

- 54 -

Output -1

In this we can see all 55 aircrafts were landed onto the terminal .

Output -2

In this manner our algorithm works , while landing 55 aircrafts.

TESTING 3 – Here we try to accommodate 80 aircrafts on the Airport.

Dataset 

- 55 -

Flight No. Arrival time Type
Departure
Time

Emergency
Cons.

Strip
length
Req.

Strip Weight
Req.

1 1 1 1 0 10000 234
2 2 2 2 0 11000 345
3 2 2 2 0 11500 453
4 2 2 2 0 12000 450
5 3 3 3 0 12000 564

123 1 1 1 0 12000 323
124 2 2 2 0 13000 432
125 2 2 2 0 14000 444
126 1 1 1 0 13000 345
127 1 1 1 0 11000 334

6 1 1 1 0 11500 345
7 1 11 1 0 12000 453
8 1 1 1 0 12900 345
9 1 1 1 0 12500 345

10 1 1 1 0 13000 344
234 2 2 2 0 14000 232
235 2 2 2 0 12300 432
236 2 2 2 0 11000 342
237 1 1 1 0 9000 232
238 2 2 2 0 11323 342

11 1 1 1 0 12000 333
12 1 1 1 0 13000 432
13 1 1 1 0 11000 222
14 1 1 1 0 14000 332
15 1 1 1 0 9000 123

345 1 1 1 0 12345 123
346 1 1 1 0 8900 223
347 1 1 1 0 7890 232
348 1 1 1 0 13453 343
349 1 1 1 0 10000 343

11111 1 1 1 0 11111 223
1122 1 1 1 0 12000 333

16 1 1 1 0 12300 221
17 1 1 1 0 9000 223
18 1 1 1 0 10000 212
19 1 1 1 0 13000 332
20 2 2 1 0 11500 432
21 1 1 1 0 10500 123
22 2 2 2 0 9000 232
23 2 2 2 0 9400 332
24 1 1 1 0 12000 334
25 2 2 2 0 7890 221

- 56 -

567 1 1 1 0 12345 112
568 2 2 2 0 12322 224
569 1 1 1 0 12400 234
678 1 1 1 0 12000 443
679 1 1 1 0 12390 332
666 2 2 2 0 10900 221
667 1 1 1 0 8900 232
668 1 1 1 0 12000 345
669 1 1 1 0 13000 224
778 1 1 1 0 11000 342
779 1 1 1 0 14001 211
780 1 1 1 0 14002 223

112211 1 1 1 0 10000 224
1234 1 1 1 0 10101 231
1235 1 1 1 0 12002 332
1236 1 1 1 0 10000 443
1237 1 1 1 0 9000 331
1238 1 1 1 0 8900 231
1240 1 1 1 0 10900 392
1241 1 1 1 0 9999 123
1242 1 1 1 0 13999 339
1243 1 1 1 0 12000 331
1244 1 1 1 0 9922 122
1245 1 1 1 0 8000 133
1246 1 1 1 0 9898 299
2233 1 1 1 0 12300 224
2234 1 1 1 0 8909 332
2235 1 1 1 0 12000 233
2236 1 1 1 0 10000 332
2237 1 1 1 0 7890 122
1011 1 1 1 0 12000 220

111 1 1 1 0 12000 332
232 1 1 1 0 11000 229

1010 1 1 1 0 10000 331
11001 1 1 1 0 10200 221

899 1 1 1 0 12900 221
8877 1 1 1 0 8900 221
9999 1 1 1 0 11111 111

The output generated showed that the capacity of the Airport was only 70 aircrafts,as

soon as the terminal fills up, the flights are diverted to other terminals and as all the

terminals get filled , the flights were put on hold.

- 57 -

Output – 1

Flights are landing onto the Airport

Output – 2

Terminal 1 gets full , trying to accommodate on other Terminals

- 58 -

Output – 3

Other Terminals landing flights on them.

Output – 4

All the Terminals get filled up and no more planes can’t be accommodated onto the

Airport.

- 59 -

Future work and conclusion

As far as we know that this system is based on continuous betterment, and this field

itself is very huge, and not a project of a semester, so we would like to move it further

by doing the various testing on our algorithm to check its feasibility, weather is useful

or not, so a lot of testing is required, and yes we can say that this project doesn’t ends

here, so a lot of testing has to be done and comparing it with other ongoing algorithms.

I will try my best to do it.

- 60 -

Tools and Technique Used :

NETBEANS:- it is an application platform framework for Java desktop applications

and others. The NetBeans IDE is written in Java and can run on Windows, OS X,

Linux, Solaris and other platforms supporting a compatible JVM.

 it is used for simulation purpose of our algorithm with dummy data and provide us

with with generic classes.

Derby Database: is a relational database management system (RDBMS) developed

by the Apache Software Foundation that can be embedded in Java programs and used

for online transaction processing. It has a 2.6 MB disk-space footprint. for pushing and

popping our data from the database.

- 61 -

http://en.wikipedia.org/wiki/Java_(programming_language)

CHAPTER VII

References

[1] Yong Wang, Feng Wang, Dan Wang, Zhenghu Gong and Jiangchuan Liu

“Revisit the Fairness Issues in Flight Landing Scheduling” 15th International

IEEE Conference on Intelligent Transportation Systems, Anchorage, Alaska,

USA, September 16-19, 2012

[2] Jianli Ding, Jinling Ji, Heyi “Wang Optimization of Airport Flight Arrival and

Departure Based on Compromise Immune Algorithm” IEEE Transactions on

Control Systems 2007.

[3] Andrea D’Ariano, Paolo D’Urgolo, Dario Pacciarelli and Marco Pranzo”

Optimal sequencing of aircrafts take-off and landing at a busy airport” 13th

International IEEE Annual Conference on Intelligent Transportation

Systems,Madeira Island, Portugal, September 19-22, 2010

[4] Shiwei Zhao ,Guo Wei , Huijuan Feng “Study on Optimizing Control of Flight

Arrival Scheduling Strategy” International symposium on instrumentation &

measurement , sensor networks and automation(IMSNA),2012

Web-references

http://www.newdelhiairport.in/

http://en.wikipedia.org/wiki/Indira_Gandhi_International_Airport

- 62 -

	(Terminal 3 – domestic and international
	(Terminal 1
	Terminal 1 reopened for a second time on June 27, 2008, and became the operational base for all domestic flights operated by the HNA Group
	(Terminal 2
	Domestic and international flights.
	(Terminal 3
	For International Flights Only.

