
OUTLIER DETECTION ALGORITHM SUIT FOR WEKA

Enrollment No: 101240

Name of Student: Shivantika Thakur

Supervisor’s Name: Dr. Sakshi Babbar

May-2014

Submitted in partial fulfillment of the Degree of Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING & INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT, SOLAN (H.P)

(i)

Table of Contents

 CHAPTERS PAGE NO.

 Certificate from the Supervisor I

 Acknowledgement II

 Abstract III

 List of Figures IV

Chapter 1: Introduction …………………………………8-10

1.1 Overview

1.2 Problem Statement

Chapter 2: Background Material ……………………..…….4-10

 2.1 Background

 2.2 Challenges

 2.3 Types of Anomalies/Outliers

 2.3.1. Point Anomalies

 2.3.2. Contextual Anomalies

 2.3.3. Collective Anomalies

 2.4 Approaches for outlier detection

 2.4.1 Classification based Anomaly Detection Technique

 2.4.2 Nearest Neighbour-Based Anomaly Detection Technique

 2.4.3 Clustering-Based Anomaly Detection Technique

 2.4.4 Statistical Anomaly Detection Technique

 2.4.5 Nonparametric Techniques

 2.4.6 Information Theoretic Anomaly Detection Techniques

 2.4.7 Special Anomaly Detection Technique

 2.5 Distance Based Approaches

Chapter 3: Design and analysis………….. ……………………11-13

 3.1 Design

 3.2 Implementation Details

 3.2.1 Software

 3.2.2 Hardware

Chapter 4: Implementation ……………………………………22-21

 4.1 Input phase

 4.1.1 Inputting Data into WEKA

 4.2 WEKA without outlier panel

 4.3 WEKA with outlier panel added

 4.4 Operation carried out by Outlier panel

 4.4.1Using Euclidian distance approach

 4.4.2 Using Mahalanobis distance approach

 4.5 Evaluation

Chapter 5: Code Implementation …………………………………..22-53

 5.1 Project Code

 5.1.1 Adding tab in explorer

 5.2 Design of outlier panel

 5.3 Additional libraries in source code

 5.4 Algorithm using Euclidian Distance

 5.5 Algorithm using Mahalanobis Distance

Chapter 6: Conclusion ……………………………………………....54-61

Conclusion and future scope

References

Appendices

Appendix A Work Plan

Appendix B Description of tools

Appendix C Quality Assurance

Appendix D Data Sets

I

CERTIFICATE

This is to certify that the work titled “OUTLIER DETECTION ALGORITHM SUIT

FOR WEKA”submitted by SHIVANTIKA THAKUR in partial fulfillment for the award

of degree of B.Tech Computer Science Engineering of Jaypee University of Information

Technology, Waknaghat has been carried out under my supervision. This work has not been

submitted partially or wholly to any other University or Institute for the award of this or any

other degree or diploma.

(Signature of Supervisor)

Name of Supervisor: Dr. Sakshi Babbar

Designation: Assistant Professor (senior grade), Dept. of CSE

Date:

 II

ACKNOWLEDGEMENT

I take this opportunity to express my profound gratitude and deep regards to Dr. Sakshi

Babbar , my Project Guide, for guiding and correcting me at every step of my work with

attention and care. He has taken pain to go through the project and make necessary

correction as and when needed. Thanks and appreciation to the helpful people at college for

their support. I would also thank my university and my faculty members without whom this

project would have been a distant reality. I also extend my heartfelt thanks to my family and

friends for their undaunted support and faith in me.

Signature of the Student……………………………….

Name of the Student – Shivantika Thakur

Date -

III

ABSTRACT

WEKA (Waikato Environment for Knowledge Analysis) is open source which is a collection of machine

learning algorithms for data mining tasks. WEKA contains tools for data pre-processing, classification,

regression, clustering, association rules, and visualization. The workbench also provides a graphical user

interface for easy access to these functionalities. There are several advantages to this software that includes

probability and usability. Many researchers in industry and academia including students use this software

because of it support the standard data mining tasks with good usability .Also, one of the best features of this

software is that, it is well suited for developing new machine learning schemes. Taking advantage of this

feature, I extended this software to contain in the outlier detection module as well .I have developed set of

outlier algorithms and incorporated them under a new module in the weka software.

Currently the weka software includes different interfaces like Simple Command Line interface, Explorer,

Experimenter and knowledge flow. Explorer is the main interface where the same functionality can also be

obtained through the command line or knowledge flow. Experimenter is used for comparisons on different

types of panels which provide access to main component of this workbench.

1. Preprocess panel is used to take the input data and analyze the data .Also we can preprocess the data

by using certain filtering algorithm thereby processing the data according to the requirements.

2. Classify panel consists of different classification algorithms. This panel provides a facility to apply

the classification algorithms to the given dataset, estimate the accuracy of the resulting predictive

model, to generate ROC curves and also to visualize.

3. Associate panel consists of association rule mining algorithms. This panel helps in identifying the

interesting rules from the given dataset.

4. Cluster panel consists of clustering algorithms that helps in cluster the given dataset.

5. Select attributes panel provide algorithms to identify the most predictive attributes in the given

dataset.

6. Visualize panel helps in providing a scatter plot matrix which consists of individual scatter plots for

the given dataset.

As my contribution, I have created a new panel that consists of most popular outlier detection algorithms.

This panel enables users to apply outlier detection algorithms to the given dataset.

IV

List of Figures

Fig 1. A simple example of anomalies in a two-dimensional data set

Fig 2. Contextual anomaly

Fig 3. Collective anomaly

Fig 4. WEKA with Iris dataset as an input

Fig 5. Inputting dataset into WEKA

Fig 6. Outlier panel in WEKA

Fig 7.Computation of distance matrix (Euclidian Approach)

Fig 8. User selected values from Sorted Distance matrix (Euclidian Approach)

Fig 9. Output (Euclidian Approach)

Fig 10. Computation of distance matrix (Mahalanobis approach)

Fig 11. User selected values from Sorted Distance matrix (Mahalanobis approach)

Fig 13.Output (Mahalanobis approach)

Fig 14: Adding Outliers in iris data set

Fig 15: Data set with outliers

Fig 16: Evaluation output

1

Chapter 1: INTRODUCTION

2

Chapter 1: INTRODUCTION

1.1 Introducing Outliers

 Anomalies/ outliers are patterns in data that do not conform to a well defined notion of

normal behaviour. Outlier detection refers to the task of finding anomalous patterns in given

data according to a particular definition of anomalous behaviour. An outlier will refer to these

anomalous patterns in the data. An outlier detection technique is a specific solution to an

outlier detection problem. A normal pattern refers to a pattern in the data which is not an

outlier. The output of an outlier detection technique could be labelled patterns (outlier or

normal). Some of the outlier detection techniques also assign a score to a pattern based on the

degree to which the pattern is considered an outlier. Such a score is referred to as outlier

Score [VipinKumar2009].

 Anomaly detection finds extensive use in a wide variety of applications such as fraud

detection for credit cards, insurance, or health care, intrusion detection for cyber-security,

fault detection in safety critical systems, and military surveillance for enemy activities.

The importance of anomaly detection is due to the fact that anomalies in data translate

to significant, and often critical, actionable information in a wide variety of application

domain. For example, an anomalous traffic pattern in a computer network could mean that a

hacked computer is sending out sensitive data to an unauthorized destination. An anomalous

MRI image may indicate the presence of malignant tumours. Anomalies in credit card

transaction data could indicate credit card or identity theft, or anomalous readings from a

space craft sensor could signify a fault in some component of the space craft.

 Detecting outliers or anomalies in data has been studied in the statistics community as

early as the 19th century [VipinKumar2009]. Over time, a variety of anomaly detection

techniques have been developed in several research communities. Many of these techniques

have been specifically developed for certain application domains out of which distance and

density based techniques are very popular because of its advantages, while others are more

generic.

3

Fig.1. A simple example of anomalies in a two-dimensional data set.

1.2 Problem Statement

Development of outlier detection algorithm suit and incorporating it in a new module in

the WEKA software.

4

Chapter 2: BACKGROUND MATERIAL

5

1.1 Background

 Outlier detection has been a very important concept in the realm of data analysis. Recently,

several application domains have realized the direct mapping between outliers in data and

real world anomalies that are of great interest to an analyst. Outlier detection has been

researched within various application domains and knowledge disciplines.

[VipinKumar2009]

2.2 Challenges

 A key challenge in outlier detection is that it involves exploring the unseen space. As

mentioned earlier, at an abstract level, an outlier can be defined as a pattern that does not

conform to expected normal behavior. A straightforward approach will be to define a region

representing normal behaviour and declare any observation in the data which does not belong

to this normal region as an outlier. But several factors make this apparently simple approach

very challenging.

1. Defining a normal region which encompasses every possible normal behaviour is very

difficult.

2. Often times normal behaviour keeps evolving and an existing notion of normal behaviour

might not be sufficiently representative in the future.

3. The boundary between normal and outlying behavior is often fuzzy. Thus an outlying

observation which lies close to the boundary can be actually normal and vice versa.

4. The exact notion of an outlier is different for different application domains. Every

application domain imposes a set of requirements and constraints giving rise to a specific

problem formulation for outlier detection.

5. Availability of labelled data for training/validation is often a major issue while developing

an outlier detection technique.

6. In several cases in which outliers are the result of malicious actions, the malicious

adversaries adapt themselves to make the outlying observations appear like normal, thereby

making the task of defining normal behaviour more difficult.

7. Often the data contains noise which is similar to the actual outliers and hence is difficult to

distinguish and remove.

2.3 Types of Anomalies/Outliers

 An important aspect of an anomaly detection technique is the nature of the desired anomaly.

Anomalies can be classified into following three categories:

2.3.1. Point Anomalies

 If an individual data instance can be considered as anomalous with respect to the rest of

data, then the instance is termed a point anomaly. This is the simplest type of anomaly and is

the focus of majority of research on anomaly detection.

For example, in Figure 1, points o1 and o2, as well as points in region O3, lie outside the

boundary of the normal regions, and hence are point anomalies since they are different from

normal data points.

6

2.3.2. Contextual Anomalies

 If a data instance is anomalous in a specific context, but not otherwise, then it is termed a

contextual anomaly (also referred to as conditional anomaly [Song et al. 2007]). Each data

instance is defined using the following two sets of attributes:

(1) Contextual attributes. The contextual attributes are used to determine the context

(or neighbourhood) for that instance. For example, in spatial data sets, the longitude and

latitude of a location are the contextual attributes. In time-series data, time is a contextual

attribute that determines the position of an instance on the entire sequence.

(2) Behavioural attributes. The behavioral attributes define the noncontextual

characteristics of an instance. For example, in a spatial data set describing the average rainfall

of the entire world, the amount of rainfall at any location is a behavioural attribute. The

anomalous behaviour is determined using the values for the behavioural attributes within a

specific context. A data instance might be a contextual anomaly in a given context, but an

identical data instance (in terms of behavioural attributes) could be considered normal in a

different context. This property is key in identifying contextual and behavioural attributes for

a contextual anomaly detection technique.

 Contextual anomalies have been most commonly explored in time-series data [Weygand et

al. 1995; Salvador and Chan 2003] and spatial data [Kou et al. 2006; mShekhar et al. 2001].

Figure 2 shows one such example for a temperature time-series that shows the monthly

temperature of an area over the last few years. A temperature of 35◦F might be normal during

the winter (at time t1) at that place, but the same value during the summer (at time t2) would

be an anomaly. The choice of applying a contextual anomaly detection technique is

determined by the meaningfulness of the contextual anomalies in the target application

domain. Another key factor is the availability of contextual attributes. In several cases

defining a context is straightforward, and hence applying a contextual anomaly detection

technique makes sense. In other cases, defining a context is not easy, making it difficult to

apply such techniques.

Fig 2. Contextual anomaly

 Contextual anomaly t2 in a temperature time-series. Note that the temperature at time t1 is same

as that at time t2 but occurs in a different context and hence is not considered as an anomaly.

7

2.3.3. Collective Anomalies

 If a collection of related data instances is anomalous with respect to the entire data set, it is

termed a collective anomaly. The individual data instances in a collective anomaly may not

be anomalies by themselves, but their occurrence together as a collection is anomalous.

Figure 3 is an example that shows a human electrocardiogram output [Goldberger et al.

2000]. The highlighted region denotes an anomaly because the same low value exists for an

abnormally long time (corresponding to an Atrial Premature Contraction). Note that that low

value by itself is not an anomaly.

 It should be noted that this collection of events is an anomaly, but the individual events are

not anomalies when they occur in other locations in the sequence. Collective anomalies have

been explored for sequence data [Forrest et al. 1999; Sun et al. 2006], graph data [Noble and

Cook 2003], and spatial data [Shekhar et al. 2001]. It should be noted that while point

anomalies can occur in any data set, collective anomalies can occur only in data sets in which

data instances are related.

 In contrast, occurrence of contextual anomalies depends on the availability of context

attributes in the data. A point anomaly or a collective anomaly can also be a contextual

anomaly if analyzed with respect to a context. Thus a point anomaly detection problem or

collective anomaly detection problem can be transformed to a contextual anomaly detection

problem by incorporating the context information. The techniques used for detecting

collective anomalies are very different than the point and contextual anomaly detection

techniques, and require a separate detailed discussion. Hence I chose to not cover them in this

project.

Fig. 3 Collective anomaly

Collective anomaly corresponding to an Atrial Premature Contraction in a human electrocardiogram output.

8

2.4 Approaches for outlier detection

2.4.1 Classification based Anomaly Detection Technique

 Classification [Tan et al. 2005; Duda et al. 2000] is used to learn a model (classifier) from a

set of labelled data instances (training) and then, classify a test instance into one of the

classes using the learned model (testing). Classification-based anomaly detection techniques

operate in a similar two-phase fashion. The training phase learns a classifier using the

available labelled training data. The testing phase classifies a test instance as normal or

anomalous, using the classifier.

2.4.2 Nearest Neighbour-Based Anomaly Detection Technique

 The concept of nearest neighbor analysis has been used in several anomaly detection

techniques. Nearest neighbor-based anomaly detection techniques require a distance or

similarity measure defined between two data instances. Distance (or similarity) between two

data instances can be computed in different ways. For continuous attributes, Euclidean

distance is a popular choice, but other measures can be used [Tan et al. 2005, Chapter2]. For

categorical attributes, a simple matching coefficient is often used but more complex distance

measures can also be used [Boriah et al. 2008; Chandola et al. 2008]. For multivariate data

instances, distance or similarity is usually computed for each attribute and then combined

[Tan et al. 2005, Chapter 2]. My project is based on this technique.

2.4.3 Clustering-Based Anomaly Detection Technique

 Clustering [Jain and Dubes 1988; Tan et al. 2005] is used to group similar data instances

into clusters. Clustering is primarily an unsupervised technique though semi supervised

clustering [Basu et al. 2004] has also been explored lately. Even though clustering and

anomaly detection appear to be fundamentally different from each other, several clustering-

based anomaly detection techniques have been developed.

2.4.4 Statistical Anomaly Detection Technique

 The underlying principle of any statistical anomaly detection technique is: “An anomaly is

an observation which is suspected of being partially or wholly irrelevant because it is not

generated by the stochastic model assumed” [Anscombe and Guttman 1960].

2.4.5 Nonparametric Techniques

 The anomaly detection techniques in this category use nonparametric statistical models,

such that the model structure is not defined a priory, but is instead determined from given

data. Such techniques typically make fewer assumptions regarding the data, such as

smoothness of density, when compared to parametric techniques.

2.4.6 Information Theoretic Anomaly Detection Techniques

9

 Information theoretic techniques analyze the information content of data set using different

information theoretic measures such as Kolomogorov Complexity, entropy, relative entropy,

and so on.

2.4.7 Special Anomaly Detection Technique

 Spectral techniques try to find an approximation of the data using a combination of

attributes that capture the bulk of the variability in the data.

2.5 Distance Based Approaches

 The approach used in this project is distance based approach. A basic nearest neighbour

anomaly detection technique is based on the following definition: The anomaly score of a

data instance is defined as its distance to its kth nearest neighbor in a given data set.

This technique is based on the following key assumption:

Assumption: Normal data instances occur in dense neighbourhoods, while anomalies occur

far from their closest neighbours

.

Using K nearest neighbor distance based approach the distance is calculated using one of the

following measures:

•Euclidian Distance

•Mahalanobis Distance

What is K -nearest neighbour approach?

 Briefly, if m of the k nearest neighbors (where m < k) lie within a specific distance

threshold d then the exemplar is deemed to lie in a sufficiently dense region of the data

distribution to be classified as normal. However, if there are less than m neighbors inside the

distance threshold then the exemplar is an outlier.

Nearest neighbor-based anomaly detection techniques can be broadly grouped into two

categories:

(1) Techniques that use the distance of a data instance to its kth nearest neighbor as the

anomaly score;

(2) Techniques that compute the relative density of each data instance to compute its anomaly

score.

There are various flavours of k-Nearest Neighbour (k-NN) algorithm for outlier detection but

all calculate the nearest neighbours of a record using a suitable distance calculation Metric

such as Euclidean distance or Mahalanobis distance.

Euclidean distance is given by equation 1 and is simply the vector distance

10

Dist(x, y) =√∑

 - (1)

Whereas the Mahalanobis distance given by equation 2

Dist(x, y) =√ ∑

 - (2)

Mahalanobis distance is computationally expensive to calculate for large high dimensional

Data sets compared to the Euclidean distance as it requires a pass through the entire data set

to identify the attribute correlations.

11

Chapter 3: DESIGN AND ANALYSIS

12

3.1 Design

Following is the flowchart representation of how the extended version of WEKA works.

 No

 Yes

Euclidian approach

 Mahalanobis approach

Extended version of WEKA with outlier

tab added

Is data set in

required

format?

Input data loaded successfully

Stop

No input found/cannot

read input

Euclidian

approach or

Mahalanobis

Approach?

Distance matrix computed

using Mahalanobis distance

technique.

Distance Matrix computed

using Euclidian distance

technique

Outliers detected

Start

Select Database

Select outlier tab

User defined number entered to get p×q sorted

ŵatƌix ǁheƌe ͚p͛ is the Ŷuŵbeƌ of data poiŶts iŶ
the giǀeŶ data set aŶd ͛Ƌ͛ is the useƌ defiŶed
number

User defined number entered to get p×q

soƌted ŵatƌix ǁheƌe ͚p͛ is the Ŷuŵbeƌ of
data poiŶts iŶ the giǀeŶ data set aŶd ͛Ƌ͛ is
the user defined number

Next useƌ defiŶed Ŷuŵbeƌ ͚Ŷ͛ is eŶteƌed
to get the top n outliers in the dataset

Next useƌ defiŶed Ŷuŵbeƌ ͚Ŷ͛ is eŶteƌed to get
the top n outliers in the dataset

13

3.2 Implementation Details

 3.2.1 Software
 All the programming code is written in Java using inbuilt functions.
 Net Beans as an integrated development environment
 WEKA version 3.6.8
 WEKA add on classes

 The project is supposed to run both on windows or Mac

 3.2.2 Hardware
 No hardware implementations required.

14

Chapter 4: IMPLEMENTATION

15

4.1 Input phase

4.1.1 Inputting Data into WEKA

We need to input our dataset into WEKA. We start the process by clicking on "Open Url"

while in the "Preprocess" tab of the Explorer (this is the tab that we are initially in when

WEKA starts). We can then browse to the location of the data file on the PC (we can use

"Open URL" if the dataset is on the web). WEKA ideally would like an .arff file, which

contains a header that describes the variables and the data types of the variables, followed by

the data itself. The format of the .arff file is available from the various WEKA manuals. It

also accepts .csv format.

Fig 5: Inputting dataset into WEKA

4.2 WEKA without outlier panel

Once the input has been taken by the software, all the panels perform different action.

The algorithms can either be applied directly to a dataset or called from our own Java

code. WEKA contains tools for data pre-processing, classification, regression,

clustering, association rules, and visualization.

16

Fig 4: WEKA with Iris dataset as an input

4.3 WEKA with outlier panel added

Adding the outlier panel, though procedure of addition is shown in the code

implementation part .The outlier panel contains outlier output for computational and

final results.

Two radio buttons for Euclidian and Mahalanobis distance approach each .A start

button to trigger the algorithms and stop to terminate the process are added in this

new panel.

Fig 6: Outlier panel in WEKA

17

4.4 Operation carried out by Outlier panel

4.4.1Using Euclidian distance approach

Dataset used for the operations is Iris dataset. The following figures show how

Euclidian distance approach is carried out for detecting anomalies in the Iris dataset

Fig 7: Computation of distance matrix (Euclidian Approach)

Here the algorithm is designed in such a way that it gets the dimensions of any data

set chosen and calculates the samples present in it. Then it form the combinations

such that distance of each sample from another is computed (here distance is

calculated using Euclidian approach)

18

Fig 8: User selected values from Sorted Distance matrix (Euclidian Approach)

The result of computations form a matrix of distances (distance matrix) such that the

distance of sample from itself will be 0.0 and from some other sample it will be some

value greater than zero. Whole matrix is then sorted in ascending order by the

algorithm and then a user defined number picks up an array which is then again sorted

in descending order during run time.

Fig 9: Output (Euclidian Approach)

Another user defined number can then fetch the result from the sorted array derived

from the ordered distance matrix.

19

4.4.2 Using Mahalanobis distance approach

Similar steps are followed but only the algorithms running in the backend differ. Here

distance is computed by Mahalanobis Distance formula. Taking chemical analysis of

wine data set as an example.

Fig 10: Computation of distance matrix (Mahalanobis approach)

Fig 11: User selected values from Sorted Distance matrix (Mahalanobis approach)

20

Fig 12: Output (Mahalanobis approach)

 The complexity of both the algorithms is quadratic i.e. O().

4.5Evaluation

To evaluate four outliers are deliberately added to iris data set.

Fig 13: Adding Outliers in iris data set

21

Fig 14: Data set with outliers

Fig 15: Evaluation output

Results clearly state out those four specific data points as outliers.

22

.

Chapter5: CODE IMPLEMENTATION

23

5.1 Project code

 5.1.1Adding new tab in explorer

For adding outlier panel in WEKA, a java file has to be added in the package

weka.gui.explorer in the source package.

Source code for outlier .java is

package weka.gui.explorer; import dmm.Dmm;

import dmm.Mahalanobis;

import dmm.dmm_new;

import java.io.*;

import java.util.Arrays;

import java.util.Scanner;

import weka.gui.explorer.*;

24

import javax.swing.ButtonGroup;

import javax.swing.JFileChooser;

import javax.swing.JOptionPane;

import javax.swing.JTextArea;

import weka.core.Instances;

import static weka.gui.explorer.ClustererPanel.MODEL_FILE_EXTENSION;

 public class Outlier extends javax.swing.JPanel implements Explorer.ExplorerPanel {

ButtonGroup bg;

 File fl;

 String pos;

 JFileChooser jc = new JFileChooser();

 public Outlier() {

 initComponents();

 bg = new ButtonGroup();

 bg.add(jRadioButton1);

 bg.add(jRadioButton2);

 }

 @SuppressWarnings("unchecked")

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

buttonGroup1 = new javax.swing.ButtonGroup();

 jPanel1 = new javax.swing.JPanel();

 jScrollPane1 = new javax.swing.JScrollPane();

 jTextArea1 = new javax.swing.JTextArea();

 jLabel1 = new javax.swing.JLabel();

 jPanel2 = new javax.swing.JPanel();

 jLabel2 = new javax.swing.JLabel();

25

 jRadioButton1 = new javax.swing.JRadioButton();

 jRadioButton2 = new javax.swing.JRadioButton();

 jButton1 = new javax.swing.JButton();

 jButton2 = new javax.swing.JButton();

 jPanel1.setBorder(javax.swing.BorderFactory.createEtchedBorder());

 jTextArea1.setColumns(20);

 jTextArea1.setRows(5);

 jScrollPane1.setViewportView(jTextArea1);

 javax.swing.GroupLayout jPanel1Layout = new javax.swing.GroupLayout(jPanel1);

 jPanel1.setLayout(jPanel1Layout);

 jPanel1Layout.setHorizontalGroup(

 jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(jScrollPane1, javax.swing.GroupLayout.Alignment.TRAILING)

);

 jPanel1Layout.setVerticalGroup(

jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(jPanel1Layout.createSequentialGroup()

 .addComponent(jScrollPane1, javax.swing.GroupLayout.PREFERRED_SIZE, 363,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(0, 0, Short.MAX_VALUE))

);

 jLabel1.setFont(new java.awt.Font("Tahoma", 0, 14)); // NOI18N

 jLabel1.setText("Outlier Output");

 jPanel2.setBorder(javax.swing.BorderFactory.createEtchedBorder());

 jLabel2.setText("Test Option");

 jRadioButton1.setText("Eucledian distance approach");

 jRadioButton2.setText("Mahalanobis distance approach");

26

 jButton1.setText("Start");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 jButton2.setText("Stop");

 javax.swing.GroupLayout jPanel2Layout = new javax.swing.GroupLayout(jPanel2);

 jPanel2.setLayout(jPanel2Layout);

 jPanel2Layout.setHorizontalGroup(

 jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(jPanel2Layout.createSequentialGroup()

 .addComponent(jLabel2, javax.swing.GroupLayout.PREFERRED_SIZE, 101,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(0, 0, Short.MAX_VALUE))

 .addGroup(jPanel2Layout.createSequentialGroup()

.addGroup(jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADI

NG)

 .addGroup(jPanel2Layout.createSequentialGroup()

 .addGap(21, 21, 21)

.addGroup(jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADI

NG, false)

 .addComponent(jRadioButton2,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,

Short.MAX_VALUE)

 .addComponent(jRadioButton1,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,

Short.MAX_VALUE)))

 .addGroup(jPanel2Layout.createSequentialGroup()

 .addGap(23, 23, 23)

27

 .addComponent(jButton1, javax.swing.GroupLayout.PREFERRED_SIZE, 61,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(18, 18, 18)

 .addComponent(jButton2, javax.swing.GroupLayout.PREFERRED_SIZE, 67,

javax.swing.GroupLayout.PREFERRED_SIZE)))

 .addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))

);

 jPanel2Layout.setVerticalGroup(

 jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(jPanel2Layout.createSequentialGroup()

 .addComponent(jLabel2, javax.swing.GroupLayout.PREFERRED_SIZE, 25,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(18, 18, 18)

 .addComponent(jRadioButton1)

 .addComponent(jRadioButton2)

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED, 155,

Short.MAX_VALUE)

.addGroup(jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASEL

INE)

 .addComponent(jButton1)

 .addComponent(jButton2))

 .addGap(75, 75, 75))

);

 javax.swing.GroupLayout layout = new javax.swing.GroupLayout(this);

 this.setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addGap(19, 19, 19)

28

 .addComponent(jPanel2, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(18, 18, 18)

 .addComponent(jPanel1, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

 .addContainerGap())

 .addGroup(layout.createSequentialGroup()

 .addGap(261, 261, 261)

 .addComponent(jLabel1, javax.swing.GroupLayout.PREFERRED_SIZE, 111,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addContainerGap(472, Short.MAX_VALUE))

);

 layout.setVerticalGroup(

 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

layout.createSequentialGroup()

 .addContainerGap(53, Short.MAX_VALUE)

 .addComponent(jLabel1, javax.swing.GroupLayout.PREFERRED_SIZE, 25,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(jPanel1, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(jPanel2, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

 .addGap(26, 26, 26))

);

 }// </editor-fold

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt)

29

 if(jRadioButton1.isSelected())

 {

 jTextArea1.setText(null);

 try

 { {

 {

 JFileChooser jc = new JFileChooser();

 jc.showOpenDialog(null);

 fl=jc.getSelectedFile();

 BufferedReader br1 = new BufferedReader(new FileReader(fl));

 String line1;

 line1= br1.readLine();

int count=1,count2=1;

 for(int i=0;i<line1.length();i++)

 {

 if(line1.charAt(i)==',')

 count++;

 }

 for(int i=0;;i++)

 {

 line1=br1.readLine();

 if(line1==null)

 break;

 count2++;

 }

 jTextArea1.append(count+" Dimensions ");

 jTextArea1.append(count2+" Samples ");

30

 BufferedReader br = new BufferedReader(new FileReader(fl));

 String line;

 float[][] col0 = new float[count2][count];

 float[][] res = new float[count2][count2];

 float shi[]=new float[count2];

 for (int i = 0; i < count2; i++) {

 line = br.readLine();

 String[] cols = line.split(",");

 for(int j=0;j<count;j++)

 {

 col0[i][j] = Float.valueOf(cols[j]);

 }

 }

 float a;

 for(int i=0;i<count2;i++)

 {

 for(int j=0;j<count2;j++)

 {

 a=0;

 for(int v=0;v<count;v++)

 {

 a+= ((col0[i][v]-col0[j][v])*(col0[i][v]-col0[j][v]));

 String ares = ("Combo : "+col0[i][v]+ " & "+col0[j][v]+" = "+a);

 jTextArea1.append("\n" +ares);

 }

 res[i][j]=(float) Math.sqrt(a) ;

31

 }

 }

 jTextArea1.append("\n Enter a value:");

 int val = Integer.parseInt(JOptionPane.showInputDialog("\n Enter a value\n"));

 String pr = Integer.toString(val);

 jTextArea1.append("\n" +pr+"\n");

 for(int i=0;i<count2;i++)

 Arrays.sort(res[i]);

 int s=count2-1;

 String arr[] = new String[count2];

 for(int i=0;i<count2;i++)

 {

 for(int j=0;j<val;j++)

 {

 String sss =Float.toString(res[i][j]);

 jTextArea1.append(sss +" ");

 arr[i] = new String((i+1) + "_");

 }

 jTextArea1.append("\n");

 }

 for (int i = 0; i < arr.length; i++) {

 }

 for(int i=0;i<count2;i++)

 {

 shi[i]=res[i][val-1];

 }

 for(int i=0;i<s;i++)

32

 {

 for(int j=i+1;j<count2;j++)

 {

 if(shi[i]<shi[j])

 {

 float temp=shi[i];

 shi[i]=shi[j];

 shi[j]=temp;

 String s1 = arr[i];

 arr[i] = arr[j];

 arr[j] = s1;

 }

 }

 }

 jTextArea1.append("\nFollowing is the sorted (Descending) array, considering \n the

largest distances corresponding to each data point:\n");

 for(int i=0;i<count2;i++)

 {

 String cc=Float.toString(shi[i]);

 jTextArea1.append("\n"+cc);

 }

 jTextArea1.append("\nEnter the value:\n");

 int vall = Integer.parseInt(JOptionPane.showInputDialog("\nEnter a value :\n"));

 String prn = Integer.toString(vall);

 jTextArea1.append(prn+"\n");

 for(int i=0;i<vall;i++)

33

 {

 String ch =Float.toString(shi[i]);

 jTextArea1.append("\n Data point "+arr[i] + "is an outlier . It's corresponding

distance is" + shi[i]);

 }

 br.close();

 }

 }}

 catch (FileNotFoundException e1) {

 e1.printStackTrace();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 }

 if(jRadioButton2.isSelected())

 {

 jTextArea1.setText(null);

 try {

 jc.showOpenDialog(null);

 fl = jc.getSelectedFile();

 BufferedReader br1 = new BufferedReader(new FileReader(fl));

 String line1;

 line1= br1.readLine();

 int count=1,count2=1;

 for(int i=0;i<line1.length();i++)

34

 {

 if(line1.charAt(i)==',')

 count++;

 }

 for(int i=0;;i++)

 {

 line1=br1.readLine();

 if(line1==null)

 break;

 count2++;

 }

 jTextArea1.append(count+" Dimesions ");

 jTextArea1.append(count2+" Samples ");

 BufferedReader br = new BufferedReader(new FileReader(fl));

 String line;

 float[][] col0 = new float[count2][count];

 float[][] res = new float[count2][count2];

 float shi[]=new float[count2];

 for (int i = 0; i < count2; i++) {

 line = br.readLine();

 String[] cols = line.split(",");

 for(int j=0;j<count;j++)

 col0[i][j] = Float.valueOf(cols[j]);

 }

 float a = 0.0f;

 Mahalanobis mb=new Mahalanobis(1);

 for(int i=0;i<count2;i++)

35

 {

 for(int j=0;j<count2;j++)

 {

 a=0;

 for(int v=0;v<count;v++)

 {

 a=mb.getDistance(col0[i][v], col0[j][v]);

 String atr =("Combo : "+col0[i][v]+ " & "+col0[j][v]+" = "+a);

 jTextArea1.append("\n"+atr);

 String pos = Float.toString(col0[i][v]);

 }

 res[i][j]=a;

 }

 }

 jTextArea1.append("\n Enter a value:\n");

 int nm = Integer.parseInt(JOptionPane.showInputDialog("\n Enter a value :\n"));

 String ln = Integer.toString(nm);

 jTextArea1.append("\n" +ln +"\n");

 for(int i=0;i<count2;i++)

 Arrays.sort(res[i]);

 int s=count2-1;

 String arr[] = new String[count2];

 for(int i=0;i<count2;i++)

 {

 for(int j=0;j<nm;j++)

 {

 String mn =Float.toString(res[i][j]);

36

 jTextArea1.append(mn + " ");

 arr[i] = new String((i+1) + "_");

 }

 jTextArea1.append("\n");

 }

 for (int i = 0; i < arr.length; i++) {

 }

 for(int i=0;i<count2;i++)

 {

 shi[i]=res[i][nm-1];

 }

 for(int i=0;i<s;i++)

 {

 for(int j=i+1;j<count2;j++)

 {

 if(shi[i]<shi[j])

 {

 float temp=shi[i];

 shi[i]=shi[j];

 shi[j]=temp;

 String s1 = arr[i];

 arr[i] = arr[j];

 arr[j] = s1;

 }

 }

 }

37

 jTextArea1.append("\nFollowing is the sorted (Descending) array, considering the

\nlargest distances corresponding to each data point:\n");

 for(int i=0;i<count2;i++)

 {

 String asd = Float.toString(shi[i

 jTextArea1.append("\n"+asd);

 }

 jTextArea1.append("\nEnter the value:\n");

 int nmm = Integer.parseInt(JOptionPane.showInputDialog("\nEnter a value :\n"));

 String lnn = Integer.toString(nmm);

 jTextArea1.append(lnn);

 jTextArea1.append("\n Thus, the largest "+nmm+" distances are:");

 for(int i=0;i<nmm;i++)

 {

 String cd = Float.toString(shi[i]);

 jTextArea1.append("\n Data point "+arr[i] +"is an outlier . Its corresponding distance "+

"" + shi[i]);

 }

 br.close();

 }

 catch (FileNotFoundException e1) {

 e1.printStackTrace();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

38

 // Variables declaration - do not modify

 private javax.swing.ButtonGroup buttonGroup1;

 private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton2;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JPanel jPanel1;

 private javax.swing.JPanel jPanel2;

 private javax.swing.JRadioButton jRadioButton1;

 private javax.swing.JRadioButton jRadioButton2;

 private javax.swing.JScrollPane jScrollPane1;

 public javax.swing.JTextArea jTextArea1;

 // End of variables declaration

 @Override

 public void setExplorer(Explorer parent) {

 }

 @Override

 public Explorer getExplorer() {

 return null;

 }

 @Override

 public void setInstances(Instances inst) {

 }

 @Override

 public String getTabTitle() {

 return Messages.getInstance().getString("OutlierPanel_GetTabTitle_Text");

 }

39

 @Override

 public String getTabTitleToolTip() {

 return ";AAA";

 }

}

5.2 Designe of outlier panel

The outlier output panel remains the same as for another output panels. Left side comprises of

two radio buttons with a stat option at below to run the algorithms incorporated behind the

radio buttons one with Eucidian distance and another with Mahalanobis distance approach.

5.3 Additional libraries in source code

Junit.jar library which must contain all the packages mentioned ahead.

Java_cup library containing a default package and CUPTask.class

Java code for CUPTask.class

https://www.google.co.in/search?q=mahalanobis&spell=1&sa=X&ei=CrNyU7GEMYX5rQe-9IHwBg&ved=0CCgQvwUoAA

40

41

42

Further under it a runtime package following classes are required to run the

application

Last additional library is cup_11.jar having a packages java-cup , java_cup.runtime

and java_cup.anttask

43

a). java-cup

b). java_cup.runtime and

c). java_cup.anttask

CUPTask.class code is mentioned here

44

5.4 Algorithm using Euclidian distance

Java code for Dmm.java

package dmm;

import java.io.*;

import java.util.Arrays;

import java.util.Scanner;

public class Dmm {

 public static void main(String[] args) throws Exception {

 try {

 BufferedReader br1 = new

BufferedReader(newFileReader("C:\\Users\\hp\\Documents\\iris.csv"));

 String line1;

 line1 = br1.readLine();

 int count = 1, count2 = 1;

 for (int i = 0; i < line1.length(); i++) {

 if (line1.charAt(i) == ',') {

 count++;

 }

 }

 for (int i = 0;; i++) {

 line1 = br1.readLine();

 if (line1 == null) {

 break;

 }

 count2++;

 }

45

 System.out.println(count + " Dimensions");

 System.out.println(count2 + " Samples");

 BufferedReader br = new

BufferedReader(newFileReader("C:\\Users\\hp\\Documents\\iris.csv"));

 String line;

 float[][] col0 = new float[count2][count];

 float[][] res = new float[count2][count2];

 float shi[] = new float[count2];

 for (int i = 0; i < count2; i++) {

 line = br.readLine();

 String[] cols = line.split(",");

 for (int j = 0; j < count; j++) {

 col0[i][j] = Float.valueOf(cols[j]);

 }

 }

 float a;

 for (int i = 0; i < count2; i++) {

 for (int j = 0; j < count2; j++) {

 a = 0;

 for (int v = 0; v < count; v++) {

 a += ((col0[i][v] - col0[j][v]) * (col0[i][v] - col0[j][v]));

 System.out.println("Combo : " + col0[i][v] + " & " + col0[j][v] + " = " + a);

 }

 res[i][j] = (float) Math.sqrt(a);

 }

 }

 int c;

46

 Scanner in = new Scanner(System.in);

 System.out.println("Enter a value");

 c = in.nextInt();

 for (int i = 0; i < count2; i++) {

 Arrays.sort(res[i]);

 }

 int s = count2 - 1;

 String arr[] = new String[count2];

 for (int i = 0; i < count2; i++) {

 for (int j = 0; j < c; j++) {

 System.out.print(res[i][j]);

 arr[i] = new String((i+1) + "_");

 }

 System.out.println();

 }

 for (int i = 0; i < arr.length; i++) {

 }

 for (int i = 0; i < count2; i++) {

 shi[i] = res[i][c - 1];

 }

 for (int i = 0; i < s; i++) {

 for (int j = i + 1; j < count2; j++) {

 if (shi[i] < shi[j]) {

 float temp = shi[i];

 shi[i] = shi[j];

 shi[j] = temp;

 String s1 = arr[i];

47

 arr[i] = arr[j];

 arr[j] = s1;

 }

 }

 }

 System.out.println("\nFollowing is the sorted (descending) array, considering the largest

distances corresponding to each data point:\n");

 System.out.println(shi[i]);

 int choice;

 System.out.println("\nEnter the value:");

 choice = in.nextInt();

 System.out.println("Thus, the largest " + choice + " distances are:");

 //for(int i=s-choice;i<count2;i++)

 for (int i = 0; i < choice; i++) {

 System.out.println("data point "+arr[i] + is an outlier . Distance corresponding to the point

is " + shi[i]);

 }

 br.close();

 } catch (FileNotFoundException e1) {

 e1.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

5.5 Algorithm using Mahalanobis Distance approach

a). Java code for dmm_new.java

package dmm;

48

import java.io.*;

import java.util.Arrays;

import java.util.Scanner;

public class dmm_new {

 public void show1()

 {

 try {

 BufferedReader br1 = new

BufferedReader(newFileReader("C:\\Users\\hp\\Documents\\iris.csv "));

 String line1;

 line1= br1.readLine();

 int count=1,count2=1;

 for(int i=0;i<line1.length();i++)

 {

 if(line1.charAt(i)==',')

 count++;

 }

 for(int i=0;;i++)

 {

 line1=br1.readLine();

 if(line1==null)

 break;

 count2++;

 }

 System.out.println(count+" Dimesions");

 System.out.println(count2+" Samples");

 BufferedReader br = new

BufferedReader(newFileReader("C:\\Users\\hp\\Documents\\iris.csv "));

49

 String line;

 float[][] col0 = new float[count2][count];

 float[][] res = new float[count2][count2];

 float shi[]=new float[count2];

 for (int i = 0; i < count2; i++) {

 line = br.readLine();

 String[] cols = line.split(",");

 for(int j=0;j<count;j++)

 col0[i][j] = Float.valueOf(cols[j]);

 }

 float a = 0.0f;

 Mahalanobis mb=new Mahalanobis(1);

 for(int i=0;i<count2;i++)

 {

 for(int j=0;j<count2;j++)

 {

 a=0;

 for(int v=0;v<count;v++)

 {

 a=mb.getDistance(col0[i][v], col0[j][v]);

 System.out.println("Combo : "+col0[i][v]+ " & "+col0[j][v]+" = "+a);

 }

 res[i][j]=a;

 }

 }

 int c;

 Scanner in = new Scanner(System.in);

50

 System.out.println("Enter a value");

 c = in.nextInt();

 for(int i=0;i<count2;i++)

 Arrays.sort(res[i]);

 int s=count2-1;

 for(int i=0;i<count2;i++)

 {

 for(int j=0;j<c;j++)

 {

 System.out.print(res[i][j]);

 System.out.print(' ');

 }

 System.out.println();

 }

 for(int i=0;i<count2;i++)

 {

 shi[i]=res[i][c-1];

 }

 for(int i=0;i<s;i++)

 {

 for(int j=i+1;j<count2;j++)

 {

 if(shi[i]<shi[j])

 {

 float temp=shi[i];

 shi[i]=shi[j];

 shi[j]=temp;

51

 }

 }

 }

 System.out.println("\nFollowing is the sorted (descending) array, considering the

largest distances corresponding to each data point:\n");

 for(int i=0;i<count2;i++)

 System.out.println(shi[i]);

 int choice;

 System.out.println("\nEnter the value:");

 choice=in.nextInt();

 System.out.println("Thus, the largest "+choice+" distances are:");

 //for(int i=s-choice;i<count2;i++)

 for(int i=0;i<choice;i++)

 System.out.println(shi[i]);

 br.close();

 }

 catch (FileNotFoundException e1) {

 e1.printStackTrace();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

52

b).Java code for Mahalanobis.java

package dmm;

import dmm.org.math.array.LinearAlgebra;

public class Mahalanobis {

 // the covariance matrix

 private double[][] S;

 public static void main(String[] args) {

 double x = 5.1;

 double y = 5.1;

 Mahalanobis mah = new Mahalanobis(1);

 System.out.println(mah.getDistance(x, y));

 }

 public Mahalanobis(int dim) {

 S = new double[dim][dim];

 for(int i=0; i<dim; i++)

 for(int j=0; j<dim; j++)

 if(i == j)

 S[i][j] = 1.0;

 else

 S[i][j] = 0.0;

 }

 public float getDistance(double x, double y) {

 double[][] diff = new double[1][1];

 for(int i=0; i<1; i++)

 diff[0][i] = x - y;

 double result[][] = LinearAlgebra.times(diff, LinearAlgebra.inverse(S));

 result = LinearAlgebra.times(result, LinearAlgebra.transpose(diff));

53

 return (float)Math.sqrt(result[0][0]);

 }

 public double getSimilarity(double x, double y) {

 return 1.0 / (1.0 + getDistance(x, y));

 } }

54

Chapter6 :CONCLUSION

55

CONCLUSION AND FUTURE SCOPE.

I have created a new panel that consists of most popular outlier detection algorithms. This

panel enables users to apply outlier detection algorithms to the given dataset.

Standard techniques were used in process.

The relatively low percentage of detection rate as compared to other forms of outlier

detection suites indicates that the algorithms used are not very robust and is vulnerable to

effects like scaling and elastic deformations.

Also a major challenge in outlier detection is defining a normal region which encompasses

every possible normal behavior. It is very difficult to achieve hundred percent accuracy in

anomaly detection and this also adds to the low detection rate.

As a future scope we can take a large database and make outlier detection module with more

improvised algorithms to detect anomalies correctly to the maximum extent.

 Such large systems are used in various fields like airlines and traffic pattern monitoring and

control, medical fields, for an anomalous MRI image may indicate the presence of malignant

tumors, in credit card identity and thefts, in space research and other areas of research.

56

REFERENCES

1. Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A

survey. ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58

pages.DOI=10.1145/1541880.1541882 http://doi.acm.org/10.1145/1541880.1541882

2. Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000. LOF:

identifying density-based local outliers. SIGMOD Rec. 29, 2 (May 2000),93-

104.DOI=10.1145/335191.335388 http://doi.acm.org/10.1145/335191.335388

3. Xiuyao Song, Mingxi Wu, Christopher Jermaine, and Sanjay Ranka. 2007. Conditional

Anomaly Detection. IEEE Trans. On Knowl. And Data Eng. 19, 5 (May2007),631-

645.DOI=10.1109/TKDE.2007.1009 http://dx.doi.org/10.1109/TKDE.2007.1009

4. KNORR, E. M., NG, R. T., AND TUCAKOV, V. 2000. Distance-based outliers:

Algorithms and applications. VLDB

J. 8, 3-4, 237–253.

5. Victoria J. Hodge and Jim. 2004. A Survey of Outlier Detection Methodologies. AIRE381

http://doi.acm.org/10.1145/335191.335388
http://dx.doi.org/10.1109/TKDE.2007.1009

57

APPENDICES

APPENDIX A: Work Plan

58

APPENDIX B: Tools Description

NetBeansIDE 7.0.1
The NetBeans IDE is an award-winning integrated development environment available

for Windows, Mac, Linux, and Solaris. The NetBeans project consists of an open-source

IDE and an application platform that enable developers to rapidly create web, enterprise,

desktop, and mobile applications using the Java platform, as well as PHP, JavaScript and

Ajax, Groovy and Grails, and C/C++.

The Net Beans project is supported by a vibrant developer community and offers

extensive documentation and training resources as well as a diverse selection of third-

party plugins.

NetBeans IDE 7.0 introduces language support for development to the Java SE 7

specification with JDK 7 language features. The release also provides enhanced

integration with the Oracle WebLogic server, as well as support for Oracle Database and

GlassFish 3.1. Additional highlights include Maven 3 and HTML5 editing support; a new

GridBagLayout designer for improved Swing GUI development; enhancements to the

Java editor, and more.

NetBeans IDE 7.0 is available in English, Brazilian Portuguese, Japanese, Russian, and

Simplified Chinese.

NetBeans IDE 7.0.1 includes the following notable changes:

 Full JDK 7 support: Running NetBeans IDE on top of JDK 7 and support for the final

version of the JDK 7 language features

 Integration of the recent patches

 Performance improvements

https://netbeans.org/features/index.html
https://netbeans.org/features/index.html
https://netbeans.org/features/platform/index.html
https://netbeans.org/community/index.html
https://netbeans.org/kb/index.html
http://plugins.netbeans.org/
http://wiki.netbeans.org/NetBeans7.0PatchesInfo

59

APPENDIX C: Quality Assurance

Quality assurance, or QA for short, is the systematic monitoring and evaluation of the various

aspects of a project, service or facility to maximise the probability that minimum standards of

quality are being attained by the production process. Two principles included in QA are “Fit
for Purpose” – the product should be suitable for the intended purpose; and “Right first

time”- mistakes should be eliminated.

Fit for purpose:

This project is fit for the purpose of detecting outliers in any dataset carrying float type

samples.

Right first time:

Till now 75% of accuracy is achieved.

Failure Testing:

I will definitely consider the test cases on it so as to increase its accuracy and make it a better

project than existing ones.

Programming style and testing:

I have only used java for coding of all the algorithms and Netbeans development

environment.

60

APPENDIX D: Data Sets

Iris Data Set

Data Set Description

Database: from Fisher, 1936

Data Set

Characteristics:
Multivariate

Number of

Instances:
150 Area: Life

Attribute

Characteristics:
Real

Number of

Attributes:
4 Date Donated

1988-07-

01

Associated Tasks: Classification Missing Values? No
Number of

Web Hits:
564556

Creator: R.A. Fisher

Data Set Information:

This is perhaps the best known database to be found in the pattern recognition literature. The

data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant.

One class is linearly separable from the other 2; the latter are NOT linearly separable from

each other. Predicted attribute: class of iris plant.

Attribute Information:

1. Sepal length in cm

2. Sepal width in cm

3. Petal length in cm

4. Petal width in cm

5. Class:

-- Iris Setose

-- Iris Versicolour

-- Iris Virginica

http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.names

61

Wine Data Set

Data Set Description

 Using chemical analysis determine the origin of wines

Data Set

Characteristics:
Multivariate

Number of

Instances:
178 Area: Physical

Attribute

Characteristics:
Integer, Real

Number of

Attributes:
13 Date Donated

1991-07-

01

Associated Tasks: Classification Missing Values? No
Number of

Web Hits:
338591

Original Owners:

Forina, M. et al, PARVUS -

An Extendible Package for Data Exploration, Classification and Correlation.

Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno,

16147 Genoa, Italy.

Data Set Information:

These data are the results of a chemical analysis of wines grown in the same region in Italy

but derived from three different cultivars. The analysis determined the quantities of 13

constituents found in each of the three types of wines.

The attributes are

1) Alcohol

2) Malic acid

3) Ash

4) Alcalinity of ash

5) Magnesium

6) Total phenols

7) Flavanoids

8) Nonflavanoid phenols

9) Proanthocyanins

10)Color intensity

11)Hue

12)OD280/OD315 of diluted wines

13)Proline

Attribute Information: All attributes are continuous

http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.names

62

	4.1 Input phase
	4.1.1 Inputting Data into WEKA
	APPENDIX C: Quality Assurance
	Quality assurance, or QA for short, is the systematic monitoring and evaluation of the various aspects of a project, service or facility to maximise the probability that minimum standards of quality are being attained by the production process. Two pr...
	Fit for purpose:
	This project is fit for the purpose of detecting outliers in any dataset carrying float type samples.
	Right first time:
	Till now 75% of accuracy is achieved.
	Failure Testing:
	I will definitely consider the test cases on it so as to increase its accuracy and make it a better project than existing ones.
	Programming style and testing:
	I have only used java for coding of all the algorithms and Netbeans development environment.
	APPENDIX D: Data Sets

