JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- MAY-2023

COURSE CODE(CREDITS): 18B11EC211 (4)

MAX. MARKS: 25

COURSE NAME: Electrical Science

COURSE INSTRUCTORS: EMP, SRU, PRG, SWT

MAX. TIME: 1 Hour 30 Minutes

Note: All questions are compulsory. Marks are indicated against each question in square brackets.

- Q1. (a) Define mesh, loop and path in electrical circuit analysis. Are the branches shown with heavy lines in Fig.1 below making a mesh, loop or path? Provide explanation for your answer.
- (b) What is supermesh concept and procedure to solve a supermesh circuit? For the given supermesh circuit in Fig.2 below, determine three mesh currents i₁, i₂, and i₃. [CO2, 2M]

- Q2.(a) Define superposition theorem. Give two examples each of linear elements and nonlinear elements. [CO3, 2M]
 - (b) Find v in Fig. 3 below using superposition theorem.

[CO3, 4M]

Fig. 3

Q3.(a) In Fig.4, Consider $1K\Omega$ as the load resistance i.e., $R_L = 1 \ k\Omega$. Then Find V_o , the voltage drop across $1k\Omega$ resistor by first finding the Thevenin equivalent circuit. [CO3, 4M]

(b) In Fig.5, Find R_L for maximum power transfer and the maximum power transferred to R_L in the circuit given below. [CO3, 3M]

Fig. 4

Q4.(a) Prove that energy stored in the inductor is.

[CO3, 2M]

Fig. 5

$$w_L(t) = \frac{1}{2} L \cdot i^2$$

(b) With the assumption that the switch in the given circuit has been closed a long, long, long time, calculate $i_L(t)$ at (i) the instant just before the switch opens; (ii) $t=78.8 \,\mu s$. [CO3, 2M]

(c) The voltage across the capacitor of $12\mu F$ is shown in the given figure. Draw the wave form for the current in the capacitor.

