JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-1 EXAMINATION (FEB 2018)

B-Tech (2nd SEM)

Course Code: 10B11CI211

Max. Marks: 15

Course Name: DATA STRUCTURES

Max. Time: 1 HRS

Course Credit: 4

Note: All questions are compulsory. Skip syntax error if there any.

Q1.

(5x1=5)

- a. What is the difference between declaration and definition of a variable
- b. How is an Array different from Linked List?
- c. A quadratic algorithm with processing time $T(n) = cn^2$ spends T(N) seconds for processing N data items. How much time will be spent for processing n = 5000 data items, assuming that N = 100 and T(N) = 1ms?
- d. What would be the asymptotic time complexity to add a node at the end of singly linked list, if the pointer is initially pointing to the head of the list?
- e. What will be output of following C programs?

```
/*Program2
```

```
Assume integer occupies 2 bytes
//Program1
#include<stdio.h>
                                         #include<stdio.h>
int main()
                                         int main()
     printf("%d", sizeof(
                                               struct employee
     return 0;
}
                                                    int empid[5];
                                                    int salary;
                                                    employee *s;
                                               }emp;
                                         printf("%d %d", sizeof(employee),
                                         sizeof(emp.empid));
                                         return 0;
```

Q2. Do the worst case analysis for following given codes. Show all the computation steps.

```
(2x2 = 4)
```

```
//Prog1
void function(int n)
{
    int i, j, k, count=0;
    for(i=n/2; i<=n; i++) {
    for(j=1; j+n/2<=n; j=j+1) {
    for(k=1; k<=2; k=k*2) {
        int i=1, s=1;
        while(s<=n)
        {
        int i=1, s=1;
        while(s<=n)
        {
        i++;
        s=s+i;
        printf("*");
        }
}</pre>
```

- a) Design the decomposition tree to solve Tower of Hanoi problem, consisting of 3 towers A, B, & C, and no. of disks n=4. Also design the recursive algorithm that apply the solution for this by consisting of base condition(s), de-composition condition(s) and re-composition condition(s). (Note: Do not write C program code to solve this problem using recursion)
- b) Check whether the given linked list is NULL-terminated or not. If there is a cycle find the start node of the loop.
- c) Given a linked list, find whether the linked list contains a loop or not. Write a program to Detect a loop in a linked list