JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2023

B.Tech- VI Semester (ECE)

COURSE CODE (CREDITS): 18B11EC612 (3)

MAX. MARKS: 35

COURSE NAME: VLSI Technology

COURSE INSTRUCTORS: Dr. Harsh Sohal

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) Marks are indicated against each question in square brackets.

(c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q1. [CO1+CO2][7]

- (a) Why the input resistance of a CMOS inverter is infinite? [1]
- (b) List the differences between BJT and MOSFET. [2]
- (c) Explain the formation of Inversion layer in an n channel MOSFET (use diagrams). [2]
- (d) You are given a wafer of the size of 30 cm, die size of 2.5 cm2, with 1 defects/cm2; α (the measure of manufacturing process complexity)=3. Cost of the wafer is INR 100,000. Calculate:
- (i) dies per wafer (ii) die yield [1+1]

Q2. [CO2+CO3] [7]

For the inverter circuits given below derive the expression for V_{OH} for both (a) and (b). Which of the two shall give better output voltage swing? Explain. [3]

Page 1 of 4

(b) [2+2]

For the circuit in Figure (b) above list the region of the operation of the load transistor and the driver transistor for the following values of I/P and O/P voltages.

V. C.L.		•	
	77aut	Driver Operating Region	Load Operating region
Vin	Vout	7	?
V_{OL}	V _{OH}	· · · · · - · -	?
V_{IL}	≈ V _{OH}	!	7
V _{IH}	Small (slightly greater	?	•
""	than V _{OL})		7
V _{OH}	V _{OL}	?	1

Q3. [CO3+CO4] [8]

(a) Given $V_{DD} = 2.5$ V, $k' = 40 \mu A/V^2$, and $V_{T0} = 0.5$ V, design a resistive-load inverter circuit with $V_{OL} = 0.1$ V.

(i) Determine the (W/L) ratio of the driver transistor and the value of the load resistor R_L that achieves the required V_{OL} [3]

Calculate the DC power dissipation of the inverter above (assuming that the input voltage is "low" during 50% of the operation time, and "high" during the remaining 50%) when W/L=1. [1]

(b) Consider a CMOS inverter circuit with the following parameters: [2+2]

$$V_{DD} = 5V$$

$$V_{T0,n} = 1 \text{ V}$$

$$V_{T0,P} = -1 V$$

$$k_n = 200 \, \mu A/V^2$$

$$k_p = 80 \ \mu A/V_p^2$$

Calculate (i) Noise Margin Low (NM_L)

(ii) Threshold voltage (V_{TH}) of the CMOS inverter

Q4. [CO5, CO6][6]

Calculate the minimum supply voltage (V_{DD} in Volts) required for the transistor M1 to operate in saturation mode. Consider the following quantities given for the nMOS: $K_n = \mu_n C_{ox}(W/L) = 1 \text{mA/V}^2$; $V_{THN} = 1.9 \text{V}$ both the transistors. Assume that the channel length modulation is zero and the body is shorted to the source.[2]

(b) Write the Boolean equations being implemented by the circuits given below.(1+1)

(c) What is the logic being implemented by the circuit below? What is the logic style used? List its comparison with static CMOS logic implementation. [2]

Q5. [CO5, CO6] [7]

(a) Implement the Boolean function $F = \overline{(D + E + A)(B + C)}$ using static CMOS logic and draw the corresponding circuit diagram. [2]

- (b) Find an equivalent CMOS inverter circuit for the above implementation in (a) for simultaneous switching of all inputs, assuming that $(W/L)_p = 15$ for all pMOS transistors and $(W/L)_n = 10$ for all nMOS transistors. [2]
- (c) Determine the Boolean function being implemented by the following Transmission gate implementation while writing intermediate equations. [3]

