JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2023

MB.Tech-II Semester (CSE/IT/ECE/CE)

COURSE CODE(CREDITS): 11M1WCE133

MAX. MARKS: 35

COURSE NAME: Bridge Engineering

COURSE INSTRUCTORS: Kaushal Kumar

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) Marks are indicated against each question in square brackets.

(c) Assume missing data suitably, if any. Use of Pigeaud's curves is allowed.

Q.1. Answer/describe the following.

[7x1=7]

- (a) Write the major components of a concrete bridge.
- (b) Why is design discharge important for bridge design?
- (c) Write the expression for impact factor for IRC Class A loading.
- (d) Why are cross-beams provided in T-beam Bridge?
- (e) What is the main advantage of using framed piers over non-framed piers?
- (f) What is the function of bearings in bridges?
- (g) What is expansion bearing? Give its various types.
- Q.2. A T-beam bridge (Figure-1) has to be provided across a channel with the following data.
 - Flood disci erge: 30 m³/s
 - Bed width 12 m
 - Sid: slope: 1 /
 - Bed level: 50 m
 - HFL: 51.25 m
 - Maximum allowable afflux: 1.5 cm
- Road: National highway (2-lane)
- Footpath: 1 m wide on either side
- Loading: IRC Class AA
- Materials: M40 concrete Fe415 steel
- No. of longitudinal girders: 3

(a) Design the linear waterway, and (c) For the cantilever slab portion (Figure-2), of the bridge given in Ques. II above, calculate the design moment and design shear only:

13+4=71

(b). For the longitudinal girder of T-beam bridge in Figure-1, calculate the design moment for IRC Class AA (track) loading. [10]

Q.3. It is required to design an elastomeric pad bearing for a two-lane RC T-beam bridge of 15 m clear such with the following data:

[5]

Maximum dead load reaction per bearing = 280 kN.

Maximum live load reaction per bearing = 520 kN.

Vertical reaction induced by longitudinal forces per bearing = 12 kN

1 ongitudinal force per bearing = 33 kN

Concrete grade for T-beam and bed-block over pier = M20.

Rotation at bearing of superstructure due to D.L. and L.L. = 0.0025 radian.

Use 250 \times 500 mm pads with 39 mm thickness. Take $A_1/A_2 \ge 2$.

Q.4. Show different types of bridge piers with simple diagrams along with relative merits?

Also write different loads considered for design of piers.

-----End of Paper------

Important Formulas:

The second secon