JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION - 2023

B.Tech-II Semester (CSE/IT/ECE/CE)

COURSE CODE(CREDITS): 18B11EC211 (4)

MAX. MARKS: 35

COURSE NAME: Electrical Sciences

COURSE INSTRUCTORS: EMP, SRU, NTJ, SWT, ALK

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

- (b) Marks are indicated against each question in square brackets.
- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
- Q1. (a) Determine i₁ in the circuit of Fig.1, if the controlling quantity is equal to 2i₂.

[CO1, 2M]

(b) Select a value for R_L in Fig. 2 such that it is ensured to absorb maximum power from the circuit. [CO1, 4M]

- Q2. (a) For the circuit in Fig.3, find the values of $v_c(0^-)$, $v_c(0^+)$, $i_L(0^-)$ and $i_L(0^+)$.
- [CO2, 2M]
- (b) Determine i(t) for all values of time in the circuit of Fig.4.
- [CO2, 4M]

[P. T. O]

Q3. (a) Find the average power supplied by each source in Fig.5.

[CO3, 3M]

(b) In Fig.6, draw the phasor diagram showing V_1 and V_2 , if $V_S = 1 \angle 0^\circ$

[CO3, 3M]

Q4. (a) Determine average and rms value of the waveform depicted in Fig. 7.

[CO4, 3M]

(b) Find the complex power delivered by the source of circuit in Fig. 8.

[CO4, 3M]

Q5. (a) Write loop equations for I_1 and I_2 . Given mutual reactance $M = j750\Omega$, self reactances, $L_1 = j2k\Omega$, $L_2 = j1.8k\Omega$ as shown in the Fig. 9. [CO5, 3M]

(b) Let $N_1 = 1000$ turns and $N_2 = 5000$ turns in the ideal transformer shown in Fig.10. If $Z_L = 500 - j400\Omega$, find the average power delivered to Z_L for $V_s = 200 \angle 0^{\circ} V$ rms. [CO5, 3M]

Q6. Write short notes on the following:

[CO1, 5M]

- (a) Norton's Theorem.
- (b) Super node in circuit analysis.
- (c) Time constant in transient analysis.
- (d) Power factor in AC circuits.
- (e) Impedance in AC circuits.