| Roll | No: | <br> |  |
|------|-----|------|--|
|      |     |      |  |

## JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- June 2023

## M.Tech. CSE/IT 2<sup>nd</sup> Semester

COURSE CODE: 22M1WCI235

MAX. MARKS: 35

COURSE NAME: REINFORCEMENT LEARNING

COURSE CREDITS: 03

MAX. TIME: 2Hr

COURSE COORRDINATOR: Prof. (Dr.) Vivek Kumar Sehgal

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- 1. Consider two MDPs that are identical, except for their initial state distributions,  $d_0$ . Let  $\pi^*$  and  $\mu^*$  be optimal policies for the first and second MDP, respectively. Let  $s^* \in \mathcal{S}$  be a state that has a non-zero probability of occurring when using  $\pi^*$  on the first MDP and a non-zero probability of occurring when using  $\mu^*$  on the second MDP. Consider a new policy,  $\pi'$  such that  $\pi'(s, a) = \pi^*(s, a)$  for all  $s \in \mathcal{S} \setminus \{s^*\}$  and  $a \in \mathcal{A}$  and  $\pi'(s^*, a) = \mu^*(s^*, a)$  for all  $a \in \mathcal{A}$ . Is  $\pi'$  an optimal policy for the first MDPQ [CO-1, 2-5]
- 2. Consider an MDP with one state,  $S = \{1\}$  and  $A = \mathbb{R}$ . Let

$$R_t = \begin{cases} A_t & \text{if } A_t < 1\\ 0 & \text{otherwise} \end{cases}$$

Let  $\gamma < 1$ . In this case, what is the optimal policy?

[CO-2, -5]

- 3. Can you derive the Bellman equation for  $q^{\pi}(s, a)$  from the definition of  $q^{\pi}$ ? [CO-3, -5]
- 4. You are given an environment with 1 state, x, and 2 actions, b and c. T is the terminal state. Your TD algorithm generates the following episode using the policy  $\pi$  when interacting with its environment:

| Timestep | Reward | State | Action |
|----------|--------|-------|--------|
| 0        |        | Х     | b      |
| 1        | 16     | X     | С      |
| 2        | 12     | X     | b      |
| 3        | 16     | T     |        |

- The policy  $\pi$  is given by:  $\pi(b \mid x) = 0.9$ ,  $\pi(c \mid x) = 0.1$
- The current values of q are: q(x, b) = 1 and q(x, c) = 2.
- the discount factor,  $\gamma$ , is  $\frac{1}{2}$ .
- the step size,  $\alpha$ , is 0.1

Show the values of q(x,b) and q(x,c) after their first update using 1-step Sarsa, 2step Sarsa, 2-step Expected Sarsa, and 2-step Tree Backup. Note: you should update q(x,b) and q(x,c) only once per learning algorithm. Show your work and carry out your calculations to two decimal places.

| Learning Algorithm    | q(x,b) after its first update | q(x,c) after its first update |
|-----------------------|-------------------------------|-------------------------------|
| 1-step Sarsa          | 2.6                           | 3,13                          |
| 2-step Sarsa          | <u>3.13</u>                   | 3.8                           |
| 2-step Expected Sarsa | 3,13                          | 3.8                           |
| 2-step Tree Backup    | 2.61                          | 3.73                          |

[CQ-4.5, - 12]

5. You are using Monte Carlo Tree Search to decide on the next action for a two-person competitive game with 2 actions at each state (up and down). It is player 1 's turn to play in state A. The state of the tree so far is as follows (each node consists of state identifier, n value, and q value):



Remember that the formula for the UCT value for a node, v, is:

$$UCT(v) = \frac{q(v)}{n(v)} + c \sqrt{\frac{\ln n(v \cdot \text{parent})}{n(v)}}$$

Assume the constant c in the UCT formula is 0.5 .

- i. What is the node that is next selected (show your work)?
- ii. Assuming that the simulation (rollout) from the expanded node gives a value of 1 (that is, player 1 wins), backup that value to all of the affected nodes.