
Automating Deployment of Various Microservices
Kubernetes

Project report submitted in partial fulfillment of the
requirement for the degree of Bachelor of Technology

in

Computer Science and Engineering/Information
Technology

By

Divyansh Joshi (191353)

Under the supervision of

Dr. Hari Singh Rawat

to

Department of Computer Science & Engineering and
Information Technology

Jaypee University of Information Technology

Waknaghat, Solan-173234, Himachal Pradesh



Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Automating

Deployment of Various Microservices in Kubernetes” in partial fulfillment

of the requirements for the award of the degree of Bachelor of Technology in

Computer Science and Engineering/Information Technology submitted in

the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an

authentic record of my own work carried out over a period from July 2022 to

May 2023 under the supervision of Dr. Hari Singh Rawat, who is currently

an Assistant Professor (SG) Department of Computer Science.

The matter embodied in the report has not been submitted for the award of any

other degree or diploma.

Divyansh Joshi, 191353

This is to certify that the above statement made by the candidate is true to the

best of my knowledge.

Dr. Hari Singh Rawat

Assistant Professor (SG)

Department of Computer Science

Dated:

I



II



Acknowledgement

Firstly, I express my heartiest thanks and gratefulness to almighty God for his

divine blessing makes it possible for me to complete the project work

successfully.

I am really grateful and wish my profound indebtedness to Supervisor Dr.

Hari Singh, Assistant Professor, Department of CSE Jaypee University of

Information Technology, Wakhnaghat whose guidance was the most valuable

in order to complete this project. I would also like to thank Mr. Sukhneer

Singh Guron, my manager who took me under his wing to work and cultivate

knowledge in all domains.

I would also generously welcome each one of those individuals who have

helped me straightforwardly or in a roundabout way in making this project a

win. In this unique situation, I want to thank the various staff individuals, both

educating and non-instructing, which have developed their convenient help

and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patients

of our parents.

Divyansh Joshi

191353

III



Table of Content

Title Page Number

Candidate’s Declaration I

Plagiarism Certificate II

Acknowledgement III

Table of Content IV

List of Figures V

Abstract VI

Introduction 1-13

Literature Review 14-23

System Design and Development 24-44

Experiments and Result Analysis 45-49

Conclusion 50-53

References 54-55

IV



List of Figures

Figure Number Description

1 Microservice Architecture vs

Monolithic Architecture

2 Containerized Applications

3 Container Orchestration

4 Init Container Example

5 Jenkins Pipeline Flow

6 kubectl patch command

7 Memory limit error

8 Base Kustomization template

9 Custom template for kustomize

10 Overlay Kustomization

11 kubectl apply -k

12 Bash shebang

13 Shell shebang

14 Init Script Testing

15 Init Script Logs in a Cluster

16 Running Application UI

17 Running Workspaces UI

V



Abstract

This abstract highlights the deployment process of various microservices

which comprise our application “Workspaces”, including essential resources

such as MongoDB, Kafka, and Ingress Nginx Controller, within a local

minikube Kubernetes[1] cluster. The procedure involved containerizing

applications using custom Dockerfiles and employing init containers to

execute precheck tasks, such as verifying resource availability and importing

prerequisite data. Subsequently, Kubernetes manifests were meticulously

written for each microservice, encompassing resources like Deployment,

Ingress, Service, and ConfigMap. A comprehensive "setup.sh" script

facilitated the execution of the entire application stack, with separate scripts

for managing resources and microservice apps. Configuration for different

cluster environments, such as minikube[2], Azure AKS, and GKE, was

achieved through Kustomize, leveraging new kustomization.yaml files and

patches. Environment detection mechanisms were implemented for dynamic

command execution. Furthermore, the setup was made accessible to external

users through a separate Haproxy service, with the proper configuration of the

haproxy.cfg file. Rigorous testing, debugging, and problem-solving were

undertaken to ensure successful automation. The resulting solution runs

independently on any development server equipped with a minikube cluster.

VI



Chapter-1

INTRODUCTION

1.1 Introduction to Microservices, containers and container orchestration

Microservices are a common architectural approach for efficiently and

scalable development of complex software systems. The concept that complex

monolithic programs can be broken down into more manageable, loosely

coupled services that can be developed and deployed independently forms the

basis of microservices architecture. Each service controls a certain

functionality and communicates with other services via protocols that are

standardized across the industry, such as HTTP or REST.

Microservices are not a new concept; they have been around since the early

2000s. However, it has lately gained popularity as software development

teams began to recognize the drawbacks of the traditional monolithic

architecture. The monolithic approach was distinguished by a closely coupled

design, where each module of the program was intricately connected to every

other element. It was difficult to update one component of the program

without simultaneously changing the others as a result. Large applications are

difficult to develop, test, deploy, and manage as a result.

On the other hand, there are a number of advantages that microservices

provide over the conventional monolithic architecture. First of all, they enable

greater adaptability and agility in software development. The ability to

develop and deploy each microservice independently of the others enables

more frequent delivery of new features and updates in order to decrease

time-to-market and enhance user experience. Microservices offer improved

scalability since each service can be scaled separately to meet the changing

requirements of the application. This method also helps to increase fault

1



tolerance because the failure of one service does not always mean that the

entire application will also fail.

The microservices architecture also enhances the code's quality and

maintainability. Each service focuses on a certain functionality, making the

code simpler and easier to understand. This enables new developers to

onboard more quickly, and it also makes it easier to find and fix issues.

However, implementing a microservices architecture is not without its

challenges. One of the main challenges is managing the complexity of a

distributed system. Microservice designs can be challenging to administer,

requiring specialized infrastructure and tools. Service discovery, inter-service

communication, and ensuring data consistency between services are other

challenges.

Fig-1 Microservice Architecture vs Monolithic Architecture

Microservices have largely altered the creation, implementation, and

management of software systems. They give teams a more flexible and

scalable way to create software, allowing them to respond to changing

business needs more quickly. As this technology continues to grow, we might

expect to see more improvements in microservices architecture and

development methods.

2



Container technology has become a key component of modern software

application development and deployment, especially when leveraging

microservices architecture. When programs are contained within a container, a

portable, lightweight, and self-contained piece of software that can run on any

device or operating system, it is easier to bundle, distribute, and execute apps

consistently across many contexts.

Containerization is ideal for microservices architecture due of its benefits.

First off, containers provide an isolated environment for executing programs,

enabling them to work consistently and stably regardless of the underlying

infrastructure. As a result, moving programs across contexts—such as from

development to production—is made easier without having to worry about

infrastructure changes or incompatibilities. Additionally, containers offer a

simpler and more efficient way to manage dependencies and configurations

because they may bundle an application with all necessary dependencies and

parameters. As a result, developers may now deploy an application anywhere

without having to worry about installing and configuring various dependencies

on numerous machines.

Another benefit of containers is that they offer better resource use and

scalability. Running a lot of containers on one machine won't affect

performance because each container is small and light. By adding more

containers as demand increases, this reduces total infrastructure costs and

makes scaling an application easier.

3



Fig-2 Containerized Applications

Containerization enables a more agile development process, which is essential

for microservices architecture. Adjustments may be made and new features

can be deployed more quickly and efficiently since one microservice can be

developed and supplied independently of the others. Additionally, this

approach reduces the time and effort required to test the entire application by

making it easier to test and debug certain services.

For the creation of a microservices architecture, containerization technology is

essential. Now that containers can be used to package, deploy, and run

microservices, scalability, efficiency, and agility are all improved. We may

predict that as microservices architecture continues to gain popularity,

containerization will become more and more crucial for creating and

delivering contemporary software applications.

4



A software element that may execute containers on a host operating system is

a container runtime, commonly referred to as a container engine. Container

runtimes are in charge of loading container images from a repository, keeping

track of local system resources, isolating system resources for use by a

container, and managing the lifespan of containers in a containerized

architecture. RunC, containerd, Docker[3], and Windows Container are typical

examples of container runtimes.

Common container runtimes typically work with container orchestrators. The

orchestrator must deal with networking, security, and container scalability

challenges in order to manage container clusters. The container engine is

responsible for managing each individual container that is executing on each

computing node in the cluster.

Kubernetes, a ground-breaking open-source container orchestration platform,

has revolutionized how modern applications are currently deployed and

maintained. It was initially developed by Google and then contributed to the

Cloud Native Computing Foundation (CNCF), where it is now maintained by

a large and active community of developers. This is based on Google's

experience managing significant containerized workloads in production.

With the help of distributed infrastructure, Kubernetes automates the

deployment, scaling, and management of containerized applications.

Regardless of whether their apps are operating in a public cloud, a private data

center, or a hybrid cloud environment, developers can quickly deploy and

manage them with Kubernetes in a variety of scenarios. It adaptable and

potent design makes it possible to manage the whole application lifecycle,

from development to production and beyond.

5



Fig-3 Container Orchestration

Kubernetes has a lot of potent characteristics that make it a desirable choice

for the deployment and development of contemporary applications. It has

built-in load balancing and service discovery features, for instance, which

make it simple to expose containerized applications to the outside world. It

also has a strong networking stack that makes it simple to connect containers

together. Additionally, it has strong storage features that make it simple for

developers to control persistent storage for their applications.

Overall, Kubernetes is used by a variety of companies, ranging in size from

small startups to major enterprises, and has quickly established itself as the

industry standard for container orchestration. Its popularity is a result of its

capacity to facilitate developers' containerized application deployment and

administration, freeing them up to concentrate on developing code rather than

worrying about infrastructure. Kubernetes is positioned to play a significant

part in the development and deployment of applications in the future thanks to

its versatile and potent platform.

6



1.2 Problem Statement

In our application, currently only a few of the application's microservices are

currently correctly containerized, but the business is not making full use of

Kubernetes and the microservices architecture to speed up and streamline the

development and deployment process. Currently, these microservices are

deployed manually, which might cause a number of problems.

Because manual deployment of containerized microservices requires a lot of

manual labor and can result in discrepancies between multiple deployments, it

can be a time-consuming and error-prone operation. As a result, developers

and operations teams must spend time manually installing and configuring

each microservice, which can cause delays and raise expenses. Manual

microservice deployment might result in security and compliance challenges

in addition to time and financial problems. It might be challenging to

guarantee that each deployment complies with relevant laws and standards and

is secure without the right automation and configuration management

technologies.

Additionally, manual deployment may restrict scalability and impede speedy

modification. Since each deployment must be manually configured and

controlled, scaling up or down quickly can be challenging with manual

deployment. This may make it more difficult to adapt swiftly to shifts in

demand or other demands.

The company is losing out on greater agility, scalability, and efficiency by not

fully embracing Kubernetes and microservices design. While microservices

design facilitates application modularization and decoupling, making it

simpler to manage and scale individual components, Kubernetes offers a

reliable and scalable platform for the deployment and management of

containerized applications.

The company might spend money on a DevOps pipeline that uses Kubernetes

and microservices architecture to handle this problem statement. This would

7



entail automating the deployment process with the help of tools like Helm,

Kubernetes Operators, and GitOps, which can make the deployment process

easier and more efficient. These tools allow for quicker iteration and

scalability while also ensuring that each deployment is secure and consistent.

The problem statement underlines the need for organizations to fully utilize

Kubernetes and microservices architecture in order to enable speedier and

more efficient development and deployment of containerized applications.

Businesses can gain from doing this by increasing their efficiency, scalability,

and agility as well as cutting expenses, improving security, and complying

with regulations.

1.3 Objectives

For our application called “Workspaces” the fundamental idea of this project is

to containerize each and every component of the application so as to convert it

into a microservice. Further down the line, we’re aiming to use Kubernetes to

create various manifests and configurations for the deployment of all the

required microservice at one place in order to make the deployment faster and

more efficient. Other than that, the main goal of this project is to deploy this

entire application end to end on a local machine or a development server, so

that any developer in the team could conveniently deploy the entire

application stack locally and perform their development changes, debug and

test the application at the same time.

A challenging part of creating this setup is automation. The use of tools and

technology to automate various processes involved in the software

development and deployment process is referred to as automation. It is a

crucial DevOps practice since it aids enterprises in accelerating, streamlining,

and standardizing their software development and deployment procedures.

Code testing, deployment, monitoring, and maintenance are just a few of the

parts of the software development lifecycle that may be automated, freeing

8



engineers to work on higher-value jobs and increasing output. Organizations

may decrease errors, enhance quality, and produce software more rapidly and

consistently by automating repetitive and time-consuming operations.

The most part of automation in our codebase is done through writing efficient

and crisp manifests in launching Kubernetes resources and using various bash

scripts in order to automate the entire flow of deployment. Furthermore, in

Kubernetes a singular node cluster we can use on a local machine or a

development server is called “minikube”. We’ll be using that to launch the

entire application stack.

Minikube is a lightweight and easy-to-use Kubernetes distribution that allows

developers to test and experiment with Kubernetes without the need for a

full-scale production environment. With Minikube, it is possible to deploy

various types of containers, including Docker, Kubernetes, and other

containerized applications.

1.4 Methodology

The methodology for the "Workspaces" application project involves

containerizing every component of the application, utilizing Kubernetes to

create manifests and configurations for deployment, and automating various

processes involved in the software development and deployment process.

Software code and all of its dependencies are bundled together into a single

package known as a container through the process of containerization.

Software applications can be deployed more quickly, consistently, and flexibly

thanks to this containerized technique. The "Workspaces" project seeks to

produce microservices that can be independently created, deployed, and scaled

by containerizing each component of the application.

9



The "Workspaces" project uses Kubernetes to build different manifests and

configurations for the deployment of all necessary microservices in a single

location, which will speed up and improve deployment. Developers may focus

on activities with a greater return on investment by having Kubernetes launch,

scale, and manage containers for them automatically.

Enterprises may expedite, streamline, and standardize their software

development and deployment processes by implementing automation, a

critical DevOps strategy. Developers can boost production, reduce errors, and

improve software quality by automating numerous activities involved in the

software development and deployment process. The "Workspaces" project

wants to launch Kubernetes resources with efficient and clear manifests, bash

scripts, and numerous operations that can be automated.

To automate various processes involved in the software development and

deployment process, we will:

● Write efficient and crisp manifests in launching Kubernetes resources.

● Use various bash scripts in order to automate the entire flow of

deployment.

Minikube is a single-node Kubernetes cluster that can be run on a local

machine or a development server. The "Workspaces" project intends to make

it simple for every developer on the team to deploy the application stack

locally and perform concurrent development modifications, debugging, and

testing by leveraging Minikube to launch the whole application stack. As a

result, testing and development will proceed more quickly and effectively,

giving developers more time to find and fix any application problems.

The goal of the "Workspaces" application project was to change the program

into a microservice architecture by containerizing each of its parts. The

ultimate goal is to deploy the complete application stack end-to-end on a local

workstation or a development server, making it easier for any developer on the

10



team to deploy the application stack locally and perform concurrent

development modifications, debugging, and testing.

The team intends to achieve this using Kubernetes, a container orchestration

system, which will make it possible to create the different manifests and

configurations needed for the deployment of all relevant microservices in a

single location. This will not only speed up and increase the efficiency of the

deployment process, but also make it more standardized and manageable.

Automation, though, is a big problem for this endeavor. Automation is a

crucial DevOps approach that uses tools and technologies to streamline a

variety of software development and deployment processes. Engineers may

concentrate on higher-value operations by automating repetitive and

time-consuming procedures, which boosts the software development

lifecycle's overall quality and efficiency.

The team will use a variety of methods to automate the deployment process in

order to overcome this difficulty. This entails producing scripts to automate

the entire deployment process, designing clear and efficient manifests for

launching Kubernetes resources, and using a single Kubernetes cluster, known

as "minikube," to launch the full application stack.

We can achieve our objective of deploying the entire application stack

end-to-end on a local machine or a development server by putting these

strategies into practice. This will enable all team members who are developers

to test and develop changes quickly and effectively, boosting output and

quality.

1.5 Organization

At the beginning of our project, we had already containerized some of the

larger APIs and UI components of our application. However, further

development and testing needed to be done on a development server with a

11



Linux operating system, rather than on individual developer laptops. This was

partly due to the complexity of deploying certain containerized applications on

laptops with the ARM64 architecture.

In order to run all the necessary containerized parts of our application stack,

we had to put up a special development server. The relevant dependencies and

container management tools, including Docker and Kubernetes, had to be

installed on this server. Additionally, we had to make sure the server had

enough resources to meet the demands of operating several containers at once.

When the server was set up and the application stack was deployed there,

developers had remote access to it, allowing them to perform testing,

debugging, and development updates. This approach also ensured that the

software would function properly when it was released into production by

providing each team member with access to a uniform development

environment. We are able to connect to a remote development server using

SSH. Secure access to a remote computer's resources, including its files and

applications, is provided by the SSH network protocol. It offers a safe,

encrypted connection between the client and server to thwart illegal access and

data theft.

In order to access a development server via a terminal, one must first acquire

the IP address or domain name of the remote machine in order to connect

using SSH. Once you are aware of this, you can connect to a remote machine

using your terminal or command prompt by using the SSH command along

with the machine's IP address or domain name.

An SSH command may look like this:
ssh username@192.168.1.100

SSH is essential for remote access and administration of Linux machines, as it

provides a secure and encrypted way to connect to the machine and perform

tasks without physically being present at the machine. This is particularly

12



useful for system administrators who need to manage multiple machines

remotely, as it saves time and effort by eliminating the need to physically

travel to each machine.

13



Chapter-2

LITERATURE REVIEW

The use of containerization technologies has significantly increased recently,

particularly in the context of analyzing scientific data. Kubernetes is one such

container orchestration software that has grown to be a popular choice for

managing containers. The paper [4]"Kubernetes Container Orchestration as a

Framework for Flexible and Effective Scientific Data Analysis," by the

authors “Anton Tesliuk”, “Sergey Bobkov” which investigates the benefits of

utilizing Kubernetes for scientific data analysis as well as some of its practical

implementations, will be the main focus of this research of the literature.

Launching and managing containerized apps using the open-source

Kubernetes technology for container orchestration. For managing, scaling, and

automating the deployment of containerized applications, it provides a strong

basis. Kubernetes is widely used in business and academia, and its acceptance

has been growing quickly over time. The study "Kubernetes Container

Orchestration as a Framework for Flexible and Effective Scientific Data

Analysis" discusses the benefits of using Kubernetes for scientific data

analysis. According to the authors, Kubernetes provides a flexible and scalable

framework for handling complex scientific data analysis processes.

Automating the deployment and management of containerized programs is

one of the main benefits of using Kubernetes for scientific data processing.

This frees researchers from having to worry about the infrastructure that

supports them so they may concentrate on their data analysis responsibilities.

Multiple teams working on the same project can easily share containers thanks

to Kubernetes' centralized container management approach.

The advantages of using Kubernetes for this activity are covered in this

research thoroughly. These are discussed in further detail below.

14



Automating the installation and upkeep of containerized applications:

Kubernetes offers a standardized method of managing containers that can be

readily shared among numerous teams working on the same project. This frees

researchers from having to worry about the infrastructure that supports them

so they may concentrate on their data analysis responsibilities.

- Large-scale scientific data analysis workflows can be managed using

Kubernetes, a distributed platform for container management that can

be used to expand data analysis processes across several nodes. This

can speed up the analysis process overall and cut down on the time

needed to evaluate massive datasets.

- Using containerization technology, researchers can design

environments that can be easily shared and reproduced by others. This

might encourage the exchange of data and knowledge in the sciences

and strengthen teamwork among researchers.

- Data analysis operations can be scaled across several nodes using

Kubernetes, which offers a distributed approach for managing

containers. By doing so, the length of time needed to examine huge

datasets can be shortened, and the overall effectiveness of the analysis

process can be increased.

- Kubernetes offers a framework that is both scalable and flexible,

making it possible to manage intricate scientific data analysis

procedures. It is simple to adapt Kubernetes to the unique requirements

of various scientific data processing approaches.

The paper "Kubernetes Container Orchestration as a Framework for Flexible

and Effective Scientific Data Analysis" lists several use cases for Kubernetes

in scientific data analysis. These usage scenarios demonstrate how Kubernetes

can be scaled up and down to control complex data analysis processes.

15



Large-scale genomics data analysis pipeline: Kubernetes is utilized in this

study to manage a large-scale genomics data analysis pipeline. There are many

procedures in the pipeline, including variant calling, alignment, and data

preprocessing. Using Kubernetes, the authors were able to automate the

pipeline's deployment and administration, which cut down on the time

required for data processing and improved the process' overall efficacy.

process for image classification using machine learning: Kubernetes is

employed in the article to control the process for image classification using

machine learning. The workflow entails a number of processes, including

model training, model evaluation, and data preprocessing. The authors were

able to install and manage the workflow automatically thanks to Kubernetes,

which increased model accuracy and cut down on model training time.

process for high-throughput screening: Kubernetes is used in the essay to

manage a process for high-throughput screening. The workflow consists of a

number of steps, including feature extraction, data preprocessing, and

statistical analysis. The authors were able to automate the workflow

deployment and management using Kubernetes, which reduced the amount of

time needed for data processing and increased the overall effectiveness of the

analytic process.

A scalable and flexible platform is offered by Kubernetes for managing

difficult scientific data analysis tasks. This allows researchers to concentrate

on their data analysis activities without having to worry about the supporting

infrastructure. Adopting Kubernetes for data analysis has many advantages,

including reproducible research, flexibility and scalability, automation of

containerized application deployment and maintenance, and management of

enormous scientific data processing workflows. The report also covers

Kubernetes use scenarios for complex data analysis workflow management,

including as high-throughput screening procedures, machine learning

workflows for image classification, and substantial pipelines for processing

genomics data. These use cases show how adaptable and scalable Kubernetes

is for controlling these processes. Overall, Kubernetes is a useful tool for

16



analyzing scientific data, and its use in the scientific community is expected to

increase in the coming years.

In recent years, there has been a substantial increase in the adoption of

containerization technologies for software development and deployment.

Solutions for container orchestration are now a popular way to manage the

complexity of containerized systems. The Google publication "Borg, Omega,

and Kubernetes: Lessons learned from three container management systems

over a decade,"[5] which provides details on the development of the three

container orchestration platforms Borg, Omega, and Kubernetes, will be the

main focus of this assessment of the literature.

Google developed the first platform for container orchestration named Borg at

the start of the new millennium. Borg was developed to handle the massive

scale of Google's data centers and is used to deliver and manage containerized

applications. Borg included features including fault tolerance, workload

management, and resource separation. Omega was developed as a successor to

Borg, and was designed to address some of the limitations of Borg. Omega

was a more flexible and modular platform that improved scheduling and

resource management. Omega also provided features such as support for

custom resource types and easier integration with external systems.

Kubernetes was developed via Google in 2014 as an open-supply field

orchestration platform based totally on the instructions found out from Borg

and Omega. Kubernetes presents a platform for automating deployment,

scaling, and control of containerized programs. Kubernetes has grown to be

extensively followed within the enterprise and academia and has a large and

lively community of builders and users.

The scholarly exposition titled "Borg, Omega, and Kubernetes: Lessons

gleaned from the triumvirate of container management systems spanning a

decade" presents several sagacious insights into the progression of container

orchestration platforms. These insights encompass:

17



The paramountcy of resource management:

One of the cardinal takeaways from the evolution of Borg, Omega, and

Kubernetes is the indispensability of resource management. Container

orchestration platforms must possess the capability to adroitly administer

resources in order to ensure the optimal deployment and execution of

applications.

Borg was the inaugural container orchestration platform incubated by Google,

conceived to steward the colossal scale of Google's data centers. It furnished

features like workload management, resource sequestration, and fault

tolerance. An overarching takeaway from the development of It was the

indispensability of resource management. Container orchestration platforms

ought to have the capacity to manage resources with adroitness to ensure that

applications are deployed and executed optimally. While it was efficacious in

administering the resources of Google's data centers, it was not impervious to

certain limitations.

Omega was forged as a successor to Borg, with the intention of rectifying

some of Borg's shortcomings. Omega was a more pliable and modular

platform that enabled superior utilization and scheduling of resources. Omega

also furnished features like bolstered provision for bespoke resource types and

a more facile integration with external systems. One of the key takeaways

from the evolution of Omega was the necessity for modularity and flexibility

in container orchestration platforms. Platforms must be capable of

accommodating dynamic exigencies and furnishing a pliable and extensible

framework that can be tailored to satisfy the specific requirements of diverse

applications.

An outstanding advantage of Kubernetes is its provenance as an open-source

platform. This attribute has fostered a prodigious and engaged community of

developers and users, who have participated in the advancement and

refinement of the platform. The open-source character of Kubernetes has also

18



culminated in the evolution of an opulent ecosystem of tools and services that

can be leveraged to augment the functionality and usability of Kubernetes.

Lessons learned from three container management systems over a decade"

provides myriad insights into the evolution of container orchestration

platforms. These takeaways encompass:

The criticality of resource management:

One of the pivotal lessons gleaned from the evolution of Borg, Omega, and

Kubernetes is the primacy of resource management. Container orchestration

platforms must be adept at managing resources efficiently to ensure the

optimal deployment and execution of applications.

The indispensability of modularity and flexibility:

Another key takeaway is the indispensability of modularity and flexibility in

container orchestration platforms. Platforms must be able to acclimate to

changing requirements and furnish a flexible and extensible framework that

can be tailored to satisfy the unique demands of different applications.

The weightiness of fault tolerance:

Container orchestration platforms must be fault-tolerant and provide

mechanisms for identifying and recuperating from failures. This is especially

consequential for large-scale systems where glitches can significantly impact

the availability and reliability of applications.

The benefits of open-source development:

The evolution of Kubernetes as an open-source platform has spawned a

mammoth and dynamic community of developers and users. This has

culminated in the growth of an opulent ecosystem of tools and services that

can be harnessed to enhance the functionality and usability of Kubernetes.

19



Containerization technologies have witnessed a tremendous surge in

popularity in recent years, with Kubernetes emerging as one of the most

widely adopted container orchestration platforms. In the present literature

review, we shall scrutinize the paper "A Formal Model of the Kubernetes

Container Framework"[6] authored by Gianluca Turin and Andrea Borgarelli.

This paper is remarkable for providing a highly sophisticated and formalized

model of the Kubernetes container framework. The model is meticulously

constructed and analyzes the intricate workings of Kubernetes in immense

detail.

The paper commences with an in-depth overview of the Kubernetes container

framework, elucidating the crucial components that make it functional, such as

pods, nodes, and services. After that, the formal paradigm they developed for

Kubernetes is being discussed. As the basis for their model, they employed the

pi-calculus, a process calculus renowned for its precision in characterizing

concurrent systems. The formal model in the paper offers a comprehensive

foundation for expressing the generic behavior of the Kubernetes system in a

precise and methodical manner. The authors then thoroughly evaluate

Kubernetes' performance using the paradigm, highlighting any security flaws

as well as its benefits and drawbacks.

After giving a full explanation of the formal model's development in the

Maude language, an important tool for formal verification and analysis of

concurrent systems, the work is noteworthy for its thorough explanation of this

process. The authors exhibit the efficiency of the implementation in validating

a variety of key Kubernetes system properties, including as liveness and

deadlock-freedom. Numerous significant contributions are made in the book

that are essential to the formal analysis and study of container orchestration

platforms. One of the primary contributions is a highly developed and sculpted

model of the Kubernetes container system; enabling a detailed and rigorous

analysis of its behavior and capabilities. The Kubernetes system's possible

issues and weak areas are identified using the normal model, which may then

be rectified to improve the system's overall security and dependability. This

study also demonstrates the effectiveness of the Maude language, which can

20



be used with a variety of distributed systems and container orchestration

platforms, for formal verification and analysis of concurrent systems.

An in-depth analysis of the Kubernetes container framework is provided in the

paper "A Formal Model of the Kubernetes Container Framework." The article

provides a formal model of the system in order to identify potential issues and

weaknesses that may be rectified to improve the system's overall reliability

and security. The use of their language for formal verification and analysis of

concurrent systems has also been demonstrated to be quite effective. The

paper's invaluable insights into the development and application of container

orchestration platforms can serve as a blueprint for new systems. Overall, the

work has been extremely beneficial to the study of container orchestration

systems.

The research paper "Microservices: Architecture, Container, and Challenges"

by authors– “Guozhi Liu” and “Bi Huang” offers a complete analysis of the

microservices architecture, covering its essential features, advantages, and

disadvantages as well as its relationship with container technologies. Internal

architecture of Kubernetes and how it came to rise is described in length. The

paper starts off by providing a full introduction to the microservices

architecture, emphasizing its unique features including the use of compact,

independent and deployable services as well as its ability to expand individual

services separately. Benefits of microservices are also described in quite detail,

which include increased flexibility and scalability.

After discussing the heavy details and intricacies of the Kubernetes

architecture, the research continues by looking at container technologies,

which are often used for managing and delivering microservices. This work

also describes the process and internal computations of containers. The

authors provide an in-depth analysis of container technology, taking into

account its evolution and historical background. As well as being emphasized

are the advantages of utilizing containers to deploy microservices, including

the effective use of resources, easier deployment and scaling.

21



The study paper then investigates the microservices architectural issue. These

challenges are listed by the authors and include dealing with security issues,

guaranteeing consistency, and successfully managing the complexity of a

distributed system. In this study, some particular solutions are offered to these

problems including the usage of load balancing and service discovery

techniques. The article also looks at potential future developments in container

technology and microservices design. As the adoption of microservices

increases, the authors claim that container technologies will become even

more important for the deployment and management of microservices.

● It provides a thorough overview of the main characteristics and

advantages of microservices architecture.

● Second, it gives a general introduction of container technologies and

how they may be used to deploy and manage microservices,

highlighting their advantages in terms of efficient resource

consumption and deployment simplicity.

● Managing the complexity of a distributed system, guaranteeing

consistency and stability, and resolving security issues are just a few of

the difficulties that come with microservices design that are covered in

detail in this paper. The authors provide approaches for dealing with

these difficulties, such as the application of load balancing and service

discovery methods.

Moreover, the study offers important perspectives on the development of

container technologies and microservices architecture. The authors predict that

as container technologies become progressively more crucial for the

deployment and management of microservices, the popularity of

microservices architecture will increase. Overall, this paper contributes

22



significantly to the fields of microservices design and container technologies

by offering in-depth research, tactical answers to problems, and perspectives

on the direction of the industry.

23



Chapter 3 - System Design and Development

A microservice-based application architecture consists of numerous

independent services that interact with one another via a messaging system,

such as Kafka, and store data in a database system, such as MongoDB. Before

initiating a microservice, the init container for each microservice checks that

the required resources are available.

The following gives a high-level explanation of the system design for such an

application:

Service discovery: Service discovery allows microservices to find and

communicate with one another without the clients being aware of where

specific services are located. Utilizing a service registry or discovery service

like Consul[7] or etcd can help with this. A microservice registers with the

service registry when it first starts up, providing information about its location,

state, and other metadata. By using a registry query, other microservices can

then locate and get in touch with the required service.

Messaging System: For the development of distributed applications, Kafka is

a well-known messaging platform. For asynchronous microservice

communication, it provides a scalable, fault-tolerant, and high-performance

method. Each microservice is capable of publishing to and subscribing to a

single or several Kafka topics, which act as message queues. For every

message that a microservice publishes to a topic, Kafka constructs a partition

to store it and makes it available to all subscribers. Afterward, the subscribers

can respond to the message as necessary. Since it offers features like message

preservation, splitting, and replication, Kafka is a strong option for creating

systems that are designed to be used on a wide scale.

24



Data storage: The NoSQL database system MongoDB[8] offers a scalable

and flexible solution to store and retrieve the data needed by the

microservices. Using the appropriate driver or ORM library, any microservice

can communicate with MongoDB. MongoDB is a popular option for

developing contemporary applications because it provides features like

document-oriented storage, horizontal scaling, automatic sharding, and a

sophisticated query language.

Container Orchestration: To control the deployment and scaling of

microservices, a container orchestration system like Kubernetes can be

employed. Microservices can be packaged as Docker containers and installed

on a node cluster using Kubernetes. It offers functions that make managing big

microservice applications simple, like automatic scaling, rolling updates,

service discovery, load balancing, and health checks. Following is an example

of a Kubernetes pod manifest.

Fig 3.2 - Pod Manifest

Init containers[9]: Containers that conduct a single-time job before the main

container starts are known as init containers. An init container can be used in a

microservice-based application to determine whether the necessary resources,

25



such as Kafka and MongoDB instances, are available before the microservice

launches.

Fig-4 Init Container Example

The microservice container is started after the init container has executed a

Bash script that verifies the readiness of the necessary resources. This makes it

easier to make sure the microservice is only launched when it can effectively

communicate with the other services on which it depends.

Monitoring and logging: Metrics and logs from each microservice and Kafka

instance can be gathered using a monitoring system like Prometheus. The

monitoring system gives administrators immediate visibility into the

functionality and performance of the system and notifies them of any

problems. Key metrics including CPU use, memory usage, network traffic,

and request delay may be tracked using Prometheus. Additionally, it can be

utilized to produce warnings based on pre-established thresholds or

abnormalities.

26



Continuous Integration and Delivery: The Pipeline plugin for Jenkins[10]

can be used to define a CI/CD pipeline. Developers can define a pipeline as

code with this plugin, and both the pipeline and the application code can be

checked into source control.

Typically, a Jenkins pipeline is made up of stages that correspond to the

various CI/CD process processes, such as building, testing, deploying, and

releasing the application. One or more steps, which can be shell commands,

scripts, or Jenkins plugins, can be included in each stage.

With Jenkins, the pipeline may be defined as follows to construct a CI/CD

pipeline for a microservice-based application:

Typically, a Jenkins pipeline is made up of stages that correspond to the

various CI/CD process processes, such as building, testing, deploying, and

releasing the application. One or more steps, which can be shell commands,

scripts, or Jenkins plugins, can be included in each stage.

With Jenkins, the pipeline may be defined as follows to construct a CI/CD

pipeline for a microservice-based application:

- Checkout: During this phase, the source code is downloaded from the

Git repository.

- Build: Using a Dockerfile, this stage creates the Docker image for the

microservice. The runtime environment, dependencies, and application

code may all be included in the Docker image.

- Test: During this phase, the microservice's unit, integration, and

end-to-end tests are conducted. The test results can be reported using

Jenkins plugins like JUnit and Cucumber.

27



- Deploy: Using the Kubernetes CLI (kubectl) or a Jenkins plugin like

Kubernetes Continuous Deploy, this stage deploys the microservice to

a Kubernetes cluster. To reduce downtime, the deployment can be

performed as a rolling update.

- Release: The microservice may be put into production at this level. To

construct a release package and upload it to a release repository, use a

Jenkins plugin like GitHub Release or Artifactory.

-

Fig-5 Jenkins Pipeline Flow

3.2 Development Flow

The first stage in developing the microservice-based application was to write

Bash scripts for each microservice to check whether or not the required

resources were available. For instance, if a microservice required Kafka and

MongoDB, a Bash script was created to check their availability. A command

in the deployment manifest for the particular microservice's init container was

used to introduce these Bash scripts.

28



Prior to the main container, a separate container known as the init container

runs in a pod. Its objective is to create the conditions necessary for the primary

container to operate. In this case, the init container runs the Bash script to see

if the required resources are available. The init container will keep running the

script until it finds the resource, even if it is not active. Once the resource is

available, the main container and subsequently the pod will start.

It was necessary to create the Bash script, add it to the init container of the

deployment manifest, and then copy it into the container image of the relevant

microservice. The Dockerfile was modified appropriately to accomplish this.

If this were done, the Bash script would be available inside the container

image itself. The Bash script to check the resources needed to be built as well

as the suitable things to be imported into the MongoDB database. We were

able to do this by utilizing the Alpine mongo tools package, which gave us

access to tools like mongodump and mongoimport. Similar to the Bash script

we created for resource checks, we created Bash scripts to import data into

MongoDB and added them to the init container in the deployment manifest.

After the scripts were installed, the necessary services for the application had

to be set up and written deployment, configmap, service, etc. manifests.

Among the services provided were the NFS server, Kafka, MongoDB, and

Ingress Nginx controller. Following the creation of these manifests, we had to

create equivalent manifests for the application microservices. These manifests

specified the expected state of the microservices, including the number of

replicas, resource allocations, and other details.

We used third-party tools like Helm to simplify configuring for MongoDB and

the Ingress controller. App installation and management on Kubernetes

clusters are made simple with Helm, a Kubernetes package manager.

To sum up, the development pipeline entailed creating Bash scripts for the

microservices, copying them into the container image, and setting up the

deployment manifests for each of the necessary services. The deployment also

29



included the Ingress controller and NFS server. Before being put into use in a

real-world setting, the scripts were tested on a local minikube environment.

The setup scripts must be defined for each microservice and resource after the

manifests for the microservices have been prepared and completed. In the

Kubernetes cluster, these setup scripts, which are often bash scripts, automate

the process of configuring a microservice or resource. In our situation, these

scripts are used to, among other things, establish users and databases for

MongoDB, as well as to check whether or not the necessary resource is now

active.

We use third-party tools, like as Helm[11], to establish a configuration that we

can then use to create the required resources, which streamlines the process of

writing these scripts. To create many users and databases for various backend

services, for instance, we use Helm in the MongoDB setup script.

In a separate setup, each resource setup script is executed in a directory called

"common-resources."on the same level as. This keeps the setup scripts

structured and makes managing them simpler.

A top-level setup.sh script is used to boot up the whole stack for "Workspaces"

at the conclusion of the setup procedure. It runs the scripts indicated above.

This script first executes the setup script for common resources, which creates

all of the resources needed by the application, and then it executes the setup

script for the application as a whole, which merges all of the various backend

and frontend microservices.

The process continues with replacing the default ingress service type needs to

be changed from a LoadBalancer to a NodePort because all services in a

Kubernetes environment are deployed on a single node. This is done inside of

a bash script while configuring the ingress controller.

30



This could be done by a single kubectl command.

Fig-6 “kubectl patch” command

To make a service accessible to other services within the cluster or to the

outside world in a Kubernetes environment, you can either use a ClusterIP, a

NodePort, or a LoadBalancer. A ClusterIP exposes the service on a

cluster-internal IP address, a NodePort exposes the service on the static port of

each node's IP address, and a LoadBalancer gives the service a public IP

address from a third-party load balancer.

We are utilizing a NodePort to expose the service on a static port on each node

in the ingress controller. As a result, using the node's IP address and NodePort,

we may access the ingress controller from any node in the cluster. If the node's

IP address changes, having to memorize numerous NodePorts can be

troublesome. This problem can be solved by providing a single entry point for

all incoming traffic using a reverse proxy, like HAProxy. HAProxy uses a

single IP address and port to listen for incoming traffic, which is then

forwarded based on the URL or other considerations to the appropriate

location.

For our situation, we may set up HAProxy to send traffic to the ingress

controller's NodePort via a single IP address and port. The ingress controller

could then be accessed from a single URL, regardless of the node or NodePort

it is using to operate.

Knowing which NodePort the ingress controller service has been assigned is

necessary in order to configure HAProxy to send traffic there. In order to

include the NodePort in our HAProxy configuration file and make sure that

traffic is routed to the proper port, we declare the NodePort independently in

our setup script.

Using HAProxy to provide a single entry point for incoming traffic can

generally make it easier to access the ingress controller and other services in a

31



Kubernetes system, especially when there are many nodes and services

involved suitable port. That is why here, we’re specifying the nodeport

separately since we want to put that inside our haproxy configuration file as

well in order to access the application from a single URL.

Once the setup scripts for the custom Kubernetes resource, "workspace," were

completed, the subsequent crucial step was to configure the k8s controller.

This entailed cloning the controller through its corresponding repository and

then using the "make deploy" command, in conjunction with the

corresponding Docker image, to install the controller on our cluster. This

procedure was essential to guarantee the correct creation and effective

management of our custom resource.

Furthermore, a setup script for the controller also had to be written, which

could streamline the process and save time in the long run. The script

facilitated the configuration of the controller without the need to manually go

through the setup process each time.

However, like any intricate system, several issues and challenges emerged

during the setup process. One such challenge was the constant need to deploy,

debug, and test the deployments repeatedly after certain updates. To solve this

problem, teardown bash scripts were written for each resource and

microservice, enabling us to erase the corresponding k8s resources effortlessly.

Additionally, combined scripts for the written teardown scripts were created

for the "common-resources," "apps" directories, and on the top level, which

further optimized the process and made it more efficient.

To optimize the application further, intermediate steps were necessary, such as

creating a script to edit a cloud provider inside a static MongoDB collection.

This facilitated the required modifications to the cloud provider configuration

without repeating the setup process.

32



Another critical application that was part of this project was the "admin

panel." To set up the panel, another user and database had to be created inside

the MongoDB configuration, which was executed using helm. This ensured

the seamless integration of the admin panel with the rest of the application and

effective management.

After setting up the controller and taking all necessary steps, the entire

application would boot up smoothly by running the command "kubectl apply

-f workspace.yaml." This would create a "project" and enable the creation of a

"workspace" inside the project, providing access to a VM in the form of an

IDE such as Jupyter Lab, Ubuntu, VSCode, among others.

However, as mentioned earlier, certain challenges needed to be addressed. One

such challenge was not clearly defining a memory limit for our own resource,

resulting in the workspace not starting properly. A workspace was not starting

and showing a very common error of “6MB memory limit” was observed for a

long time.

Fig-7 Memory limit error

This issue was identified after some time and eventually resolved.

The next step was to add more microservices to each release manager and the

entire application stack after finding and fixing all faults connected to the

development of the workspace. "Workspaces-admin-panel" and "storinator"

were two of these microservices. Precheck scripts were added to a clean

Dockerfile to guarantee that the resources utilized by the application were up

and running before containerizing these microservices. A Deployment,

Service, ingress, and Configmap, among other resources, had to be established

in addition to everything else needed for these new services.

33



The configmap was set up in a variety of ways for these apps. A file called a

configmap holds all of the environment variables required by the various

containers in the application pod. By sending them through a ConfigMap, the

environment variables were transferred into the environments of the

containers. Other methods used for other projects included mounting an a

“.env” file inside the main application container, putting a “config.json” file

inside the application container, and instantly pushing the variables to the

application environment.

To ensure that the microservices were performing at their highest level,

extensive testing was conducted. Unit, integration, and system tests had to be

run to ensure the microservices were consistent with the entire application

stack and performing as expected. Any issues that arose during testing were

immediately corrected to ensure that the microservices were performing at

their highest level.

Extreme care was taken to pay attention to every little aspect throughout the

process in order to make sure that the microservices were incorporated into the

larger application stack without any issues. The team had to collaborate to

ensure that the microservices were appropriate for the current infrastructure

and that any possible hazards were identified and handled.

The freshly introduced applications were rigorously tested using a technique

that was put in place. It was first necessary to create the databases that would

be used by the respective applications or APIs. Either an initialization

container script was employed for this purpose, or the necessary components

were directly added to the pertinent app-level static collection data. The

creation of each Kubernetes resource associated with the related application

was then carefully thought out. It was essential to check the proper port

settings inside the Service and Ingress components in order to enable ongoing

communication between the program and its external environment.

34



After the aforementioned setup was complete, the API's functioning was tested

in the next step. This was accomplished using a standardized methodology,

and the health check endpoint of the API was assessed. Every application went

through the identical process, with a curl request with the format:

$ curl http://localhost:8080/storinator/healthz

was made with the expectation that it would succeed and produce a 200

answer. The same process was carried out again to assure proper operation of

the admin panel endpoint.

At this critical juncture, it is crucial to ensure that all necessary microservices

and resources have been properly integrated into our deployment architecture.

The following work requires automating each stage of deployment across

different Kubernetes cluster configurations. This strategic decision is driven

by the overarching objective of providing complete automation within the

release manager, regardless of whether the deployment is targeted at a local

Minikube, Azure AKS, or a GKE cluster. The development of

environment-based automation is also necessary because of the significant

context-specific variations in hostname/IP addresses, disk mounting paths, and

other environment variables.

This approach allows for the patching of primary resource manifests and the

subsequent application of diverse overlays specific to each environment.

We have access to a wide range of tools, all of which can help us complete this

automation project. Helm is one such tool that enables a template-based

approach that allows the definition of particular values that are suitable for

each situation. But we chose Kustomize[12] on purpose as our preferred

option. Templates are not necessary because of Kustomize, a feature included

in the "kubectl" command line tool offered by Kubernetes. It was chosen since

it is more scalable and sophisticated by nature than Helm. Thanks to a simple,

template-free procedure, Kustomize gives developers the freedom to choose

35



the level of personalization they want.For the particular circumstances they are

working on, they have yaml files.

Both Helm and Kustomize are tools that aid in managing Kubernetes

deployments and applications, but they take different approaches and offer

different features.

Helm is a package manager for Kubernetes that utilizes charts, which are

collections of files describing a set of Kubernetes resources. It adopts a

template-based methodology, where charts have pre-defined templates with

spaces for movable values. Users can define multiple settings for diverse

situations using these templates' parameterization capabilities. The installation,

upgrading, and maintenance of apps on Kubernetes clusters via charts is made

possible by Helm, which streamlines the deployment procedure. As a result,

packaging and distributing programs are made simpler by the higher level of

abstraction it offers. However, Helm's template-based method occasionally

adds complexity, particularly when dealing with large-scale deployments and

handling numerous configurations.

On the other side, Kubernetes' "kubectl" command line interface has a built-in

utility called Kustomize. It uses a method devoid of templates and places an

emphasis on customisation and configuration management. With the use of

Kustomize, developers may create overlays and patches that alter

already-existing Kubernetes resources without the need for additional template

files. It makes use of the base and overlay paradigm, where a base

configuration is defined as a collection of resources, and overlays are then

used to introduce desired alterations. A more precise and scalable method of

managing configurations and customizations across several environments is

offered by Kustomize. By permitting gradual changes and the composability

of settings, it provides flexibility and simplicity. For handling complex

deployments with several environments and variants, Kustomize is especially

helpful.

36



while Helm relies on templates and charts for packaging and managing

applications, Kustomize focuses on customization and configuration

management through overlays and patches. Helm provides a higher level of

abstraction and simplifies the deployment process, while Kustomize offers

greater flexibility and scalability for managing configurations in diverse

environments. The choice between Helm and Kustomize depends on the

specific needs and complexities of the deployment scenario.

The current strategy revolves around establishing a "base" directory within the

release directory of each microservice, wherein a fundamental template is

defined. Consequently, multiple overlays can be applied based on the target

cluster, such as "overlays/minikube" and "overlays/azure". Furthermore, future

expansions envision the comprehensive definition of setups tailored to distinct

development, staging, and production environments, facilitating the

application of separate alterations and overlays in accordance with their

respective requirements.

In order to achieve Kustomize, we first applied these intricate configuration

sets to a select few microservices, principally our core base API and the virtual

machine provider. Initially, the pertinent files particular to each application

were arranged and divided into distinct overlays of the primary program

structure.

Use "/events-subscriber" in the main application directory as an example.

Previously, this release directory contained all of the imperative manifests,

such as deployment.yaml, configmap.yaml, service.yaml, and others. But by

splitting it into "/base" and "/overlays," we were able to define a template

procedure of adding Kustomize to any application for our release manager.

All of the previously existing manifests are cleverly stored in the "/base"

directory; the only exception is the configmap, which we choose to

dynamically create using our Kustomize setup. In addition, we added a crucial

file called "kustomization.yaml" to the base directory. This file is essential to

Kustomize's ability to identify and coordinate any required setups or

37



automation tasks. We concentrate the definition of key resources in one

consolidated area by listing all base resources in this kustomization.yaml,

making maintenance easier and increasing overall effectiveness.

Fig-8 Base Kustomization template

In this context, a set of useful files is utilized, particularly in relation to

overlays, such as "overlays/minikube," to customize the basic resources in line

with the unique requirements of each configuration. One file that is essential

to this process is the ".env" file. It functions as a channel for describing the

environment variables that the application container will use.

Fig-9 Custom template for kustomize

38



Similar principles are applied to our customized configuration. The creation of

a customized configmap unique to that specific overlay is made possible by

the inclusion of the proper ".env" file within the overlay directory. The

“configMapGenerator” attribute offered by the kustomize tool is used to

accomplish this.

The idea for a configmap came from the knowledge that different situations

typically require distinct sets of variables. It's also advised against storing all

environment variables in the source code repository itself. Variables and

secrets are expected to be controlled and safely stored in the future utilizing a

safe technology like Vault. This plan ensures the separation of duties and

enhances the security of sensitive information. During the deployment

process, these variables and secrets will be deleted from Vault to ensure their

availability only when absolutely necessary for the proper functioning of the

application.

Fig-10 Overlay Kustomization

When making adjustments to the base deployment, such as changing the

mounting path or altering environment-specific data, a dedicated patch.yaml

file is the go-to resource. However, the crown jewel of these files is the

39



revered "set-memory.yaml". By allowing us to set the memory and CPU needs

as well as the maximum amounts of resources that can be employed, this

amazing file performs a crucial job. In the realm of Kubernetes, setting

appropriate memory and CPU limits and requests for each pod is not simply a

best practice; it is a need. A single pod could ferociously consume all

resources in a cluster if the proper limits aren't established, leaving other

processes famished and exposed. Thus, the inclusion of this distinct file

becomes imperative.

The "set-memory.yaml" file is being separated from the rest of the codebase

for two main reasons:

- First and foremost, it is to guarantee that the complete software is still

readable by every member of the prestigious Site Reliability

Engineering team, allowing for simple comprehension.

- Secondly, it intends to create a standardized procedure whereby the

development of a special file for configuring memory requests and

limitations becomes a custom, one that is highly regarded due to its

critical significance in preserving system performance and stability.

Within the complicated network of our template there is another very

significant file with the evocative name–"replicas.yaml". As its name implies,

this crucial component's major function is to specify the minimum number of

Pods, or replicas, that must be deployed for a given application. In the vast

Kubernetes cosmos, there are numerous circumstances where having several

copies is essential. These replicas act as vigilant watchmen who are prepared

to step in as soon as a Pod falters or is captured by failure. Through the

orchestration skills of the Deployment object, Kubernetes effortlessly tries to

maintain the necessary number of replicas, ensuring the everlasting

dependability of our deployments.

This arduous task is deftly executed behind the scenes, courtesy of the

Kubernetes orchestration engine.

40



The “replicas.yaml” file is separated for two reasons. We can first carefully

monitor the target replica count for each individual application. In the holy

ground of development environments, one Pod can be enough to support the

growth of our application. On the other hand, the need for many copies

emerges in the staging and production environments, where the nature and

purpose of the microservice define the course of action, boosting our

application's resilience and enhancing its capacity to handle a variety of

workloads.

The venerable "patch.yaml" file served as the focal point of our initial

resource creation efforts, where we methodically and precisely built all of our

patches. However, as we moved forward, a paradigm shift steered us in the

direction of a more sophisticated plan of action. We recognized the beauty of a

dual entity—the revered.env and the venerable config.json. The ethereal spirit

of environmental variable modifications was carried through these holy items.

The firm "patch.yaml" remained steadfast, providing as a shelter for them

while other patches adorned our codebase. We were able to use Kustomize's

esoteric powers with unrivaled dexterity over any microservice thanks to this

harmonious trio of files, which also provided us with a structured, linear

framework.

We perform the sacred incantation "kubectl apply -k," which pushes

Kustomize to direct the creation process, to bring our painstakingly created

resources to life within an overlay. It is crucial to follow the sacred naming

pattern and give our files the honorable suffix "kustomization.yaml" (or.yml)

since Kustomize determines its function and aligns its occult energies using

this sanctified name.

41



Fig-11 kubectl apply -k command

Our arsenal also includes the indispensable command "kustomize build,"

which creates all the resources and applies all the patches. During the

debugging phase, this command is really helpful since it enables us to check

the accuracy of the manifests that were generated and quickly address any

potential problems.

In order to ensure the execution of the appropriate command for the respective

overlay, a mechanism to detect the cluster environment needed to be

implemented. To address this requirement, an additional script was introduced

alongside the top-level "setup.sh" script. This script was designed to identify

the cluster environment and store the corresponding cluster name within the

"CLUSTER_ENV" environment variable.

The purpose of incorporating this environment variable was to enable

conditional checks and facilitate different actions within the setup scripts for

various resources and applications based on the cluster environment. For

instance, certain microservices might be unnecessary for the Azure AKS setup

but essential for the minikube setup. By utilizing the "CLUSTER_ENV"

variable, environmental checks could be seamlessly integrated into all relevant

bash scripts, ensuring appropriate customization and compatibility with the

specific cluster environment.

Our main goal—successfully developing a solid and seamless local

orchestration framework for automating deployments on the prestigious

42



minikube platform—has been triumphantly accomplished after meticulous

execution and extensive testing of the entire setup.

We have carefully negotiated the complex maze of complexities that

Kubernetes has to offer over this arduous trip, and we have carefully created a

thorough deployment workflow. Our unrelenting dedication to quality is

evident in the smooth integration of numerous microservices, the thorough

setup of resource-specific settings, and the exact orchestration of each

component within the dynamic ecosystem of minikube.

Our local deployment automation's resounding success is a monument to the

unshakable commitment, unrelenting pursuit of quality, and unrivaled

teamwork displayed by our great cohort of software engineers. In future the

application could be easily deployed and even make the entire development

process faster ahead, thanks to the solid foundation of our local deployment

automation design. With the knowledge and experience gained from this

amazing initiative, we are prepared to approach further deployments with

assurance, adaptability, and the unrelenting dedication to quality that

characterizes our team.

We have rigorously optimized each component of our deployment pipelines

through constant debugging and careful error-resolution, ensuring flawless

performance and dependability. Due to our fervent desire for excellence, we

have successfully combined the strengths of Kustomize and Helm to template

and tailor our deployments while preserving unmatched scalability and

configurability.

A vast expanse of knowledge had to be traversed, emerging as skilled

practitioner in the field of deployment automation, wrestling with the

complexities of helm charts and Kustomize overlays to mastering the art of

establishing environment variables, secrets, and resource limitations.

In conclusion, our effort to automate local deployments on minikube has been

a monument to the indomitable human spirit, powered by a constant drive to

43



overcome obstacles and push the limits of what is thought to be feasible. Not

only is the perfect execution of our deployment strategy a key indicator of our

success, but also the priceless learnings and profound growth that each

member of our great team has experienced. Together, we have improved

deployment automation to a new level and permanently altered the

ever-changing field of software engineering.

44



Chapter-4

EXPERIMENTS AND RESULT ANALYSIS

A thorough set of experiments was methodically carried out and then

meticulously assessed in order to achieve our goal of containerizing the

various components of the "Workspaces" application and enabling their

deployment through the Kubernetes platform. These tests had three main

goals: to evaluate the effectiveness of our automation efforts, to evaluate the

performance of the deployment process, and to analyze the practicality of local

deployment using Minikube.

4.1 Containerization and Microservice Conversion:

In this experiment, the containerization and creation of microservices for each

individual component that makes up the program were given special attention.

We painstakingly created Docker images for each component, assuring their

independence, scalability, and isolation by adhering to industry-leading

containerization techniques.

To thoroughly assess the functionality and effectiveness of the painstakingly

created initcontainer scripts, numerous exhaustive tests were carried out

utilizing a wide variety of Docker commands. These scripts were manually

executed on a local machine and within a cluster after being smoothly

integrated into the container via the Dockerfile. These testing techniques were

used to carefully determine the expected behavior and performance of the

scripts in various situations.

In the context of script composition, it is imperative to underline the relevance

of precisely defining the appropriate “shebang”, be it bash or the related shell

script. Notably, several Alpine Linux-based apps don't include the bash shell

in their main application containers.

45



The shebang, also known as the hashbang or the interpreter directive, is a

special line placed at the beginning of a script file in Unix-like operating

systems. It serves as an instruction to the system on how to execute the script

by specifying the path to the interpreter or the shell that should interpret the

script.

The shebang line starts with a hash symbol (#) followed by an exclamation

mark (!). Immediately after the exclamation mark, the path to the interpreter or

shell is specified. For example, a common shebang line for a bash script would

be:

Fig-12 Bash shebang

The script should be run using the Bash interpreter, which may be found at the

pathname /bin/bash, according to this.

Fig-13 Shell shebang

The experimental outcomes conclusively demonstrated the successful

containerization of the application, with each microservice effectively

fulfilling its intended functionalities. Due to the incorrect shebang declaration,

the scripts were unable to achieve executable format, needing careful analysis

and correction of this component to ensure flawless execution and optimal

performance.

If the script is correctly configured, in a non-kubernetes environment it would

give the following output which repeatedly checks for a service and hence

doesn’t start the main application container.

46



Fig-14 Init Script Testing

It is crucial to precisely define the initcontainer section within the

deployment.yaml manifest for the particular container in order to test the

initcontainer script within a Kubernetes cluster. The configuration and

operation information for the initcontainer are described in this section of the

manifest.

The initcontainer operates independently after the deployment is started before

the main container starts. The initcontainer's job is to carry out required

initialization procedures or set up the environment for the main container. It

might involve operations like copying files, creating dependencies, or running

particular tasks.

4.2 Testing Inside a Kubernetes Cluster:

The initcontainer script finishes after successfully completing its assigned

responsibilities during testing if it operates as intended. The resource is then

detected as being up and running, indicating that the container's initialization

was successful. In contrast, if any problems are encountered when the

47



initcontainer script is being run, the container initialization process may fail,

and suitable troubleshooting and debugging measures must be done to find

and fix the underlying issue.

designing and testing the initcontainer in the deployment carefully. The

Kubernetes cluster can make sure that the required containerized application is

ready and is successfully executed using the yaml manifest.

Fig-15 Init Script Logs in a Cluster

After every resource and microservice which comprise the application is up

and running, the application can be tested in any web browser with the

hostname of the particular development server which is being used for running

the minikube (or Azure AKS) cluster.

48



Fig-16 Running Application UI

Fig-17 Running Workspace UI

49



Chapter-5

CONCLUSION

To conclude this report, our deployment procedure culminated with the

painstaking deployment of a wide range of microservices, which comprise our

application“Workspaces” inside the boundaries of a local minikube

Kubernetes cluster, including essential resources like MongoDB, Kafka, and

Ingress Nginx Controller. The thorough containerization of these programs,

which was carried out using specially created Dockerfiles to ensure their

encapsulation and promote portability between environments, marked the

beginning of this complex journey.

We developed and deployed deftly written scripts to be executed inside init

containers, collaborating with the microservices, to guarantee the successful

completion of essential precheck tasks. These meticulously written scripts

played a significant part in easing crucial activities, including loading static

collections as prerequisites into the database and confirming the availability of

resources used by certain applications. By leveraging the capabilities of init

containers, the setup process attained enhanced reliability and seamless

orchestration.

After all the applications were successfully containerized, our attention turned

to carefully creating detailed Kubernetes manifests for each microservice.

These manifests, which included crucial resources like Deployments, Ingress,

Services, and ConfigMaps, functioned as blueprints that specified the desired

state of the deployment. Each microservice's specific manifests are housed in

dedicated directories that were created to maintain a well-structured and

organized codebase.

A versatile "setup.sh" script was painstakingly created to further ease the

deployment procedure. This script served as the main orchestrator, making it

simple to execute the complete application stack. Its capabilities went beyond

50



simple execution because it cleverly divided the deployment operation into

various phases. First off, by making sure that Deployments, Ingress, Services,

and ConfigMaps were correctly configured and instantiated, it successfully

handled the deployment of individual resources. By giving each component

fine-grained control, this modular architecture promoted adaptability and

reuse.

The "setup.sh" script also made it easier to deploy microservice apps and

made sure that each microservice was operational within the Kubernetes

cluster. The deployment of the full application stack might be automated and

orchestrated by running this script.We created a very effective and

well-organized deployment process for our microservices through rigorous

attention to detail, the construction of thorough Kubernetes manifests,

combined with the design of a modular and flexible deployment script. This

method not only made it easier to manage the application stack, but it also laid

the groundwork for future iterations' scalability, dependability, and ease of

maintenance.

Our journey required the adaption of Kubernetes manifests to cater to several

cluster environments, including minikube, Azure AKS, and GKE, in addition

to the complexity of the deployment process. We used Kustomize, a potent

tool for modifying Kubernetes setups, to do this. Our configuration changed

fluidly to conform to the specifics of each Kubernetes environment with the

addition of fresh kustomization.yaml files and the application of strategic

fixes.

We incorporated environment detection techniques into our workflow to

guarantee that the deployment procedure remained adaptable and agile. These

techniques allowed the execution of instructions tailored to the current cluster

environment on a dynamic basis. By using this automated identification, we

reduced the potential of errors while deploying to different Kubernetes settings

and removed the need for manual intervention.

51



To make our setup available to outside users and to enable access through web

browsers, we used a unique Haproxy service. This crucial element served as a

load balancer and reverse proxy for our system, efficiently routing incoming

traffic to the appropriate microservices. In order to exactly configure Haproxy

to match our needs, we manually modified the haproxy.cfg file. This

necessitated creating routing rules, outlining backend services, and honing

load balancing strategies in order to maximize speed and ensure error-free

communication between external users and our microservices.

By carefully addressing the configuration requirements of diverse cluster

settings using Kustomize, including environment detection techniques, and

expertly configuring Haproxy, we were able to create a robust and flexible

deployment procedure. With the aid of this thorough strategy, we were able to

successfully deploy our application stack across various Kubernetes settings

while preserving the best possible performance, scalability, and accessibility

for outside users.

As thorough testing and debugging were crucial components of ensuring the

dependability and stability of the complete system, the deployment process

was not without its difficulties. For the purpose of addressing particular

problems and improving overall performance, iterative adjustments and

optimizations were regularly implemented.

We carefully scrutinized the interactions, performance indicators, and error

handling capabilities of the deployed microservices through diligent testing

processes. We were able to find and fix any potential setup bottlenecks,

vulnerabilities, or inconsistencies thanks to our thorough testing strategy. To

identify and fix any problems, lengthy debugging sessions were carried out

concurrently. We continuously monitored the system's behavior and used logs,

error messages, and monitoring tools to identify the underlying reasons of any

irregularities. We were able to implement the necessary patches through

meticulous analysis and troubleshooting, ensuring the deployed microservices

ran without a hitch.

52



We took comments from a range of stakeholders, including developers, testers,

and end users, into account during this iterative process. Their insightful

opinions and observations were extremely helpful in determining the final

deployment configuration and in improving the system's usability,

performance, and scalability.

Through extensive testing, debugging, and incremental improvement, we

were able to create a deployment arrangement that was reliable and stable.

Developers now have quick and scalable settings for development, testing, and

experimentation thanks to the solution's smooth operation on any development

server with a minikube cluster.

The configuration and provisioning of the application stack are greatly

accelerated by the automated deployment process, which also reduces manual

labor and permits quick iteration cycles. Developers can now quickly deploy

the complete application stack locally, freeing them up to concentrate on

writing, testing, and debugging application code, which is their primary

responsibility. This improved workflow encourages a collaborative

development environment, increases productivity, and shortens time to market.

To sum it up, the deployment setup has been strengthened by the thorough

testing, debugging, and iterative refinement processes, ensuring its stability,

reliability, and adaptability. The solution is now prepared to assist the

development team in its pursuit of effective and scalable software

development, enabling them to quickly and confidently produce high-quality

products.

53



REFERENCES

[1] “Kubernetes Documentation,” Kubernetes.io, 2019.

https://kubernetes.io/docs/home/

‌[2] “Minikube Documentation” Kubernetes.

https://kubernetes.io/docs/tutorials/hello-minikube/ (accessed May 13, 2023).

[3] “Docker documentation,” Docker Documentation.
https://docs.docker.com/reference

[4] A. Tesliuk, S. G. Bobkov, V. A. Ilyin, Mikhail Krasavin, Alexey Poyda,

and Vasily Velikhov, “Kubernetes Container Orchestration as a Framework for

Flexible and Effective Scientific Data Analysis,” 2019 Ivannikov Ispras Open

Conference (ISPRAS), Dec. 2019

[5] “Borg, Omega, and Kubernetes - ACM Queue,” Acm.org, 2019.

https://queue.acm.org/detail.cfm?id=2898444

‌

[6] G. Liu, B. Huang, Z. Liang, M. Qin, H. Zhou, and Z. Li, “Microservices:

architecture, container, and challenges,” 2020 IEEE 20th International

Conference on Software Quality, Reliability and Security Companion

(QRS-C), Dec. 2020, doi: https://doi.org/10.1109/qrs-c51114.2020.00107.

‌

[7] “Consul Documentation”

https://developer.hashicorp.com/consul/docs

[8] “MongoDB Documentation”

https://www.mongodb.com/docs/

[9] “Init Containers” Kubernetes.

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

54



[10] “Jenkins Pipeline” Pipeline. https://www.jenkins.io/doc/book/pipeline/

[11] “Helm Documentation” helm.sh. https://helm.sh/docs/

‌[12] “Kustomize Documentation” kustomize.io

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/

‌

‌

‌

55



56


