
BidNexus

(Platform for digitizing auction)

Project report submitted in partial fulfillment of the requirement for the degree of

Bachelor of Technology

in

Computer Science and Engineering

By

KUNWAR PRATAP SINGH(191272)

Under the supervision of

Mr. ARVIND KUMAR

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234,

Himachal Pradesh

CERTIFICATE

I hereby declare that the work presented in this report entitled “BidNexus (Platform for digitizing

auction)” in partial fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering submitted in the department of Computer

Science & Engineering and Information Technology, Jaypee University of Information

Technology Waknaghat is an authentic record of my own work carried out over a period from Feb

2023 to May 2023 under the supervision of Mr. Arvind Kumar, Assistant Professor (Grade-II),

Department of CSE Jaypee University of Information Technology, Wakhnaghat.

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

KUNWAR PRATAP SINGH 191272

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Mr. Arvind Kumar

Assistant Professor (Grade-II)

Department of Computer Science and Engineering

I

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
PLAGIARISM VERIFICATION REPORT

Date:………………………….

Type of Document (Tick):

Name: Department: Enrolment No

Contact No. E-mail.

Name of the Supervisor:

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters):

UNDERTAKING
I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and copyright
violations in the above thesis/report even after award of degree, the University reserves the rights to withdraw/revoke my
degree/report. Kindly allow me to avail Plagiarism verification report for the document mentioned above.

Complete Thesis/Report Pages Detail:

− Total No. of Pages =

− Total No. of Preliminary pages =

− Total No. of pages accommodate bibliography/references =

(Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at (%). Therefore, we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be handed over to
the candidate.

(Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity
Index
(%)

Generated Plagiarism Report Details

(Title, Abstract & Chapters)

​ All

Preliminary
Pages

​ Bibliography/Im

a ges/Quotes

​ 14 Words String

Word Counts

Character CountsReport Generated on

Submission ID Total Pages Scanned

File Size

Checked by
Name & Signature Librarian

……
………………………

ACKNOWLEDGEMENT

First, I express my heartiest thanks and gratefulness to Almighty God for His divine blessing to

make it possible to complete the project work successfully.

I am really grateful and wish my profound indebtedness to Supervisor Mr. Arvind Kumar,

Assistant Professor (Grade-II), Department of CSE Jaypee University of Information

Technology, Wakhnaghat. His endless patience, scholarly guidance, continual encouragement,

constant and energetic supervision, constructive criticism, valuable advice, and reading many

inferior drafts and correcting them at all stages have made it possible to complete this project.

I would like to express my heartiest gratitude toMr. Arvind Kumar, Department of CSE, for his

kind help in finishing my project.

I would also generously welcome each one of those individuals who have helped me

straightforwardly or in a roundabout way in making this project a win. In this unique situation, I

might want to thank the various staff individuals, both educating and non-instructing, which have

developed their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patients of my parents.

Kunwar Pratap Singh 191272

III

TABLE OF CONTENTS

TITLE PAGE NO.

Certificate i

Plagiarism Certificate ii

Acknowledgment iii

List of Figures v

Abstract vi

Chapter-1: Introduction 1-6

Chapter 2: Literature Survey 7-9

Chapter-3:System Development 10-45

Chapter-4: Performance Analysis and
Result

46-49

Chapter-5: Conclusion 50-51

References 52

IV

LIST OF FIGURES

Figure Number Name of Figure Page Number

1 Showing basic client server
architecture

15

2 Cloud service models 17

3 Cloud run architecture 27

4 Cloud functions vs Cloud run 28

5 Cloud task queue 29

6 Pub sub architecture 31

7 Create item form 41

8 Create item backend code 42

9 View item frontend page 43

10 Create bid backend code 44

11 Bid details frontend page 45

12 Testing Report 47

13 Firestore stats 50

V

ABSTRACT

The shift of the market from offline to online has been a great boon for Information

Technology and business. There are different websites that are based on business related

to shipping, buying and selling of products, buying and selling of used products. Some of

the sites are Flipkart, Amazon and Olx. This has covered a lot of business processes that

were only taking place in offline mode. But still there is a gap that lies in the auction

process which is still done offline, there are ways to do it online but still no such site is

that popular among vendors and clients. This project lies in creating a platform where

people can request items that they want and their specifications and the bidders can bid

on the items requested by the requester.

The project explores the idea of a demand-driven online marketplace that fuses

conventional bidding and auction events with online shopping. Users of this market are

able to take part in online auctions for a variety of things, from commonplace items like

watches and cellphones to ancient assets. This marketplace offers consumers a

demanding and safe environment in which to put bids and make purchases, in contrast to

other classified ad websites like Olx. A user-friendly online application, secure real-time

payment processing, scalable and effective system architecture, deployment of Google

Cloud containers, and handling of race situations are all necessary for the system to

function. In order to create a safe and secure backend, it also emphasizes the significance

of adhering to the DRY and SOLID principles, appropriate coding techniques, and

creating unit test cases.

VI

Chapter 01: INTRODUCTION

1.1 Introduction

In recent years, online auctions have grown in popularity as a means of buying and

selling products. Online auctions have become a simple tool for buyers to locate

one-of-a-kind things and for sellers to reach a larger audience as online shopping grows in

popularity. We will examine the world of online auctions in this introduction and discover

why consumers and sellers find them to be so alluring. Online auctions also have the

advantage of frequently being more effective than conventional auctions. There is no

requirement for bidders and sellers to physically attend an auction because everything is

conducted online. This may help customers save time and money, and it also makes it

simpler for them to take part in auctions from any location.

Although they may be a terrific method to purchase and sell items, internet auctions can

have certain hazards. Fraud is one of the most serious hazards. It's possible for buyers to

not receive the item they ordered or for the item to not match the description. Sellers may

also be at risk of fraud, as buyers may try to scam them out of their items or refuse to pay

for items they have won. To reduce the risk of fraud, it is important to only buy and sell

items on reputable auction websites. Buyers should also read the item description

thoroughly and ask the seller any questions they may have before placing a bid.

Sellers should also be sure to adequately describe their things and give clear images.

E-commerce and online classifieds are two potent instruments that have completely

changed how we purchase and sell products and services. They each have distinct

functions, but they both aim to link consumers and sellers in an online marketplace.

Users can submit ads for products and services on websites called online classifieds.

Depending on the platform, these adverts may be put for free or at a cost. Because users

may choose a specific geographic region to target, online classifieds can be a wonderful

method to sell products locally. Craigslist, Facebook Marketplace, and Gumtree are a few

well-known online classifieds websites.

Page 1

1.2 Problem Statement

With the growing digitalisation and demand and supply chain flow there needs to be a

solution that can digitally solve the problem of selling and buying online as well as

auction along with all the safety that the user wants in their online experience and with

cutting edge technology.

I. To develop a full stack web application deployed on google cloud using Google

Cloud Platform as the backend technology along with Flask and React with

TypeScript as frontend technology.

II. Demand driven marketplace for household items(pre-owned/new/refurbished

everything). Buyer will post their requirement with a budget, and sellers can bid

for fulfilling that requirement.

III. User: Any user can sign up on the platform as a buyer or a seller. A user can

invite more users on the platform(invite via csv file also supported) but max. 25

users a day only. Each user has to verify their email address during the signup

process, without which they can’t access any features.

IV. Item: A user can post their requirement as a form of Item.

1. Name(Required)

2. Description

3. Requester

4. Date & Time (in increments of 1 hour) for closure cannot be earlier than

48 hours (Live bidding will be done in the last 1 hour)

5. Item status(pre-owned/new/refurbished)

6. Not old than x months/years

7. No. of items

8. Max. price

V. Item Bid: Any user can bid for that item requirement by providing product

details(max. 6 photos and other details). Item requesters can not view a bid price

until a bid is disclosed. The bidders can add all the information with their bid

amount.

VI. Eligible bidder: Before a bid is disclosed, the item requester can reject a seller

bid after viewing product specification/details with a reason for rejection.

Page 2

VII. Bid disclosure: An eligible bidder/seller with the minimum sell price will be

selected as the bid winner.

VIII. Transactions:

A. Each item requester has to pay 1% or 1 cent(which one is max.) of the

item price to place an item request.

B. Each seller has to pay 1% or 1 cent(which one is max.) of their bid amount

to place a bid.

C. Use Stripe for all payments.

IX. Live bidding:

A. The buyer can see how many bids are being placed in real time when the

bidding session starts, and can see the details of those bids.

B. Bidders get the option to place a bid or modify their existing bids, and also

see the lowest bid amount currently present.

C. Once the bidding session closes, the winner will be decided.

Page 3

1.3 Objectives

The online demand driven marketplace is the concept about bringing the traditional

bidding and auction events and the e-commerce like digital idea together at a place where

the auction can take place online in which several users can participate but this time not

only for antique or costly assets but also for simple things like smartphones or watches.

Like the website Olx where users can sell their items and buyer can buy but Olx does not

charge anything or participate within the selling process, this product brings the concept

of taking these classified ads further more than Olx like website to give a more

challenging and safe environment where users can place bid on the item and will be

charged respectively.

I. Users can place item requests and bid using a web application that has to be user

friendly and fast.

II. Make payment transactions safe and consistent in real time.

III. Make scalable and efficient system design to handle several requests in parallel.

IV. Deploying Google Cloud containers in an efficient way and running backend

applications in them.

V. Handling race conditions and making a safe full proof backend.

VI. Write unit test cases of the application.

VII. Following DRY and SOLID principles and good coding practices all over the

codebase.

Page 4

1.4 Methodology

Planning:

In planning all the user requirements were laid down first. After that the technical

requirements as well. Both were matched to see if they can fulfil each requirement. After

this a work breakdown structure has been made in an excel sheet that estimated around

a month in which all the modules required to complete the project were broken down into

smaller components with their respective estimated time. Each module included the

detailed components that have to be made, testing that has to be done and review fixes

that need to be fixed after the code review.

Analysis:

Features were implemented serially in the order they were in the WBS sheet. For each

feature a complete analysis is done on the tech stack required with the requirements. For

backend features the analysis included finding and exploring what cloud tools to use, i.e.

whether to use Cloud Run or Cloud Function, similarly for each feature various

approaches were analysed varying from asynchronous to synchronous behaviour.

Design:

Firstly the architecture is decided in a make as you explore modules manner, in which for

the current feature the best services get laid down and used which is then added to the

architecture. After that the design for database is laid down since we are using NoSQL

based database i.e. Google Firestore, all the docs and their subcollections were laid down

and discussed with the mentor. Further design included architecture level design, feature

breakdown, UI design and code level design along with the algorithm/procedure to be

used to

Implementation

Once the implementation started, the project was set up with the GitHub repository for

each feature. For the frontend code base, the file structure was laid in a React practice

manner where each functionality is broken down into components, containers and

services. For the backend code base, the file structure was laid in modules and class

services, helper methods and the requirements for them were installed. After the project

Page 5

setup, firstly low level design of any functionality was laid down on the paper then only

code was done.

Maintenance and Support:

Since this was a project not a product so the maintenance and support only includes

getting the code reviewed by the mentors. Writing unit test cases and integration test

cases for each module in the project using various testing libraries. To do end to end

testing using Postman for APIs.

Page 6

Chapter 02: LITERATURE REVIEW

The paper[1] focuses on a quick introduction to cloud computing and the three primary

cloud platform designs follow in the paper. Additionally, it has compared these platforms

based on a variety of factors, including cost, specifications, support and administration,

database support, machine learning and artificial intelligence support, storage,

deployment tools, networking, and security. The results of this study will assist cloud

users in choosing the appropriate cloud platform for their unique needs.

A. Private Cloud

Private clouds are primarily used by independent businesses and are ideal for

needs involving high security.

B. Public Cloud

Public clouds are ideal for expanding businesses and are frequently used in

networks. It can holster the needs for both small scale & large-scale businesses.

C. Community Cloud

Community cloud is utilised by collaborative organisations to exchange data

effectively. These are very helpful for businesses like banks.

D. Hybrid Cloud

Hybrid clouds are systems that combine both private and public clouds. It is

extremely beneficial for organisations whose requirements include both. It helps

them to privately interact within the organisation & publicly interact with

customers using public cloud

General:

● Of the three cloud platforms, Microsoft Azure is the most widely used.

● Google Cloud Platform's Cloud9 offers native IDE support.

● Of the three, Amazon EC2 is the oldest and has a firm grasp of the IaaS service

model.

Database and virtualization:

● Google cloud platform offers the most database possibilities, whereas Azure offers

the fewest.

Page 7

● The widest range of virtualization solutions is offered by Amazon EC2.

Pricing:

● Each of the three has a unique pricing structure based on the consumption of the

service.

Specifications:

● Amazon EC2 has the most pre-configured operating systems, whereas Microsoft

Azure has the most support for machine learning frameworks.

The three cloud platforms that were previously evaluated each offer advantages that make

them useful in their own right. Even while Amazon EC2 is the most established and

supports the most number of pre-configured operating systems, it falls behind in terms of

accessibility and support.

Similar to the Google Cloud Platform, which supports the most databases and has a large

collection of built-in libraries but lacks SDK support and uses a pay-to-help approach

where the length of time it takes to get assistance varies depending on the level of service

used. Although the Microsoft Azure platform has the broadest reach of the three, its

database support is significantly lacking.

Thus, we draw the conclusion that the choice of cloud platform is strongly influenced by

the user's requirements, which vary from user to user.

From website[2] following conclusions are made:

The following are some of the main distinctions between AWS and GCP:

Services: Compute, storage, networking, databases, and other cloud services are all

available through both AWS and GCP. However, AWS offers a wider range of services,

whereas GCP focuses more on a smaller number of services.

Pricing: When selecting a cloud platform, price is an important factor. Although both

AWS and GCP have numerous pricing options, their systems can be convoluted and

challenging to comprehend. In general, GCP is more affordable for large-scale projects

whereas AWS is more expensive for modest workloads.

Page 8

User Interface: Each platform has a unique user interface. While GCP's UI is simpler and

more streamlined than AWS', the latter features a console that is more feature-rich and

complicated.

Security is built into both AWS and GCP, however AWS has a longer history and more

certifications in this area. More security capabilities are available through AWS,

including Virtual Private Cloud (VPC) and Identity and Access Management (IAM).

Help: The help and support for the two systems are comparable and they provide varying

degrees of support, which varies from free to paid support. The only difference is that

Google Cloud Platform provides a more focused and individualistic kind of help but

AWS does it on a large team basis and with greater resources.

Page 9

CHAPTER 03: SYSTEM DEVELOPMENT

3.1 Frameworks and Libraries Used

3.1.1 Python

Python is a simple typed yet powerful language which lies in high-level programming and

it has experienced a large amount of growth in many fields not only AI. The popular

feature covers the range of web development, machine learning, big data and it is highly

adaptable, has a large number of libraries and support.

Python is popular because of its readability and the way it simplifies coding. It is also a

great choice for beginners as it has simple syntax. Python developers and programmers

all over the world provide a great community support with a variety of libraries that

simplify complicated processes and shorten the time for development focusing more on

core logic.

Python is highly adaptable as it can be used in different projects like machine learning,

automation, web development and scientific research computing. It is also great for

cross-platform programming as it is supported by various OS, including Windows, Linux

and MaxOS

Python is not type strict programming but still provides support for typings using its

library. Python supports both procedural and object oriented programming paradigms.

This is because it has a large number of libraries and tools—like NumPy, Pandas, and

Matplotlib—that offer strong capabilities for handling data and displaying the findings.

With a sizable ecosystem of third-party libraries and tools, Python is also very

expandable. Web frameworks like Flask and Django, database libraries like

SQLAlchemy, and machine learning libraries like TensorFlow and PyTorch are some

examples of these libraries.

Page 10

3.1.2 Flask

A well-liked and slim web framework for Python called Flask offers a versatile and

user-friendly platform for creating online applications. As a result of Flask's well-known

simplicity, small- to medium-sized projects or the creation of microservices are

appropriate applications for it.

Flask gives developers the resources they need to easily create and deploy web

applications by building on top of the Werkzeug WSGI toolkit and the Jinja2 templating

engine. One of Flask's primary characteristics is its modular architecture, which frees

developers from being forced to use a full-stack framework by allowing them to select

only the components they require.

With support for routing, views, and templates, Flask offers a straightforward and

understandable API for processing HTTP requests and answers. It also makes it simple to

develop secure online apps by supporting cookies, sessions, and authentication.

Flask offers a large variety of plugins and extensions that may be used to enhance the

framework's capabilities. From email support to OAuth authentication to database

connectivity, these extensions cover it all.

Flask offers an object that represents the HTTP request (Request) and an object that

represents the HTTP response (Response). These objects offer a straightforward and

standardised approach to handle HTTP requests and replies.

The application context in Flask is the environment in which the Flask application is

running. It includes crucial application-specific data, including configuration options,

database connections, and other resources that the programme requires.

The application context and the request context are the two different categories of context

in Flask. When a Flask application first launches, the application context is generated,

and it remains active for the duration of the programme. However, the request context is

only formed once the request has been completed; it is not established for every request

that the application gets.

Page 11

3.1.3 Marshmallow

In order to serialise and deserialize complicated data types between Python objects and

JSON or other serialisation formats, developers can use the Python library marshmallow.

Data conversion between a web API and a client application is frequently used in online

applications to make it simpler to send and handle data across various platforms.

The capability of Marshmallow to design data schemas in Python using classes is one of

its primary advantages. These schemas may be used to serialise and verify data, ensuring

that it is in the right format and is simple to transfer to other systems and utilise.

Additionally, Marshmallow offers sophisticated features like nested schemas, enabling

programmers to manage intricate data structures with several levels of layering with ease.

This may be especially helpful when data has to be sent across several systems or APIs.

The integration of Marshmallow with well-known web frameworks like Flask and Django

is another benefit. It offers a straightforward and understandable method for defining data

schemas for these frameworks, which makes it simple to include Marshmallow into

already-existing online applications.

Marshmallow is a strong and adaptable module that may make data serialisation and

deserialization in Python applications simpler overall. Marshmallow enables developers

to speed up data handling and transfer, resulting in time and labour savings during the

development process.

Page 12

3.1.4 React

A well-known open-source JavaScript library for creating user interfaces is called React.

It was created by Facebook and is extensively utilised by organisations and programmers

to create sophisticated online apps.

Because React is a component-based framework, the user interface is divided into

manageable, reusable components. It is simpler to manage and maintain a big codebase

since these components may be integrated and reused across the programme.

React's virtual DOM, which enables fast and speedy user interface updates, is one of its

core characteristics. React updates only the necessary portions of the DOM when a

component's state changes rather than re-rendering the entire page. This increases the

responsiveness of the user interface and enhances the application's overall performance.

Additionally, React has a sizable and vibrant community that has created several outside

libraries and tools to expand its capability. These consist of debugging and profiling tools

for React apps, as well as libraries for testing, state management, and routing.

React also has the benefit of being compatible with other frameworks and technologies,

like Next.js for server-side rendering and Redux for state management. React is hence a

very flexible and adaptable library that can be tailored to fit a variety of use cases and

project needs.

React is an all-around strong and adaptable toolkit that has completely changed how

online applications are created and maintained. It is a well-liked option for software

professionals and organisations all around the world thanks to its component-based

design, virtual DOM, and active community.

Page 13

3.1.5 TypeScript

JavaScript's rigorous syntactical superset, TypeScript, is a programming language. It

enhances JavaScript by adding optional static typing, which can assist programmers in

identifying flaws early in the development cycle and enhance the overall dependability

and maintainability of their code.

Support for type annotations is one of TypeScript's core features. Developers can declare

the data types of variables, function arguments, and return types in their code by using

type annotations. The TypeScript compiler can check the code for type mismatches and

other issues, making it simpler to find errors and bugs early in the development process.

This example code shows how to give types to variables in TypeScript

class UserAccount {

name: string;

age: number;

email: string;

constructor(name: string, age: number, email: string) {

this.name = name;

this.age = age;

this.email = email;

}

describe(): string {

return `Name: ${this.name}, Age: ${this.age}, Email:

${this.email}`;

}

}

Page 14

3.1.6 Client Server architecture

Today, a traditional Web application comprises both client-side and server-side

components. A client-side is essentially a document displayed to a user that is an HTML

page filled with some data. Thanks to JavaScript scripts, a user may interact with the

content in the browser. These scripts are included in the HTML code of the document.

Scripts enable applications to respond interactively to a variety of events, including

keyboard inputs, mouse movements, and user clicks. Additionally, the document may be

changed directly in the browser.

Each document node, such as a heading, paragraph, or text included within an HTML tag,

is processed into a Document Object Model (DOM), an object representation of an

HTML page that an embedded script may alter. A script that handles a request is on the

server-side. The server side may carry out authentication and authorization, store and

retrieve data from a database, and carry out any operations that standard software can

carry out, depending on the characteristics of an application.

Figure 1. Showing basic client server architecture

Page 15

3.1.7 Serverless architecture

A cloud-native development methodology called "serverless" enables developers to create

and execute apps without having to worry about managing servers. It is an additional

abstraction layer on top of the PaaS architecture, where the CSP is responsible for scaling

the server infrastructure in addition to resource supply and software maintenance. Unlike

the IaaS cloud computing architecture, serverless infrastructure only runs when the

application is in use, such as when an HTTP request is received. Scaling the infrastructure

when the application is under a heavier demand is the CSP's duty.

Cloud computing:

(IaaS) Infrastructure as a Service:

This concept makes use of the cloud to supply virtualized computer resources including

CPU, RAM, OS, and application software. It may at any time be dynamically released,

scaled, and provisioned for the customer's needs. Access to enterprise-grade IT

infrastructure and resources is one of the primary advantages. Amazon Web Services

(AWS), Google Compute Engine (GCE), and Microsoft Azure are a few examples of

IaaS.

(PaaS) Platform as a Service:

A more sophisticated cloud computing solution is PaaS. The OS and other software

required to execute clients' applications under this model are supplied and maintained by

CSP. For access to the platforms where they may host their apps, customers must pay. The

responsibility for maintaining and updating the programme falls to CSP. Customers are

freed from having to own hardware or software in this way. Examples include Heroku,

Google App Engine, and AWS Elastic Beanstalk.

Page 16

(SaaS) Software as a service:

According to this approach, CSP creates, manages, and operates application software.

Customers may utilise its services using a browser on any device since it offers access to

the application through a web-based interface. The benefit of the concept is that the

consumer does not need to purchase a licence, upgrade the programme, or maintain it.

The SaaS services are scalable, effective, and simple to configure. Gmail, Dropbox, and

Zoom are a few examples of SaaS products.

BaaS (Backend as a Service):

Access to third-party services including hosting, push alerts, cloud-based databases, and

authentication services is made possible via BaaS. Developers just utilise the public API

to create applications; they are not actually aware of how the service operates within.

FaaS (Function as a Service):

FaaS allows the developer a lot more control over the application's functionality than

BaaS does. Functions that will execute in containers completely controlled by a cloud

provider are created by developers. Because FaaS is an event-driven cloud computing

platform, it runs as needed.

Figure 2. Cloud service models

Page 17

3.1.8 Google Cloud Platform

A group of cloud computing services are offered by Google under the name Google

Cloud Platform (GCP). It is constructed on the same platform that Google utilises to

power its own SaaS 2.4 products, including Google Mail, Google Docs, Google Drive,

and others. The IaaS, PaaS, and serverless computing options offered by Google Cloud

Platform.

Resources are allocated according to each project. Every account on GCP has the ability

to manage several projects. Users may add editors and provide them precise, pertinent

rights, such as project resource control permissions or access to the VM's billing.

Additionally, it enables the establishment of service accounts, a unique account type

utilised by programmes as opposed to humans. Its permissions can be set up similarly as

well.

Nearly every Google Cloud product is restricted to a certain area and zone within that

region. The area is known as the "regional failure domain." Zonal outages may affect

some or all of the resources in the zone since it represents an underlying structure of

physical resources. Where to place services can be decided by the developer. The location

affects the cost, latency, and availability of the service. The Europe area was selected in

the effort to have a low latency there.

Google Cloud Run:

A GCP service for executing containerized apps is Google Cloud Run. It offers a practical

Web user interface for quickly setting up and deploying the container images.

Google Artifact Registry:

An image of a container must be uploaded to a registry before it can be used for

deployment. Google provides the Artifact Registry service, which allows the creation of

repositories for different artifacts and using them inside GCP infrastructure. Among

available Artifact repository formats are Docker containers, Maven artifacts, npm, and

Python packages.

Page 18

3.1.9 Firebase

Firebase is an app development platform built by Google. It offers tools like serverless

cloud functions, machine learning, non-relational databases, file storage, hosting, and

authentication.

CLI for Firebase

Tools are available for managing, setting up, and deploying Firebase projects using the

command-line interface. Additionally, it adds the capability of downloading and using

emulators for virtually the whole Firebase architecture, which includes services like

Firestore, Storage, Realtime Database, Authentication, Functions, and more.

Authentication

Back-end services for user authentication are offered by Firebase Authentication. The

developer side of authentication requires little work. It is sufficient to utilise the handy

SDK offered by Firebase. A password, phone number, or several well-known identity

providers like Google, Facebook, and Twitter can all be used to identify users.

Additionally, Firebase Authentication interacts without difficulty with other Firebase

services.

Datastore Firestore

A real-time, NoSQL 2.2 cloud database is called Firestore Database. In contrast to

traditional relational databases, the data in this database is stored as documents rather

than columns and rows. Documents have a structure akin to the JavaScript Object

Notation (JSON) format with a few modifications, such as the map, timestamp, geopoint,

and reference data types in the case of Firestore Database. Collections are used to

organise the Firestore Database's top-level data. The collection itself consists of

documents rather than actual data. Fields that correspond to values are present in

documents.

Values may be nested collections or common data types. The adaptable querying

technology offered by SDK is used to get data from the database.

Page 19

Storage

Based on Google Cloud Storage, Firebase Storage is a cloud storage service. It is an

object storage solution that allows for safe cloud file storage. Storage organises and

restricts access to data using buckets. Files and folders can be stored in a bucket, but not

other buckets. Since Firebase Storage files are immutable, uploaded files cannot be

changed afterwards but can be changed instead. It leverages Google Cloud Storage

underneath, making the buckets available from both services.

Data objects are distinct units of information that come with user-specified object

metadata.

A collection of key-value pairs makes up metadata.

3.1.10 unittest

A testing framework that offers a selection of tools for creating and executing tests is the

unittest library for Python. It is a popular option for Python developers since it is

integrated into the Python standard library and offers a variety of tools for designing and

executing unit tests.

Developers may define test cases as classes with unittest, and each test can be thought of

as a method on the class. The predicted results and actual results can be compared using a

variety of assertion methods using these approaches. This makes it simple to test specific

methods, classes, and modules as well as to confirm the functionality of each part of a

Python programme.

In addition, unittest offers a number of other functionalities, such as:

Test discovery: Unittest makes it simple to run tests throughout a whole project by

automatically finding and executing tests based on naming conventions.

Test fixtures provide context for test cases to run and unittest also support their use. This

helps in creating shared testing environments along with test data.

Page 20

Command line tools: Unittest supports command-line tool that helps in running tests

directly from the command line which helps a lot in continuous integration systems to be

specific.

The major functions delivered by unittest library are as follows:

● unittest.TestCase: It is a base class for testing. We can subclass another test class

using unittest.TestCase and add test methods to it, we can make our own test case

classes for testing modules.

● TestCase.setUp(): This is a function that unittest library provides and is invoked

before each test method. This is basically a set up for running tests and provides

any resources that are needed before each test case. This helps in making code less

redundant.

● TestCase.tearDown(): This is a method that runs after each test case has finished

executing. This removes the resources and cleans up them for any other test case

that is to be run in future.

● TestCase.assertEqual(first, second): A method that asserts that first and second are

equal. If they are not equal, a warning message will appear.

3.1.11 jest

Popular testing software for JavaScript apps is called Jest. A software developer may find

the following important points useful:

Jest is made to be simple to set up and operate. It can be used to test various JavaScript

application types and comes with built-in support for testing React apps.

Snapshot testing, one of the capabilities of Jest, enables you to record the output of a

component or function and compare it to a previously recorded snapshot. This can assist

you in identifying regressions and confirming that your code is operating as intended.

You may mimic the modules and functions in your application using Jest's strong

mocking features. For the purpose of testing isolated components or functions, this might

be helpful.

Page 21

Jest contains capabilities like async/await and the capacity to wait for promises to resolve

that facilitate asynchronous testing.

3.1.12 Bootstrap

Bootstrap provides a set of pre-built UI components that you can use to quickly create

common UI elements like forms, buttons, and navigation menus.

Due to the adaptable architecture of Bootstrap, your application will automatically adjust

to various screen sizes and device kinds. This can help you create mobile-friendly

applications more quickly and easily.

There’s a grid system too in Bootstrap that helps to design responsive layouts for web

applications. Grid system is built on a 12-column layout. The size and placement of the

content is flexible on various screen sizes.

With a large selection of configuration options and themes available, Bootstrap is

extremely configurable. Using variables and mixins, you may alter the way your

application looks and feels, or you can utilize a premade theme to get going right away.

Bootstrap has a sizable user and development community and is well-documented. This

implies that you may seek assistance with any problems you run across and discover

answers to your concerns with ease.

Page 22

3.2 Google Cloud Platform

3.2.1 Firebase

Firebase is a Backend-as-a-Service (Baas). It provides developers with a variety of tools

and services to help them develop quality apps, grow their user base, and earn profit. It is

built on Google’s infrastructure.

Following are the products that firebase provides to us:

Realtime Database: The Firebase Realtime Database is a NoSQL database that runs in the

cloud and maintains data at a blistering millisecond pace. It may be compared to a large

JSON file in the simplest terms.

Cloud Firestore: A NoSQL document database, the cloud Firestore offers capabilities

including worldwide syncing, querying, and storage through the application. In the form

of objects, sometimes referred to as Documents, it holds data. It can store any type of

data, including texts, binary data, and even JSON trees, and has a key-value pair.

Authentication: To allow users to access your app, the Firebase Authentication service

offers simple-to-use UI frameworks and SDKs. The amount of labour and time needed to

create and maintain the user authentication service is decreased. Even complicated

manual chores like merging accounts are handled by it.

Remote Configuration: The service for remote configuration aids in instantly publishing

updates to the user. The modifications might involve anything from modifying UI

elements to altering how the programmes behave. These are frequently utilised for

posting seasonal offers and contents to applications with short lifespans.

Firebase Cloud Messaging (FCM): The FCM service establishes a link between the

application's end users and the server so that messages and alerts may be received and

sent between them. These connectors work well and use little power.

Page 23

3.2.2 Firestore

A document-oriented, NoSQL database is Cloud Firestore. There aren't any tables or rows

like in a SQL database. Data is instead kept in documents that are arranged into

collections.

A collection of key-value pairs are present in every document. It is best to save huge

quantities of tiny documents in the Cloud Firestore.

Collections must be used to hold all papers. Subcollections and nested objects, both of

which may include simple objects like lists or sophisticated ones like lists, may both be

found in documents.

In Cloud Firestore, collections and documents are produced automatically. Simply assign

information to a set of documents. Cloud Firestore produces the collection or document if

one or both are missing.

Documents

The document serves as the storage unit in Cloud Firestore. A document is a compact

record with fields that correspond to values. A name is used to identify each document.

A user's profile document may seem something like this:

wiejewewo02i2 → document id

{

first : "Ada" → fields

last : "Lovelace"

born : 1815

}

Page 24

Collections

Documents live in collections, which are simply containers for documents. For example,

you could have a users collection to contain your various users, each represented by a

document

Users → Collection

mnwniqaq922jne92 → document id of doc 1

{

first : "Ada"

last : "Lovelace"

born : 1815

}

m2nwn223iqaq922jne92 → document id of doc 2

{

first : "Robert"

last : "William"

born : 1812

}

Page 25

Subcollections

The best way to store messages in this scenario is by using subcollections. A

subcollection is a collection associated with a specific document.

3.2.3 Cloud Run

Developers may execute their code in a containerized environment using Cloud execute

and Cloud Run Service, two cloud computing services provided by Google Cloud

Platform, without having to worry about infrastructure management.

Developers may install and operate stateless containers in a controlled environment using

the fully managed serverless computing platform known as Cloud Run. Developers can

quickly and simply create and deploy containerized apps using Cloud Run, and they only

have to pay for the resources they really use. Developers are free to concentrate on

creating and operating their apps since Cloud Run abstracts away the underlying

infrastructure.

Page 26

On the other side, Cloud Run Service is a more developed version of Cloud Run that

offers further features and capabilities. In order to construct scalable and highly available

applications, Cloud Run Service enables developers to design fully managed

microservices that can be automatically deployed and scaled. With Cloud Run Service,

developers may benefit from sophisticated capabilities like traffic splitting and canary

deployments, as well as automated scaling, monitoring, and logging.

The well-known open-source container orchestration platform Kubernetes serves as the

foundation for both Cloud Run and Cloud Run Service. This indicates that developers

don't require specialized training or expertise to benefit from Kubernetes' strength and

adaptability.

The flexibility and mobility of Cloud Run and Cloud Run Service are two of their main

advantages. Developers may simply migrate their programmes between multiple cloud

platforms and even operate them on-premises if they so desire by deploying them to

Cloud operate or Cloud Run Service using Docker containers.

All things considered, Cloud Run and Cloud Run Service are strong and adaptable cloud

computing services that can assist developers in creating and running containerized

applications fast and efficiently. They are the perfect option for developers who want to

concentrate on creating excellent apps rather than worrying about infrastructure

maintenance because of their inherent scalability, dependability, and ease of use.

Figure 3. Cloud run architecture

Page 27

3.2.4 Cloud Function vs Cloud Run

Figure 4. Cloud functions vs Cloud run

You are only in charge of the code thanks to Cloud Functions, which enables integrating

your platform simple to construct and straightforward to manage. Anyone on your team

who knows how to code can come up with a solution without packaging the code. There

are additionally seven widely used languages available. Data scientists, for instance, don't

need to be experts in infrastructure to execute a Python script on the cloud.

By making each function its own distinct component and insulating it from having a

direct influence on other workloads, Cloud Functions maintains productivity high and

operations low. It's unlikely that updates and changes to one function will have an effect

on another.

Page 28

3.2.5 Cloud Task

The Google Cloud Platform's Cloud Tasks service enables developers to build and carry

out tasks that do background processing in a dependable and adaptable way. It is fully

managed, scalable, and asynchronous. Developers can construct and manage distributed

applications that are built to manage heavy workloads and scale up and down as

necessary with Cloud Tasks. Developers may construct tasks with Cloud Tasks and

describe when and how they should be carried out using a straightforward API. Tasks can

be set to be completed immediately or at a future date and time. They can also be

completed only once or again at regular intervals. In order to provide developers choice in

how they construct their applications, tasks may be set to employ a number of execution

modalities, including HTTP requests, App Engine tasks, and Cloud Functions.

Scalability is one of Cloud Tasks' main advantages. Because Cloud Tasks is built on top

of the architecture of Google Cloud, it can easily manage heavy workloads. Jobs get split

up into several instances so that the throughput remains as low as possible, the progress

of the tasks can be checked and any logs can be checked and fixed in the codebase, Cloud

task provides a monitoring system for that.

Overall, Cloud Tasks is a powerful and flexible service that can help developers create

distributed applications that are designed to handle large workloads and scale up and

down as needed. With its simple API, flexible execution modes, and robust monitoring

and logging capabilities, Cloud Tasks is an ideal solution for developers who need to

perform background processing in a reliable and scalable manner.

FIgure 5. Cloud task queue

Page 29

3.2.6 Cloud Pub/Sub

Developers may send and receive messages across separate apps using Google Cloud

Pub/Sub, a fully-managed, real-time messaging service provided by Google Cloud

Platform. Using Pub/Sub, programmers may establish scalable event-driven architectures

and build asynchronous, decoupled systems.

A quick and dependable method of message transmission across unrelated applications

and services is provided by pub/sub. It is perfect for high-throughput and real-time

messaging settings since it can process millions of messages per second and handle

messages of any size.

Both scalability and high availability are built into Pub/Sub. Without any human

involvement, it can handle increases in message traffic and provides automatic scalability.

Strong durability guarantees are also provided, and communications are repeated over

many zones to assure that they are never lost.

REST, gRPC, and client libraries for Java, Python, Go, Node.js, and other programming

languages are just a few of the protocols and languages that developers may use to

connect with Pub/Sub. In addition to third-party services like Apache Kafka, Pub/Sub

works smoothly with other Google Cloud services like Cloud Functions, Dataflow, and

Kubernetes Engine.

Additionally, Pub/Sub provides sophisticated capabilities like message ordering, message

expiry, and message filtering that enable programmers to build sophisticated messaging

systems that can manage a variety of use cases.

All things considered, Google Cloud Pub/Sub is a strong and trustworthy messaging

service that can assist programmers in creating highly scalable and decoupled

applications. Pub/Sub is the perfect option for developers who need to send messages

between different apps because of its adaptable protocols, support for a variety of

programming languages, cutting-edge functionality, and close connection with other

Google Cloud services.

Page 30

Pub/Sub Triggers

Google Cloud Pub/Sub provides several types of triggers that can be used to execute code

or perform other actions in response to incoming messages. These are the triggers:

1. Cloud Functions Trigger: By allowing developers to design serverless functions

that react to incoming messages in real-time, cloud functions may be triggered by

Pub/Sub messages. Node.js, Python, Java, and Go are just a few of the languages

in which Cloud Functions may be created. They can also be dynamically scaled

based on the number of incoming messages.

2. Cloud Run Trigger: A serverless computing platform called Cloud Run lets

programmers launch containerized programmes in response to incoming signals.

Cloud Run services may be activated by Pub/Sub messages, making it simple for

developers to create and set up scalable microservices that process messages in

real time.

3. Cloud Dataflow Trigger: A fully-managed data processing service called Cloud

Dataflow may be utilised to instantly handle huge datasets. Developers may

respond to incoming messages by performing complicated data processing

activities using Cloud Dataflow pipelines that can be triggered by Pub/Sub

messages.

4. Cloud Storage Trigger: Events in Cloud Storage buckets may also be triggered

using Pub/Sub. As a result, programmers may construct apps that react to

alterations in data saved in cloud storage, such as the upload or deletion of new

files.

Figure 6. Pub sub architecture

Page 31

3.3 Database design

3.3.1 DB Design in JSON format

users (Level 0 collection)

userId: {

createdAt: datetime,

age: number,

country: string,

name: string,

isAdmin: boolean,

profilePic: string,

phoneNumber: string,

currentInviteStreak: ref,

userId: string,

updatedAt: datetime

invites (Level 1 collection)

inviteStreakId: {

count: number,

invitedBy: {

id: string,

ref: ref

}

streakStartDatetime: datetime,

invites: [

{

email: string,

inviteId: string,

status: “sent” | “initiated”

}

]

}

Page 32

}

items (Level 0 collection)

itemId: {

itemPaymentRef: string | null,

name: string,

description: string,

requester: {

id: string,

ref: reference

}

createdAt: datetime,

itemStatus: string,

closureDateTime: datetime,

notOlderThan: {

months: integer,

years: integer

},

numberOfItems: integer,

maxPrice: float,

status: string (“live”, “stale”, “ended”, “active”),

currencyCode: string,

winner: { [Optional]

price: float,

ref: string,

name: string

}

bids (Level 1 collection)

BidId: {

bidder: {

id: string,

ref: reference

Page 33

},

item: {

id: string,

ref: reference

},

images: array of length 5 {

url: null | string

},

details: string,

createdAt: datetime,

rejectionReason: string [Optional]

status: (“stale”, “active”, “won”, “rejected”, “lost”),

isDeleted: Boolean,

olderThan: {

months: integer,

years: integer

},

bidPayment (Level 2 collection)

bidTransactionId: {

paymentIntentId: string | null,

bid: {

id: string,

ref: reference

},

bidder: {

id: string,

ref: reference

}

lastPaymentAttemptAt: datetime | null, (to remove)

bidPrice: float,

priceToBePaid: float,

currencyCode: string

}

Page 34

},

itemPayment (Level 1 collection)

itemId: {

paymentIntentId: string,

item: {

id: string,

ref: reference

},

requester: {

id: string,

ref: reference

},

priceToBePaid: float

},

minBidPrice (Level 1 collection)

itemId: {

minPrice: number | null,

visibility: boolean

}

},

3.3.2 DB design explanation

users collection :

Contains the use related data of the user. Doc id is the user id of the user created in the

firebase authentication. User doc is only created when the user authenticates (signs up)

successfully with the firebase authentication system and creates its user profile.

profilePic field contains the url of the user profile picture.

currentInviteStreakRef field contains the ref path of the current invite streak that the user

holds.

isAdmin field is a check for future usage that can give user admin level access.

Page 35

invites sub-collection:

A document in this sub collection tells the invite streak of the user. It has the following

main properties:

counts: representing the number of users invited in this current streak.

invites: contains an array of users that are invited in this particular streak.

The array contains email, inviteId (unique uuid) and status (sent | initiated).

streakStartDatetime: datetime of the point when this streak was started.

This is to maintain the constraint that the number of invites sent by the user in a day i.e. in

a streak of 24 hours should be under a particular count i.e. 20 or 25 stated in the

requirement.

items collection:

itemPaymentRef: contains the path of the doc under itemPayment sub collection which is

related to this item.

requester: contains the ref id of the user requested this item.

status: contains the db status of the item i.e. whether it is live, stale, ended or active

maxPrice represents the maximum price bid that can be accepted.

winner: is an optional field that will be added to item doc only when the live bidding will

end and the winner will be declared which will be kept here.

Bids sub collection under items collection:

bidder: field contains the id, ref of the bidder.

Item: field contains the id, ref of the item on which bid is placed.

Images: is an array of dict { url: string } type which contains the images of the bids.

RejectionReason: denotes the reason for rejection for the bid.

Status: denotes the current status of the bid which can be stale, active, won, rejected or

lost.

OlderThan: field tells about the description of the item.

bidPayment sub collection under bids sub collection:

Page 36

contains the payment related information related with the bid.

Bid: field denotes the bid id, ref

bidder: field denotes the id, ref for the bidder that placed the bid and paid for it.

BidPrice: field contains the bid price.

PriceToBePaid: field contains the price that actually bidder has to pay for placing the bid.

CurrencyCode: is the currency code of the amount that has to be paid by the bidder.

PaymentIntentId: id of the stripe payment intent

ItemPayment sub collection under items collection:

paymentIntentId: id of the stripe payment intent

item: contains id, ref of the item

requester: contains id, ref of the requester

priceToBePaid: contains the price that item requester has to pay

minBidPrice sub collection under items collection:

visibility: field contains whether this doc will be visible, defined in security rules.

MinPrice: tells the current minimum bid price placed on this item.

Page 37

3.4 Authentication

This part contains the authentication system used in this app and the flow from scratch to

user sign up completely. We have enabled Firebase with Identity Platform for extra

security in our app as Firebase has given a huge flexibility to Web SDKs that clients

directly use. We can create users, send email verification and what not using the functions

provided by the library therefore it becomes a point of concern if we should give users to

create themselves and delete too. Since backend is being used in the app hence its role in

creating users should also come into play therefore the flow is kept such that backend

intervention is important.

User cannot create or delete himself currently using Web SDK.

Steps in creating a user:

1. User sends data to sign up to our cloud run service.

2. Service performs all the validation checks and then creates the user using firebase

admin SDK.

3. User then Signs In with the email and password and since it’s not verified, it’s

redirected to the Verify Email page.

4. From frontend send email verification method is used to send email to the user to

verify it’s email.

5. After the email gets verified the user is in emailVerified = True state in its access

token.

6. Now the user is redirected to create a user page.

7. The user is still not verified by the backend.

8. Backend now puts an extra level of security, user hits the create user API the

backend checks if its email is verified it then creates the user doc after validations

and adds a special custom claim as verified = True on its access token.

9. Now on frontend after user creation responds in 201 success the frontend revokes

new user token containing custom claim added by the backend.

10. Now users can use all the functionalities of the APIs and app.

Page 38

3.4.1 Access token

The service provides an access token to the client application when a user logs in to a

Firebase app using Firebase Authentication. The access token includes details about the

user's identification, including their distinct user ID and any other data kept in their user

profile. The access token also has a signature that is used to confirm the token's

legitimacy. After that, access to Firebase resources is authorized using the access token.

Firebase validates the access token when a user asks for access to a resource, such as

reading or writing data in the Firebase Realtime Database, to ensure that the user has

permission to do so. Firebase permits access to the resource if the access token is

legitimate and the user is authorized.

Access tokens are temporary and are automatically updated by Firebase Authentication as

necessary. They normally expire after one hour. By lowering the possibility of

unauthorized access via stolen or compromised access tokens, this contributes to the

security of Firebase resources.

firebase.auth().signInWithEmailAndPassword(email, password)

.then((userCredential) => {

// User signed in successfully

const user = userCredential.user;

// Get the ID token

return user.getIdToken();

})

.then((idToken) => {

// Use the ID token

console.log(idToken);

})

.catch((error) => {

console.error(error);

});

Page 39

3.4.2 Custom Claims

To manage access to particular resources in your app, Firebase lets you apply custom

claims on a user's ID token. When a user logs into your app, custom claims, which are

key-value pairs, are added to their authentication profile using the Firebase Admin SDK.

import firebase_admin

from firebase_admin import auth

Initialize Firebase Admin SDK

firebase_admin.initialize_app()

Set custom user claims on user with uid

uid = "user-uid"

claims = {'admin': True}

auth.set_custom_user_claims(uid, claims)

In the aforementioned example, claims is a dictionary object that contains the custom

claims you wish to set, and uid is the user ID of the user to whom you wish to add custom

claims. The user's custom claims are set using the set_custom_user_claims() function.

The user's ID token will contain the custom claims after the custom claims have been set.

The custom claims may then be checked in your server-side code to control access to

particular resources in your app.

Page 40

3.5 Create item

3.5.1 Frontend

Figure 7. Create item form

The item details form is responsible for creating item requests. All the validations are

added on the input fields including regex, min max length and min max range in number

input. For closure date time the entered value should be at least 48 hours away from the

date time item request is made.

After the user submits the form a popup comes that contains a message from the backend.

Bootstrap form is used along with default html validations. Any error that is encountered

by default form validation is automatically shown by using ‘invalid-feedback’ on divs

Page 41

that are responsible for showing error messages. After that another logical validation is

performed on the frontend side after which the request then goes to the backend via API.

3.5.1 Backend

After the request comes for the create item the following flow takes place in backend:

1. Check if the user is a claimed user using the decorator method.

2. A claimed user contains verified=True key, value in its access token under custom

claims.

3. Validate the incoming json data using marshmallow using the schema present.

4. If validation passes, then create the data for item doc and validate it using DB

schema to dump the item data into db.

5. Dump the data in db.

6. Create the minBidPrice subcollection and add a doc with the same id as item id in

it.

7. Initialize the minBidPrice subcollection doc with the initial values.

8. Return the success response with some message to the user with status code 201.

Figure 8. Create item backend code

Page 42

3.6 View Item

Figure 9. View item frontend page

The item details container takes the item details from the API. As the item detail pages is

rendered the call to db is made for fetching the required information about the item detail

page. Along with the details fetched for item the details are also fetched by the child

component containing list of the bids made on this item from the service layer which then

calls the db.

Bids list are paginated here and sorted by createdAt date time in descending order.

On pressing show more only the data after the last item is fetched.

Page 43

3.7 Place Bid

3.7.1 Backend

As the request comes for creating a bid on an item the following flow takes place in

backend:

Figure 10. Create bid backend code

1. Verify the custom claim using the access token of the user.

2. Take the request data in json format and validate it using a marshmallow schema

made for it.

3. Check if the item exists or not.

4. Get the owner info and compare if the bidder is not the owner of the item.

5. Check if the bid is already made or not.

6. Create the bid doc in a transaction.

7. Send required responses to the client.

Page 44

3.7.2 Frontend

Figure 11. Bid details frontend page

This is a multi role and state based multi use container made in react. For a bidder where

no bid exists this will show an empty form where users can fill bid details and press on

create button after which the form will become a form to update the details of the bid

placed by the bidder. Till the bid amount is not paid by the bidder this form will only be

displayed and opened by the bidder not the requester or public.

After the bid amount has been paid the bid becomes active and is visible to all the public

and the requester as well. Requester will get an option and form to even reject the bid

whereas no one else can see this form and button to reject the bid.

After the bid has been rejected or lost/won, the bidder cannot edit the bid details.

Before the bid has been rejected or lost/won, the bidder can edit the form and others can

only see the values of the form.

Page 45

Chapter 04: Experiment and Result Analysis

4.1 Testing of frontend (React app):

Test cases were written to test the part of the application till auth and user details feature
including sign in and sign up using React Testing Library and Jest.

The following methods were used for writing unit tests of a dummy component:

1. Figure out the unit level component you want to test.
2. Test it using the following methods:

● Test if the component has been rendered on screen or not. This is the most
basic test case.

● Pass the fake prop variables and see how the component behaves.
● For input fields try to add fake data that can break the validation applied

on the fields.
● Assert the outcome from the component with the expected outcome.

The following methods were used for writing unit test cases of a container that is made up
of other components:

1. Check if the container is rendered correctly.
2. Check the buttons, input fields and text all rendered.
3. Mock the service call using the fake function with the help of jest.
4. Now return the fake promise in response to the containers calling functions while

test cases.
5. Test for each possible response from service methods that it can give to the

container and assert its reaction with the expected value.

Page 46

The following results were obtained from tests:

Figure 12. Testing report

Page 47

4.2 Results

In total 5 Cloud runs, and 1 Pub / Sub topic and one Cloud task queue has been deployed
for the proper functioning of the application. The roles and responsibilities of each
service are discussed below:

User and Invite feature cloud run:

● This service is responsible for the user authentication and invites sending along
with the create, update of the user data.

● When the user first signs up the request is handled by this CR service which then
validates the data and makes the appropriate call.

● After this the creation of the user document and the updation of the user detail is
also handled by this service.

● When the user uploads a CSV this service validates the CSV file and removes any
anomaly after which this is responsible for sending messages to a pub sub topic
after properly formatting them to send invites.

Items and Bids feature cloud run:

● This service is responsible for creating the documents of the item requests and
handles the payment related work for the item requests.

● This is also responsible for creating bid requests on an item and handles the
payment related work of the bid and also the updation of the bid request made by
the bidder.

● This contains two heavy services in items and bids modules that perform these
tasks independently.

● The image upload functionality of the bid where a user can upload images of
products is also handled by the image upload service class in this cloud run.
Where a user can request a signed url which it signs by the google cloud and
returns to the client on which the client then uploads the image.

Page 48

Invite cloud run:

● This service is the PUSH subscription service that is a subscriber of the topic in
pub/sub where the message related to invites are being published.

● This service takes the request and reads the message and decodes it.

● It then sends the email to the recipient using a third party service API like mailjet.

● After the mail has been successfully sent this cloud run also updates the status of
the invites in the invite streak doc.

Payment Webhook cloud run:

● This service is an endpoint to the stripe.

● When a successful payment has been made with the stripe, the stripe sends a
request to this endpoint to handle the post payment process.

● It has two endpoints, one for handling the items payment and another for handling
the bids payment.

● It updates the status of items and bids to active after it gets the payment succeeded
request event from the stripe.

Live Bidding cloud run:

● This service is responsible for handling the cloud task events through HTTP calls
made to this endpoint.

● It has two types of endpoints, one for handling the event to start the live bidding
process. Another for handling the event to end the live bidding process.

● The service runs asynchronously and is invoked by the cloud task.

● On live bidding starts, it simply changes the status of the item doc.

● On live bidding ends event, it changes the status of the item doc as well as bulk
updates the status of all the bids.

Page 49

Chapter 05: Conclusions

5.1 Conclusions

Cloud technology is emerging and Google Cloud Platform gives an enormous amount of
services that we can use and deliver the solutions to real world problems. In this project
we took the problem of online auction and we successfully built it using various GCP
tools and services. The full stack technology is itself a magic but it’s traditional and
running from decades, but combining full stack along with language independent cloud
tools gives the developer a lot of flexibility because the cloud tools do the operational
work like deployment (most of the part) on their own which saves a lot of time for the
developer. Deploying a server and maintaining it and then scaling it requires an extra
amount of effort that GCP solves.

Serverless architecture scales rapidly as the requests grow and does not take any effort
from the developer side. Google cloud firestore DB is the best example of serverless. It
reduces the effort of having a backend to control the application, backend is not a
necessity but an option. In our application we have used the backend for all the write
operations to make our app extra safe from hackers. The firestore provides the database
access directly to the web clients that are using SDK. Firestore has a feature called
security rules that it uses to prevent the client from accessing. In general Client Server
architecture the client makes a request which goes through the backend, here the backend
as a security layer prevents the client from accessing the DB without control. In firestore
this layer is provided by the firestore itself in the security rules feature.

We deployed 5 cloud runs for our app and 1 pub / sub topic with deadlettering and 1
cloud task. We tested our application using the deployed services from the frontend and
these were write operations, we then fetched the data and displayed them in the frontend.
The cloud task was working perfectly in creating tasks at the scheduled time. The cloud
pub/sub retires 5 times after which it sends the message to the dead letter topic.

Figure 13. Firestore stats

Page 50

5.2 Future Improvements

Refund Policy

In the following project the requester can reject the bid of the bidder and bidder won’t be
able to do anything. This is a loss-loss situation for the bidder therefore, adding a refund
feature will do the best. Refund feature will work in the following way:

● If the requester rejects the bid then the bidder will get refunded the amount he
paid.

● If the live bidding ends and the bidder gets lost, all the bidders will get their
refunds back except the bidder who won the bid.

Admin account

There was no admin account in the project, an admin account became necessary to view
all the statistics of the project and manage everything.

Counts
- Number of buyers on the platform
- Number of sellers on the platform
- Number of active item requests
- Number of bidding sessions live at the moment
- Total amount on hold. (i.e payments which may be refunded after bid closure)
- Total amount captured in the system.

Graphs (for last 30 days)
- Number of new item requests Per day
- Number of bidding sessions held Per day
- Net amount captured in the system per day

Page 51

References

[1]https://www.researchgate.net/publication/342157054_COMPARATIVE_STUDY_OF_
CLOUD_PLATFORMS_-MICROSOFT_AZURE_GOOGLE_CLOUD_PLATFORM_A
ND_AMAZON_EC2/fulltext/5ee5792d92851ce9e7e380b6/COMPARATIVE-STUDY-O
F-CLOUD-PLATFORMS-MICROSOFT-AZURE-GOOGLE-CLOUD-PLATFORM-AN
D-AMAZON-EC2.pdf

[2] https://intellipaat.com/blog/aws-vs-google-cloud/

[3] https://firebase.google.com/docs/firestore/query-data/get-data

[4] https://cloud.google.com/pubsub/docs

[5] https://firebase.google.com/docs/firestore

Page 52

https://www.researchgate.net/publication/342157054_COMPARATIVE_STUDY_OF_CLOUD_PLATFORMS_-MICROSOFT_AZURE_GOOGLE_CLOUD_PLATFORM_AND_AMAZON_EC2/fulltext/5ee5792d92851ce9e7e380b6/COMPARATIVE-STUDY-OF-CLOUD-PLATFORMS-MICROSOFT-AZURE-GOOGLE-CLOUD-PLATFORM-AND-AMAZON-EC2.pdf
https://www.researchgate.net/publication/342157054_COMPARATIVE_STUDY_OF_CLOUD_PLATFORMS_-MICROSOFT_AZURE_GOOGLE_CLOUD_PLATFORM_AND_AMAZON_EC2/fulltext/5ee5792d92851ce9e7e380b6/COMPARATIVE-STUDY-OF-CLOUD-PLATFORMS-MICROSOFT-AZURE-GOOGLE-CLOUD-PLATFORM-AND-AMAZON-EC2.pdf
https://www.researchgate.net/publication/342157054_COMPARATIVE_STUDY_OF_CLOUD_PLATFORMS_-MICROSOFT_AZURE_GOOGLE_CLOUD_PLATFORM_AND_AMAZON_EC2/fulltext/5ee5792d92851ce9e7e380b6/COMPARATIVE-STUDY-OF-CLOUD-PLATFORMS-MICROSOFT-AZURE-GOOGLE-CLOUD-PLATFORM-AND-AMAZON-EC2.pdf
https://www.researchgate.net/publication/342157054_COMPARATIVE_STUDY_OF_CLOUD_PLATFORMS_-MICROSOFT_AZURE_GOOGLE_CLOUD_PLATFORM_AND_AMAZON_EC2/fulltext/5ee5792d92851ce9e7e380b6/COMPARATIVE-STUDY-OF-CLOUD-PLATFORMS-MICROSOFT-AZURE-GOOGLE-CLOUD-PLATFORM-AND-AMAZON-EC2.pdf
https://www.researchgate.net/publication/342157054_COMPARATIVE_STUDY_OF_CLOUD_PLATFORMS_-MICROSOFT_AZURE_GOOGLE_CLOUD_PLATFORM_AND_AMAZON_EC2/fulltext/5ee5792d92851ce9e7e380b6/COMPARATIVE-STUDY-OF-CLOUD-PLATFORMS-MICROSOFT-AZURE-GOOGLE-CLOUD-PLATFORM-AND-AMAZON-EC2.pdf
https://intellipaat.com/blog/aws-vs-google-cloud/
https://firebase.google.com/docs/firestore/query-data/get-data
https://cloud.google.com/pubsub/docs
https://firebase.google.com/docs/firestore

