

Big Data Security Analytics for Phishing URLs Detection

Project report submitted in partial fulfilment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Ugyen Dorji (191452)

&

Tenzin Gyaltshen (191453)

Under the supervision of

Dr. Deepak Gupta

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat, Solan-173234,

Himachal Pradesh

i

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Big Data

Security Analytics for Phishing URLs Detection” in partial fulfilment of the

requirements for the award of the degree of Bachelor of Technology in

Computer Science and Engineering/Information Technology submitted in

the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an

authentic record of my own work carried out over a period from January 2023

to May 2023 under the supervision of Dr. Deepak Gupta, Asst. Prof.(SG),

Department of Computer Science and Engineering & Information Technology.

I also authenticate that I have carried out the above-mentioned project work

under the proficiency stream Data Science.

The matter embodied in the report has not been submitted for the award of any

other degree or diploma.

 (Student Signature) (Student Signature)

Ugyen Dorji, 191452 Tenzin Gyaltshen, 191453

This is to certify that the above statement made by the candidate is true to the

best of my knowledge.

(Supervisor Signature)

Dr. Deepak Gupta

Asst. Prof. (SG)

Computer Science and Engineering & Information Technology

Dated: 8th May 2023

ii

iii

Acknowledgement

Firstly, we would like to thank the divine Kencho-Sum (The Triple Gem) for

always keeping us in the best health and mentality to carry on with this project.

We are always grateful and indebted to be under the protection of Mahakala, the

Buddhist Protector Deity. We pray our faith will keep us humble and down to

earth always.

We would like to acknowledge our parents next for being our biggest supporters,

both morally and financially, even though we are far from each other. You

remain our greatest motivation and inspiration in life to do well and enjoy a

good life. We hope to make you proud and are always grateful for all

opportunities in life.

We want to acknowledge our project supervisor Dr. Deepak Gupta for his

expertise and care in supervising us for this project. He has always been

approachable and helpful, even to the extent of giving us copies of his research

works, which has been beyond helpful and extremely informative. We are

always grateful.

We would also like to thank the Major Project coordinator, the institution, and

all the important executive members of the institution for this wonderful

opportunity to work on a project that would obviously lead us to better doors in

our career.

Finally, we would like to thank ourselves for working hard to make this project

a success. We are happy with ourselves because we have done the course of this

project successfully.

This project has been carried out in our best interests and hope it becomes

helpful to anyone who refers to it in the future.

Ugyen Dorji Tenzin Gyaltshen

 191452 191453

iv

TABLE OF CONTENTS

List of Abbreviations ... vi

List of Figures .. vii

List of Tables ... ix

ABSTRACT ... x

CHAPTER 1: INTRODUCTION .. 1

1.1 INTRODUCTION .. 1

1.1.1 Phishing Statistics and Delivery Methods ... 2

1.2 PROBLEM STATEMENT ... 4

1.3 OBJECTIVES .. 5

1.4 METHODOLOGY ... 6

1.4.1 Initial Steps towards the Project .. 8

1.4.2 Data Pre-Processing and Visualization .. 9

1.4.3 Building the Model .. 10

1.4.4 Without Feature Selection ... 11

1.4.5 Principal Component Analysis .. 11

1.4.6 Information Gain/Mutual Information... 12

1.5 ORGANIZATION .. 12

1.5.1 External Interface Requirements ... 12

1.5.1.1 Hardware Requirements .. 12

1.5.2 Software Requirements .. 13

1.5.3 Overall Description .. 13

1.5.3.1 Product Perspective ... 13

1.5.3.2 Product Functions ... 14

1.5.3.3 User Classes and Characteristics .. 15

1.5.3.4 Design and Implementation Constraints 16

CHAPTER 2: LITERATURE SURVEY ... 17

2.1 Literature Review ... 17

2.2 Projected Approach .. 19

CHAPTER 3: SYSTEM DEVELOPMENT .. 21

3.1 DESIGN OF THE PROJECT .. 21

3.1.1 Before Feature Selection ... 21

3.1.2 Principal Component Analysis .. 23

v

3.1.3 Information Gain ... 26

3.1.4 Selecting the Model ... 27

3.1.5 Creating the Chrome Extension ... 28

3.1.6 API Structure ... 29

3.1.7 Apache Spark on Small Datasets ... 30

3.2 ANALYSIS AND DEVELOPMENT OF ALGORITHMS 32

3.2.1 Machine Learning Models ... 32

3.2.1.1 Logistic Regression ... 32

3.2.1.2 K-Nearest Neighbours .. 33

3.2.1.3 Support Vector Machine (SVM) ... 35

3.2.1.4 Decision Tree .. 39

3.2.1.5 Random Forest .. 41

3.2.1.6 Ensemble Stacking .. 43

3.2.2 Dimensionality Reduction ... 45

3.2.2.1 Information Gain ... 45

3.2.2.2 Principal Component Analysis .. 46

3.2.3 k-Fold Cross Validation ... 48

3.2.4 Evaluation Metrics ... 49

CHAPTER 4: PERFORMANCE ANALYSIS .. 50

4.1 EXPERIMENTAL RESULT .. 50

4.1.1 Model Results .. 50

4.1.1.1 Before Feature Selection ... 50

4.1.1.2 After Principal Component Analysis .. 53

4.1.1.3 With Feature Selection (Information Gain) 56

4.1.2 Overall Result .. 59

4.1.3 Use Case – Chrome Extension for Detection of Phishing URLs 65

CHAPTER 5: CONCLUSION AND FUTURE SCOPE 67

5.1 CONCLUSION .. 67

5.2 FUTURE SCOPE ... 68

REFERENCES .. 69

vi

LIST OF ABBREVIATIONS

Abbreviation Full Form

PCA Principal Component Analysis

LR Logistic Regression

SVM Support Vector Machine

KNN k-Nearest Neighbors

DT Decision Tree

IG Information Gain

RF Random Forest

Sklearn Scikit Learn

URLs Uniform Resource Locators

TPR True Positive Rate

TNR True Negative Rate

ES Ensemble Stacking

MI Mutual Information

vii

LIST OF FIGURES

Fig. No. Description

1.1 Phishing Delivery Methods

1.2 Flowchart showing Methodology for the Model

1.3 The Architecture of the Flask App

1.4 Snippet of Dataset

1.6 Overall Pipeline of the Project

3.1 Before MinMax Scaling

3.2 After MinMax Scaling

3.3 Variance of each feature

3.4 Cumulative Variance of all Features

3.5 Cumulative Variance of 21 Components

3.6 Top 4 Features from each Component

3.7 Architecture of the ML Model

3.8 Block Diagram of the Project

3.9-3.12 SVM Steps

3.13 Decision Tree Algorithm

3.14 Ensemble Stacking

3.15 Working of K-fold Cross Validation

4.1 Confusion Matrices before Feature Selection

4.2 Confusion Matrices after PCA

4.3 Confusion Matrices after Feature Selection

4.4 Comparison of the Models based on Evaluation

Metrics before applying Feature Selection/Reduction

4.5 Comparison of Models based on Evaluation Metrics

after Feature Reduction (PCA)

4.6 Comparison of Models based on Evaluation Metrics

after Feature Selection (Mutual Information)

4.7 Performance Measures of RF models after K-fold

Cross Validation

viii

4.8 The Chrome Extension When Visiting a Safe URL

4.9 The Chrome Extension When Visiting an Unsafe URL

ix

LIST OF TABLES

Table No. Description

1.1 Models without Feature Selection

4.1 Classification Results before Feature Selection (with 87

features)

4.2 Classification Results after Feature Reduction using

PCA (with 21 Components)

4.3 Classification Results after Feature Selection using

Information Gain/Mutual Information (with 22

Features)

4.4 Performance Measure of the three RF models after

applying K-fold Cross Validation

x

ABSTRACT

Phishing is a type of cybercrime in which uninformed internet users are duped

into disclosing personal information such as login credentials and credit card

information. Unlike software vulnerabilities, phishing attempts target human

weaknesses and can be difficult to detect. We created multiple machine learning

models in this research to detect phishing URLs based on their attributes. The

models were trained in three ways: with all features, with feature selection, and

with feature reduction. We employed approaches such as principal component

analysis, ensemble modelling, mutual information gain, and stacking

development to increase the performance of the models.

The models were trained using support vector machine and decision tree

classifiers, and the model with the highest accuracy was chosen for deployment.

We employed a confusion matrix to assess the model's performance, which had

an accuracy rate of 96% in detecting phishing URLs. The chosen model was

cloud-deployed and incorporated into a Chrome extension utilizing manifest 3,

allowing for real-time detection of phishing URLs.

The research emphasizes machine learning's potential for improving online

security and lowering the dangers connected with phishing attempts. The usage

of feature reduction was discovered to be effective in improving the model's

performance. The study also emphasizes the significance of ongoing monitoring

and detection of phishing assaults, as people might fall victim to these attacks

even when utilizing reputable websites.

Finally, the research demonstrates how machine learning approaches can be

applied to detect phishing URLs and how feature reduction can improve model

performance. The Chrome extension created as part of this research is a valuable

tool for detecting phishing URLs in real time and adds to ongoing efforts to

improve internet security.

1

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

The evolution of tech-based commerce has immensely benefitted many people,

allowing them to make any transaction in the comfort of their own homes. The

technology has changed the entire commerce industry, making it very easy for

buying and selling products with the tap of a finger. However, the new changes

and developments have also proved to be a potential threat space with

cybercriminals going all out to steal information from the uninformed internet

fellow, also known as phishing.

Phishing is an already existing and growing cybercrime where cybercriminals

use deceptive methods like fraudulent emails, messages, or any other possible

means to deceive users into exposing their private information like card details,

login information etc. to use for unethical purposes. The most common type of

phishing is one in which cybercriminals develop webpages that look like

legitimate sites and prompt the users to add their credentials. The users feel the

site is legitimate and shares their credential not knowing that their personal

information is now in the hands of cybercriminals.

The Anti-Phishing Working Group reports that there were more than 220,000

phishing attacks in the first quarter of 2021 alone. These attacks have been

targeted at a range of industries, such as finance, healthcare, and retail. Further

research data proves that the rate of phishing crimes have been increasing over

the years continuously, implying that this cybercrime cannot be diminished

completely anytime soon.

To protect oneself from phishing attacks, both individuals and organizations

should take certain measures of precautions. Users must be careful and

questioning when clicking on links in emails or messages when the sender is

2

unknown. They should use strong passwords which are hard to decode, and also

take security measures offered by most websites these days like Two-Factor

Authentication and adding recovery/secondary emails.

On the flipside, organizations should implement necessary security measures

like utilizing anti-phishing software, training their personnel on identification

and reporting phishing attacks when one occurs. With such security measures,

organizations can drastically reduce the chances of phishing attacks and help

safeguard their sensitive data.

This project is aimed at developing the best machine learning model capable of

detecting phishing URLs in real time. For training this model, we use a dataset

from Kaggle, which 11430 data points, each having 87 features that are broadly

divided into URL features, content features, and several external features. The

models will be compared based on evaluation metrics in three different

scenarios (Without applying any Dimensionality Reduction, Applying Feature

Selection and Applying Feature Reduction) with six different models (Logistic

Regression, Support Vector Machine, Decision Tree, k-Nearest Neighbours,

Random Forest and Ensemble Stacking). After the models have been trained

and tested, we can deploy the most effective model on the cloud to build a

Chrome extension that can identify whether a URL is phishing or legitimate.

This project is a significant advancement in mitigating the growing risk of

phishing attacks and protecting users from identity theft and financial loss.

1.1.1 PHISHING STATISTICS AND DELIVERY METHODS

With over 5 billion people online every day, risks of phishing increase with a

lot of shady websites already on the World Wide Web. The problem is, even the

most tech-fluent personnel can fall into this trap of scammers. The frequency of

phishing attacks has been on the rise since March 2020, with IRONSCALES

[2] reporting that 81% of organizations worldwide are attacked by this method

of crime. Also, a disheartening report shows that only one in five businesses

3

have phishing awareness workshops once in a year, even though the threat it

poses to this era of technology is immeasurable.

Phishing attacks are usually known only to occur with email services when it is

taken at face value. However, now as social media branches to different variants,

phishing attacks are launched on all possible mediums. While phishing threats

from emails are still prominent with almost one-third occurring with the above-

mentioned method, they are also delivered in different platforms like video

conferencing platforms, instant messaging platforms including work-based

platforms, cloud-based file storage services and also through SMS.

Fig 1.1 Phishing Delivery Methods

According to a report by Gone Phishing Tournament [3] in 2020, they found

that 19.8% of users clicked on phishing links sent to them from which 67.5%

gave sensitive information that could risk their personal information and

credentials.

A report from ESET [4] concluded that, in the third quarter of 2020, the most

common type of malicious files attached to phishing attacks through email were

4

Windows .exe files (74%), script files (11%), MS Office Documents (5%),

compressed archives (4%), PDF documents (2%), Java files (2%), batch files

(2%), shortcuts (2%), and Android executables (more than 1%).

According to a report by KnowBe4 [5], "Phishing by Industry," it was found

that the highest number of victims of phishing attacks were from the industries

of healthcare and pharmaceuticals, construction, and technology. From the

above mentioned, the healthcare industry suffered most in terms of cost of

attacks.

All these statistics prove the need for a solution to detection and security from

phishing URLs before it can cause any more damage. These attacks can damage

a lot to an industry from which the most dreadful are bankruptcy, delayed

service, reputation damage, and loss of trust from their clients.

This project is aimed to help in contributing to fighting for a safer internet

experience by developing a model that detects phishing URLs using a machine

learning model trained using the best techniques.

1.2 PROBLEM STATEMENT

Phishing attacks are a major concern in today's technological age and the most

vulnerable targets for phishing attackers are businesses and their employees.

The attacks are targeted on employees through fraudulent emails and text

messages, which misleads them to sharing their personal information, financial

information or login credentials. These attacks are also targeted on huge

businesses in the finance, healthcare and retail sectors with the goal of extracting

huge sums of money and to destroy the public reputation of companies.

Phishing attacks are growing increasing complex with time as cybercriminals

continue to develop and improve advanced social engineering tactics and

5

exploit loopholes in software and systems. This raises a high alert for internet

users and businesses, and it is mandatory that they implement necessary security

measures to protect themselves from these attacks. It is however surprising to

see that most business personnel are uninformed and lack the skills to detect and

report phishing attacks, while organizations also fail to implement a good

security system due to limited resources.

The ever-changing nature of technology implies that phishing methods and

techniques are always improving and possibly, new ones are being developed.

This problem requires a combined effort from everyone in every level in a

business setting. One can educate themselves and others through workshops and

training on how to recognize and report a phishing attack. These problems also

call for technological solutions to be able to detect phishing attacks in real time.

By addressing these problems, users and businesses can keep themselves safe

from any phishing attack and not fall victim to loss of sensitive information,

while minimizing the effects of cybercrime on society.

1.3 OBJECTIVES

The objectives of the project are:

• Compare and contrast the performance of machine learning models

before and after dimensionality reduction in the context of detecting

phishing URLs.

• Create a user-friendly API for the best performing machine learning

model that can extract features from URLs in real-time.

• Implement the model and API in a browser extension for easy access

and use by individuals.

• Evaluate the performance of the model and API using various metrics

and real-world data to assess their effectiveness in detecting phishing

websites.

6

1.4 METHODOLOGY

The project was carried out according to the following figure:

Fig 1.2 Flowchart showing Methodology for the Model

The field of cybersecurity is a constantly evolving landscape with new problems

to solve every new day. Therefore, it is essential that there exist technological

solutions to detect phishing attacks. With machine learning algorithms,

classification of data has become very easy, and it is a great tool to use in the

detection of phishing URLs. We discuss the methodology implemented to

create a solution for phishing URLs detection using machine learning and the

development of a Chrome Extension to use the best machine learning model in

this section.

Firstly, we selected a database from Kaggle, "Web Page Phishing Detection

Dataset" which contains 11430 data points, 87 extracted features for each data

point under three classes: URL features, Page Content and External Features.

After selecting the dataset, the next step was initializing the database and pre-

process the data. The dataset was cleaned, checked for null values, non-

numerical labels were made numerical and ensured it was perfect for a machine

learning model.

7

Data is best understood when visualized, hence we used visualization

techniques to see the trends in data using different visualizations like scatter

plots and heatmaps.

Next, we built machine learning models using six different classifiers: Logistic

Regression, Random Forest, Naive Bayes, K-Nearest Neighbours, Support

Vector Machines, and an Ensemble Stack. We built these models in three

different situations: before any dimensionality reduction, after applying

Principal Component Analysis, and after applying Information Gain feature

selection.

We evaluated the performance of each model using various metrics such as

accuracy, precision, recall, and F1-score. After evaluating the models, we

selected the best performing model, which was the Random Forest model with

96.43% accuracy, 0.076 seconds test time, and 0.965 seconds train time. For

creating a binary file for the model, we used the joblib library. We also wrote

scripts for extracting features and hosted them on Flask, a Python-based micro

web framework. We created an endpoint in Flask, which can be used to

communicate with the model.

We used Postman API Platform to test the Flask endpoint, and once we were

satisfied with the results, we hosted the Flask application on Railway app, a

platform for hosting web applications on the cloud.

Finally, we integrated the Flask application on Railway with the Chrome

extension, which allows the system to classify URLs in real-time. The extension

automatically detects the active tab's URL and sends it to the Flask endpoint,

which then interacts with the model and supplies the classification result.

8

Fig. 1.3 The Architecture of the Flask App

.

In conclusion, the development of the phishing detection system involved

several steps, from selecting the dataset to integrating the system with the

Chrome extension. The system uses machine learning algorithms and has

achieved high accuracy in detecting phishing URLs. The system's future scope

includes adding more features, improving the model's accuracy, and scaling the

system to handle more extensive datasets.

1.4.1 Initial Steps towards the Project

The first step towards the project was to set a suitable dataset that would best fit

our requirements of having high-dimensional data so that we could perform

various dimensionality reduction methods. After some comparisons and

discussions, we selected a dataset from Kaggle [1], which had around 11400

data points with 87 features.

After obtaining the dataset, we uploaded the dataset into a Google Colab

notebook. We used a big data analytics tool for python, PySpark to preprocess

the data efficiently. We also used PyMongo, a python database management

9

tool, to store the dataset. Using this tool in our project helped us by letting us

perform various data manipulation tasks on the dataset, which in turn leads to

the improvement of any machine learning algorithm.

1.4.2 Data Pre-Processing and Visualization

Our project's data pre-processing and visualisation step intended to prepare the

dataset for modelling by cleaning, transforming, and selecting features. At the

start, we inspected the dataset for missing or null values and used appropriate

approximation techniques to fill up the gaps. This made sure the dataset was

finished and prepared for further processing.

To work with categorical data, we employed a label encoder function to

transform non-numerical data into a numerical format. This helped to guarantee

that the data was uniform throughout the dataset and could be evaluated more

efficiently. To simplify the analysis and eliminate ambiguity in the data, we

removed any unrelated columns from the dataset.

We visualised the dataset after cleaning and transforming it to gain insights and

identify patterns and trends. To do this, we employed a variety of techniques,

including a search for categorical features through the examination of

unique values. If the number of unique values is less than 0.002%, the feature

is classified as categorical. This assisted us in determining which features were

continuous and which were categorical, which was crucial for further analysis.

Next, we created a heatmap to visualize the correlation between distinctive

features in the dataset. It assisted us in finding which features were highly

correlated with each other and which were not. While we did not drop any

features based on the visualization, we could get a clear picture of how the

features correlated to each other.

10

In order to learn about the distribution of features across target variables, we

visualized the distribution of mean value of each feature against the target

variable. We also visualized the graph for page rank against their count for each

status value. There were some more interesting trends in the data that we found,

but overall, this process assisted us in understanding how features correlate to

their status values.

1.4.3 Building the Model

In building a machine learning model for phishing detection, a crucial step

involves dividing the dataset into dependent and independent sets. The

independent variables or features are the inputs to the model, while the

dependent variable or label is the output, we want the model to predict. This is

done using the train_test_split() function from scikit-learn, which splits the

dataset into a testing set and a training set.

To ensure that the model can accurately predict new and unseen data, it is

necessary to scale all the features of the training and testing datasets using a

minmax scaler. Doing so ensures that all features have a similar scale and

reduces the impact of outliers on the model's performance. In addition, to create

the model, it is necessary to convert the independent sets into a one-dimensional

array using the ravel() function from numpy.

Once the data is properly prepared, it is time to build the model. During this

stage, a confusion matrix function is defined using seaborn's heatmap plot,

which allows for easy visualization of the model's performance. Additionally, a

model evaluation function is created using several evaluation metrics such as

accuracy, precision score, recall, and f1 score. These metrics help assess the

model's performance on the testing set and ensure that it is correct and robust.

11

1.4.4 Without Feature Selection

Then the following models are built before any feature selection/reduction.

Table 1.1. Models’ Parameters

Model Parameters

Logistic Regression max_iter =1000, random_state = 2

Support Vector Model c = 175.0

Decision Tree default parameters

K Nearest Neighbors n = 3

Random Forest Classifier default parameters

Ensemble Stack estimators = selected based on accuracy,

final_estimator = LR

1.4.5 Principal Component Analysis

In order to further perfect the performance of the machine learning model, a

technique called Principal Component Analysis was applied. This technique is

statistical, and it reduces the number of features and creates principal

components of features which help preserve the most essential information. We

started by using a MinMaxScaler to standardize the dataset and then applying

PCA to reduce the number of features from 87 to 20.

After reducing the number of features, the model became less complex and

easier to interpret, while still keeping most of the relevant information. The

resulting model was then evaluated using the same machine learning algorithms

as before, and the performance was compared to the earlier models that used all

87 features.

12

1.4.6 Information Gain/Mutual Information

We used Information gain as a method for feature selection. IG basically gives

the relevance of any feature to the target variable. To see if our problem could

be solved by dropping irrelevant features, and the dependence of the status of a

phishing URL on its features, it was a very suitable technique.

To apply Information Gain, we used the mutual_info_classif() function from

scikit-learn's feature selection module. This function calculates the mutual

information score of each feature in relation to the target variable and returns a

list of scores. We then set a threshold of 0.07 to only select the features with a

score above the threshold. In total, 22 features were selected using this method.

This feature selection technique was applied to all the models implemented in

the first part of the project, allowing us to compare the performance of models

with all features, models with reduced features using PCA, and models with

features selected through Information Gain.

 1.5 ORGANIZATION

1.5.1 External Interface Requirements

1.5.1.1 Hardware Requirements

The system on which the following project is running has the following

hardware specifications:

OS macOS Monterey

CPU Apple M2 chip with 8-core CPU and 8-core GPU

RAM 8 GB unified memory

Storage Type 512 GB SSD

RAM Type Unified memory architecture

RAM Clock Speed 2133 MHz

Dedicated GPU None (integrated graphics)

13

1.5.2 Software Requirements

Following software requirements have been found for the implementation of the

phishing website detection system:

IDE Visual Studio Code, Google Colab Notebook

Language Python 3.10, JavaScript, HTML5, CSS

Libraries NumPy, Pandas, PySpark, PyMongo, Seaborn Plot,

Matplotlib, Joblib, Scikit Learn

Software/Services Railway.app, Postman

Framework Flask framework

Dataset Web Phishing Dataset from Kaggle

Fig 1.4 Screenshot of Dataset Snippet

1.5.3 Overall Description

1.5.3.1 Product Perspective

The world today is characterized by rapid technological development and

unlimited connectivity. leading to the increase of security breaches and data

loss. The rate of internet related threats like cybercrimes, fraudulent commerce,

social engineering and phishing among many others have been growing at a

high rate owing to the exponential growth of users of the internet and online

14

services. With human weakness being their primary weapons, cybercriminals

develop new techniques and more sophisticated tools for performing

cybercrime, hence posing a huge threat to the users of online services.

Phishing has become one of the most common types of cybercrimes, where end

users are targeted using fraudulent links masked to seem legitimate causing a

significant financial and data loss. Therefore, detecting and preventing phishing

websites/urls have become an important field in the field of cybersecurity. Many

researchers and scientists have implemented machine learning techniques to

detect phishing URLs and create efficient solutions for the problem at hand.

Amidst these developments, our project aims to contribute to this field by

developing a machine learning-based solution for phishing URL detection. Our

approach analysing a large dataset of URLs to find features that are indicative

of phishing attacks. We then train machine learning models to detect these

features and classify URLs as either legitimate or phishing.

The overall goal of this project is to supply a reliable and efficient tool for

detecting phishing attacks and preventing users from falling victim to these

malicious schemes put on by people who want to exploit uneducated internet

users.

1.5.3.2 Product Functions

With all the problems revolving around the cybersecurity space, it becomes a

mandate for all scholars in this field to work on a product that helps the greater

population on the internet to remain safe and calm as they browse the web.

With our product, we believe we can make a change which albeit small, can

contribute to the greater goal of preventing phishing attacks on uninformed

users. While our product may not be perfect, we have done our best in

developing it and we believe it can serve a good cause for a safe browsing

experience.

15

Our core product is a Chrome Browser Extension that checks the URL in the

address bar of the browser. The extension executes every time the user refreshes

a webpage or when a new page is loaded. The extension detects any URL for

phishing by all extracting 87 features (aforementioned) in real time and alerts

the user if the page they are visiting is suspected to be a phishing URL.

Fig. 1.5 Overall Pipeline of the Model

1.5.3.3 User Classes and Characteristics

We tried to classify the URLS into phishing URLs and the safe URLs:

16

• Phishing URLs: The victim is sent a link to an authentication page that

seems legitimate but when you log in, the credential of the user is

collected, giving the scammers access to the real account.

• Safe URLs: The URLs with minimum risk from hackers.

1.5.3.4 Design and Implementation Constraints

We had a dataset of 11,430 data points with 87 dimensions for our phishing

detection project. The dataset included 56 URL-based features, 24 content-

based features, and 7 external service query features. Half of the sites in the

dataset were legitimate, and the other half were scams. But, we knew that with

new techniques and methods being developed by hackers every day, our model

might not always be able to accurately predict the output.

When we were designing and implementing our phishing detection extension,

we had to balance accuracy and performance. We wanted the extension to

accurately detect phishing URLs, but we also wanted it to be lightweight enough

not to slow down browsing.

One of the challenges we faced was writing scripts for feature extraction. These

scripts needed to be accurate, efficient, and easy to maintain. They also required

a deep understanding of the dataset and which features were relevant to phishing

detection.

One of the biggest challenges we faced was finding a reliable dataset of active

phishing URLs to test for unsafe URLs. Most of the public datasets had outdated

or inactive URLs, making it hard to train our model accurately. Unfortunately,

there weren't any open-source datasets or APIs we could use to get active

phishing URLs, so we had to manually scrape the web for a limited number of

them.

17

CHAPTER 2: LITERATURE SURVEY

2.1 LITERATURE REVIEW

This chapter presents the most recent research works about the classification of

phishing website data using machine learning.

In [6] on detection of phishing, the authors underlined that when new

approaches to counter different phishing attempts are put out, attackers adapt

their strategy to get around the newly suggested phishing method.

Consequently, it is strongly recommended to adopt hybrid models and machine

learning-based techniques.

An approach based on human behaviour when exposed to rogue websites was

proposed by Rao and Pais [7]. With the inclusion of heuristic screening, this

human habit of inputting false credentials is automated. Using this method, they

were able to achieve an accuracy of 96.38%.

The authors of [8] examined many phishing webpage characteristics and

narrowed it down to the top 19 features. They employed support vector machine

(SVM), random forest (RF), neural network, logistic regression, and naive

bayes (NB) for categorization of phishing webpages after extracting the features

from the webpage and achieved about 99% accuracy.

In the research [9] also compared the model building times before and after

feature selection. They found out that building times for models were

significantly decreased, with the slightest change in accuracy. They also

concluded that Random Forest classification technique was the method that had

the most accuracy in both times before selecting the features and after. They

urge researchers to use ensemble methods since they have the highest evaluation

scores.

18

Another research [10] compared URL, Page, and HTML features, where they

found URL features were the most effective in detection for phishing. They also

conclude with deciding that RF is the best method to detect phishing, an

ensemble technique.

In order to increase the effectiveness of their system, Almseidin et al. [11]

published a research paper in which they used several ML algorithms and

feature selection techniques. The studies used a phishing dataset with 48

attributes that included 5000 legitimate and 5000 malicious websites. They

concluded that the accuracy is best for the RF algorithm with only 20 features.

Using classification methods and characteristics from natural language

processing (NLP), Sahingoz [12] suggested a real-time system (NLP).

According to experimental findings, the RF classifier, which uses NLP-based

features, has the greatest accuracy of 97%.

Using methods for features selection, Zamir [13] examined the characteristics

of the phishing data. They suggested two characteristics by fusing different

traits. For the purpose of finding phishing websites, they employed a variety of

machine learning and stacking approaches.

Using URL-based properties, Basnet and Doleck [14] suggested a heuristic

technique. A collection of 138 characteristics that were retrieved from 31,000

malicious and 16,000 phishing websites was used in the experiments. The four

categories of these 138 characteristics are search engine, reputation, lexical, and

keyword based. For the goal of categorization, they used seven distinct machine

learning methods. The most correct method was random forest.

Khanna and Gupta [15] highlighted the use of machine learning algorithms in

detecting phishing attacks owing to their high accuracy and efficiency while

Islam et al. [16] proposed for usage of an ensemble learning approach that

19

combined several machine learning models, leading to higher performance

scores. Zhao and Liu [18] have also done a similar research, although they

included feature selection with ensemble learning, and also by achieving high

accuracy scores on a huge dataset.

Roy and Singh [17] compared various machine learning algorithms for phishing

detection and concluded that decision tree algorithm had the best performance

among others. Yadav et al. [19] took a novel approach towards detecting

phishing attacks through Convolutional Neural Networks (CNNs) with a high

detection rate. In Singh et al. [20] research, they found out ensemble-based

techniques were more accurate than other models comparatively.

Yang et al. [21] used both machine learning and website features to detect for

phishing and achieved high accuracy scores. In [22] Dam et al. introduced

phishing detection methods that used different models like SVM, LR, DT and

Artificial Networks (ANNs). Kumar et al. [23] proposed that the random forest

algorithm when implemented after feature selection gave high phishing

detection accuracy.

2.2 PROJECTED APPROACH

This project is aimed at using big data analytics tools and applying machine

learning. The preprocessing step includes the use of a big data tool PySpark

(Apache Spark). After processing, models will be fit to their train and test data

sets in 6 different algorithms: LR, SVM, DT, KNN, RF and ES.

The models will be evaluated in three scenarios: with all features included, after

applying PCA, after applying IG. The best model from the evaluated list will be

used for a Chrome Extension. To create the Chrome Extension which checks

URLs for phishing in real time through a machine learning model, an API will

20

be developed. The extension would use the API to live extract URL features

and check their status for phishing.

This approach would enable us to build an effective phishing detection system

using machine learning and big data tool.

21

CHAPTER 3: SYSTEM DEVELOPMENT

3.1 DESIGN OF THE PROJECT

The project is divided into three parts while developing the machine learning

model. The information on each part is given below:

3.1.1 Before Feature Selection

The dataset used in the project was sourced from a MongoDB database and

loaded into PySpark for analysis through Google Colab. The dataset consists of

11,430 data points with 87 dimensions, engineered to cater to the need of

phishing detection.

To prepare the dataset for machine learning algorithms, it underwent a series of

pre-processing steps. Firstly, the dataset was converted into a Spark data frame,

which is a distributed collection of data organized into named columns. This

allowed for efficient processing of large datasets across a distributed computing

environment.

Next, categorical variables in the dataset were handled using one-hot encoding,

a technique that converts categorical variables into binary features that can be

easily used in machine learning models. The dataset was also checked for

missing values, and any missing values were imputed using the mean value of

the respective feature.

After pre-processing, the dataset was scaled using a min-max scaler, a

normalization technique that scales features to a range between 0 and 1. This

helped to ensure that features with larger ranges did not dominate the machine

learning algorithms.

22

The pre-processed dataset was then split into independent and dependent

variables. The independent variables are the features that the machine learning

algorithms use to predict the dependent variable, which is the target variable

that shows whether a website is legitimate or phishing. The dataset was further

split into training and testing datasets using an 80-20 split.

The dataset after pre-processing was then fitted into six machine learning

models LR, KNN, SVM, DT, RF and ES. Each model was trained on the

training dataset from the split and evaluated on the testing dataset from the split.

We evaluated the performance of these models and recorded the results, with

all the performance metrics plus the test and train times.

Fig 3.1. Before MinMax Operation

23

Fig 3.2. After performing the MinMax Operation

3.1.2 Principal Component Analysis

Fig 3.3. Variance of each feature (%)

PCA is a method for reducing the number of dimensions in the data. In our study,

we scaled our dataset using a min-max scaler before applying PCA on it. The

use of PCA makes it easier to identify the key characteristics or elements that

are primarily responsible for the variation in the data. The goal is to maintain

the majority of the data while reducing the number of features in the dataset.

24

We used PySpark to construct the covariance matrix, eigenvectors, and

eigenvalues of the matrix after scaling the dataset. The highest data variance's

directions are represented by the eigenvectors, and its size is represented by the

eigenvalues. Based on the cumulative explained variance ratio, we identified

the top 20 components.

We were able to reduce the dimensionality of the dataset from 87 to 20 by using

PCA, which greatly reduced the computation time required for model training

and prediction. The reduced dataset was then divided into training and testing

datasets and fitted into the six previously mentioned models.

In summary, PCA was applied to our dataset with the purpose of extracting the

most important features that contribute the most to the variation in the data. This

helped to reduce the number of features in the dataset and significantly reduced

the computation time needed for model training and prediction. The reduced

dataset was then used to train and evaluate our models.

Fig 3.4: Cumulative Variance of all the features

25

Fig 3.5: Cumulative Variance of Top 21 Components

Fig 3.6: Top 4 Features of Each Component

26

3.1.3 Information Gain

We used the mutual information (MI) score feature selection approach in

addition to the PCA method previously discussed to increase the precision of

our classification of phishing websites. The amount of information that a feature

gives about the target variable is measured using MI, a feature selection

technique that is frequently utilised. The dataset was trimmed down to 22

features after the most informative features were chosen, those with scores

above 0.07.

We may avoid the dimensionality curse and enhance the performance of our

models by reducing the dimensionality of the dataset using feature selection

techniques like MI and PCA. This aids in lowering overfitting and increases the

models' generalizability.

The new dataset, which was once more split into separate training and testing

sets, was fitted with the same models that had previously been employed. We

were able to evaluate how the feature selection techniques affected the accuracy

and potency of our models as a result. In order to determine if the models could

distinguish between legitimate and phishing websites, they were evaluated

based on a variety of performance parameters, including accuracy, precision,

recall, and F1-score.

The performance of our models can be significantly improved by using feature

selection methods like MI and PCA, which also offer a more effective and

precise method for classifying phishing websites.

27

3.1.4 Selecting the Model

We assessed a number of models, including Logistic Regression, Decision Tree,

Naive Bayes, and Random Forest after pre-processing and feature selection. The

Random Forest model, which had a train time of 0.965 seconds and a test time

of 0.07 seconds, outperformed the others with a test set accuracy of 96.43%.

Random Forest is an ensemble learning technique that makes the final

prediction by combining the results from various decision trees.

It is renowned for its resistance to overfitting and capacity for handling large-

scale, multidimensional data. The model performed better as a result of our

feature selection process's contribution to reducing the data's dimensionality and

choosing the most crucial characteristics for the model. So, for our phishing

detection system, we decided to employ the Random Forest model.

Fig. 3.8. Architecture of the ML Model

28

3.1.5 Creating the Chrome Extension

For our study, we made advantage of the Kaggle dataset, which already had

certain feature extraction tools written. To function with the most recent version

of Python, many of the scripts needed to be changed because they were

deprecated.

In order to extract all 87 features from any given URL and utilise them to train

our machine learning models, we updated the deprecated scripts included with

the dataset. Information about the URLs, the webpage's content, and external

features were among these features.

a. Flask for API Endpoint

Our phishing detection model's API endpoint was built using the Python web

framework Flask. Flask provided us with a simple interface for managing HTTP

requests and responses as well as the capacity to build the necessary paths and

methods for our API.

Our trained machine learning model was saved as a binary file using the joblib

package, which we later imported into our Flask application. We created a

POST route that would accept a JSON payload containing the features of a

brand-new web page and would then return the page's estimated phishing

chance. With Flask, we had no trouble deploying our API to Railway.app, a

cloud hosting service.

b. Railway.app for Hosting the API on the Cloud

Our Flask application and machine learning model were quickly deployable

thanks to the cloud hosting service Railway.app. We started a brand-new project

on Railway.app and linked it to the Flask application code repository on our

GitHub account. We received a public URL from Railway.app for our API

29

endpoint, which we included into our Chrome extension to make calls to the

cloud-based Flask programme.

c. Postman API Platform for Testing

Prior to cloud deployment, we tested our Flask API using Postman, a well-

known API testing tool. We were able to quickly send HTTP calls to our API

and observe the responses with the help of Postman. We tested our API's

accuracy in estimating phishing probability for brand-new web pages using both

legitimate and incorrect feature inputs.

d. The Chrome Extension

We created a Chrome extension to allow users to quickly and easily check the

phishing probability of any web page they are currently browsing. The

extension consists of a popup window that appears when the user clicks on the

extension icon in their browser. We used Manifest 3 to define the extension's

properties and permissions. We also used a background.js script to manage

communication with the Flask API endpoint hosted on Railway.app. Finally,

we used popup.html and internal CSS to design the layout and appearance of

the extension popup.

3.1.6 API Structure

Our project's API structure is a crucial component of its functionality. We've

created a Flask app to act as a server that receives a URL string in the request

body via a POST request. Our binary machine learning model, which we trained

to detect phishing URLs (the RF model), processes the URL to determine

whether it's legitimate or malicious based on the extracted features using the

script.

After processing the URL, the app then returns the status of the URL. The

possible statuses of the URL are 1, 0, and -1. The 1 status indicates that the URL

30

is an active phishing webpage, 0 indicates that the URL is an active safe

webpage while -1 indicates the URL is inactive or inaccessible.

We designed the endpoint for our API using Flask, a web framework that

enables us to build and deploy web apps easily and quickly. Flask makes

handling HTTP requests straightforward, which is ideal for creating REST APIs.

Our endpoint is designed to accept POST requests, which is the most common

method used to send data to a web server. This allows us to data securely over

the internet.

Our endpoint is hosted on railway.app, a project hosting and deployment site.

Railway.app enables us to deploy our project rapidly and without needing to

worry about server setup or configuration. This enables us to concentrate on

developing our project, rather than infrastructure.

Overall, our project's API structure offers a simple and effective way for users

to verify URLs' safety when browsing the internet. Our binary machine learning

model quickly identifies phishing sites, safeguarding users against malicious

attacks. Flask provides an elegant solution for handling HTTP requests, and

railway.app enables us to deploy our project with ease.

3.1.7 Apache Spark on Small Datasets

Apache Spark is a powerful tool that's commonly used for large-scale data

processing, including detecting phishing URLs for Big Data Security Analytics.

However, since our project had a relatively small dataset of only 3.4 MB, using

Spark in a major role wasn't practical. For small datasets, it can actually be more

efficient to use simpler tools for data processing since the overhead of using

Spark can outweigh the benefits. Despite this, we still used Spark's PySpark

framework for pre-processing our data, even though it turned out to be slower

than expected due to our incorrect usage. We did this because we wanted to

fulfil the requirement of using a big data tool in our project.

31

Fig 3.9 Block Diagram of the Project

32

3.2 ANALYSIS AND DEVELOPMENT OF ALGORITHMS

3.2.1 Machine Learning Models

3.2.1.1 Logistic Regression

Logistic Regression is a type of supervised learning in machine learning. It is

used to decide the likelihood of a binary event if it will occur (yes/no). The use

of machine learning to predict if a stock price will increase or decrease is an

example of logistic regression. Binary classification implies that there are only

two possible outcomes to an event, in the example of the stock price above, it

should either increase or decrease.

In the example, the likelihood that the stock price of a share will change may

depend on the company’s reputation, financial state of the people, trust of public

etc. These independent variables may have an impact on the stock price of the

share of a company.

a. Where is Logistic Regression used?

Logistic regression is majorly used in binary classification of data where it

classifies a data into a YES or NO class.

Logistic regression is used in:

• the sports sector to decide whether a team is likely to win or lose.

• the trading sector to decide if a share price goes up or down.

• News verification to decide if any news is fake or legitimate.

33

b. The Mathematics Behind the Algorithm

The probability is constantly between 0 (does not occur) and 1 (happens). Using

our Phishing Detection example, the chance of the URL being legitimate and

not legitimate will total to 1 in the event of binary categorization. In logistic

regression, probability is calculated using the logistic function or the sigmoid

function. A straightforward S-shaped curve called the logistic function is used

to translate data into a value between 0 and 1.

The equation representing logistic regression is:

ℎ𝜃(𝑥) =
1

1 + 𝑒−(𝛽𝑜+𝛽1𝑋)

where:

ℎ𝜃(𝑥) is the output of the logistic function, where 0 ≤ ℎ𝜃(𝑥) ≥ 1

 𝛽1 is the slope.

 𝛽𝑜 is the y-intercept.

𝑋 is the independent variable.

3.2.1.2 K-Nearest Neighbours

A supervised machine learning (ML) technique known as K-nearest neighbours

(KNN) can be used for both classification and regression problems. However,

the main application in the industry still stays for mostly for classification and

prediction problems. The next two characteristics would accurately describe

KNN:

34

• KNN is a slow learning algorithm (lazy learner) because it does not have

an allocated training time and makes use of the complete data during

classification for learning.

• Since there are no assumptions made about the data, K Nearest

Neighbours method is also parameter free.

a. How does this Algorithm work?

The K-nearest neighbours (KNN) method predicts the values of a new data to

be predicted based on how alike their features are which resembles that the

datapoint’s class will be predicted based on how similar they are with the

existing data in the training dataset. By the help of the processes below, we

may understand how the algorithm functions in steps:

1. Load Training and Test dataset

2. Choose a value of K (any integer, preferably odd)

3. Calculate distance with a suitable norm (L1: Manhattan, L2: Euclidean,

and Hamming Distance)

4. Sort data points based on distances in ascending order

5. Choose the first k number of rows in the sorted array.

6. Assign a label (0 or 1) to the data.

The distances can be calculated by substituting p for 1 (Manhattan Distance)

and 2 (Euclidean Distance) in the Minkowski Distance equation. n is the number

of data points, x and y are the values of the data. The Minkowski Distance

equation for KNN is:

𝑑 = (∑ |𝑥𝑖 − 𝑦𝑖|𝑝

𝑛

𝑖=1

)

1
𝑝

35

3.2.1.3 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a popular machine learning technique that

can generate highly accurate results for both regression and classification

applications. It is, nevertheless, more efficient with classification difficulties. It

is a supervised learning method that predicts the class of a given set of data

points. It is used for linear and non-linear classification, regression, and outlier

detection.

The main idea of SVM is to determine the best line, known as the hyperplane,

that splits the data into numerous groups. The hyperplane is designed in such a

way that the margin between the two classes is maximised. The margin in SVM

is the separation between each class's closest data points and the hyperplane.

The class distinction is better the larger the margin.

By translating the input data into a higher-dimensional space, the kernel trick, a

mathematical approach used by the SVM algorithm, makes it simple to

segregate the data points into the two classes. In this higher-dimensional space,

the input variables are combined linearly to form the hyperplane. SVM is able

to manage complex and non-linear decision boundaries as a result.

The closest data points to the hyperplane are called support vectors, which are

then utilised to establish the hyperplane. These points are utilised to calculate

the margin and act as reference points for building the hyperplane. In order to

effectively categorise the data points while maximising the margin, SVM

searches for the ideal hyperplane.

To sum up, SVM is a strong and flexible machine learning technique that is

frequently used for classification tasks. It operates by locating the ideal

hyperplane that divides the data into various classes using support vectors.

36

Because it can handle non-linear decision constraints and is immune to noise

and outliers, SVM is a preferred option in many applications.

a. Hyperplanes and Support Vectors

Hyperplanes: The user's task is to choose the best line that will aid in classifying

the data in a dataset with n features because more than one line can frequently

be used to divide the data points presented in the graph. The hyperplane is this

line. The hyperplane is always built with the highest distance between the

classes formed by the data points on a graph.

Support Vectors: These are the vectors that stay nearest to the hyperplane, so it

has a high effect on the location of the hyperplane.

b. Working of Support Vector Machine

Let us use the example of the below image, which shows two classes, class A:

ball, and class B: pyramid, to better understand how SVM functions. We now

want to use the SVM algorithm to decide the ideal hyperplane that separates the

two classes.

The data points are all read by the Support Vector Machine, and then creates a

line that separates the classes from each other. This line is the hyperplane or

even called as a decision boundary. All data points that fall into class A in Fig.

3.10 are identified as balls and the points in the other class are pyramids.

37

Fig 3.10 Class A and B

Fig 3.11 Labelled Data

One may see that there are several hyperplanes that can divide the data points,

but as mentioned earlier the best hyperplane is the one that is the furthest

distance from the data points in both classes. Hence, the algorithm searches for

the best one.

Different dimensions are possible, and they solely depend on the features we

have. When there are more than three features, it is difficult to visualize.

38

Fig 3.12 Class A & Class B

Looking at Fig. 3.12 let us consider that there are two classes differentiated

based on colour, where the first class is for red colour and the second one for

yellow.

Fig 3.13 Hyperplane and a Soft Margin

When a soft margin is distributed the work of hyperplane, some data points are

classified incorrectly. It also gets stuck in a cycle of balance and imbalance by

39

moving itself to prevent more incorrect classifications and trying to widen the

gap between the support vectors.

c. Advantages of using of SVM

• Since it depends on support vectors and is independent of the data points,

the model gains high stability.

• Outliers do not affect the performance of the model.

• There are no assumptions on the dataset unlike other ML algorithms.

• Numerical predictions can be easily classified by SVM.

d. Disadvantages of using SVM

• Blackbox method

• There is a good chance of an overfitting problem occurring.

• It requires a relatively higher computational power as compared to other

models.

3.2.1.4 Decision Tree

Decision Tree algorithm is a type of supervised learning algorithm. This

algorithm is designed to cater to both classification and regression problems

easily.

The algorithm learns the rules that derive from data that it has worked with

earlier and builds a model that can classify a datapoint.

The decision making of the algorithm stems from the root of the decision tree,

where it tries to predict the class using the feature values stored in it with the

features that is in the dataset. The point then moves to the branch that correlates

to the value then to the node that decides what class it belongs to following the

prediction rules.

40

a. How a Decision Tree Works

The ability of selecting and making divisions in the dataset is of significant

importance to the performance of the model. There are different decision trees

for both classification and regression.

The decision to split a node in the tree into multiple sub nodes is accompanied

by a number of techniques used by the decision tree. The similarity of freshly

formed derived nodes is further increased when another node is derived from it.

The tree forms the nodes by going through all the features available first before

deriving new nodes.

The method we use in this project is the ID3 method, which is an extension of

D3, from which ID3 is derived from ID3 algorithm, in the absence of

backtracking, forms decision trees by traversing the space of highly

homogenous branches due to it being a top-down greedy search algorithm (An

algorithm that always selects the best choice).

b. ID3 Algorithm Steps:

• Set S at the beginning is the root node.

• In each iteration of the unused attribute of set S, this algorithm finds the

entropy (H) and information gain (IG).

• The feature is then selected based on entropy and information gain,

where a low entropy and high information gain is desired.

• The selected feature is then used to divide the subset S.

• Only features that have not been selected earlier are considered because

the algorithm iterates over all the subsets one by one.

c. Information Gain as an Attribute and Underlying Mathematics

Information gain is a statistical method that measures how much a feature is

efficient in classifying a data point into the original class. A feature that gives

minimum entropy and largest IG is essential for the model to perform well.

41

Information gain is inversely proportionate to entropy. IG calculates the

difference in entropy before and after splitting a set based on the selected

feature. The method ID3 (Iterative Dichotomiser) of decision tree uses the

information gain.

Mathematically, IG is represented as:

Information Gain (T,X) = Entropy (T) – Entropy (T,X)

Therefore, IG is also defined as

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑏𝑒𝑓𝑜𝑟𝑒) − ∑ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑗, 𝑎𝑓𝑡𝑒𝑟)

𝐾

𝑗=1

Where:

Entropy (before) before refers to the set before division,

K refers to the number of divisions,

and (j, after) refers to a divided subset j after division

3.2.1.5 Random Forest

Random Forest (RF) classifier is a machine learning algorithm that uses a

collection of DTs to improve the accuracy and generalization of the model.

Instead of relying on a single DT, RF leverages predictions from multiple DTs

and predicts the class based on the majority of predicted classes. This method

is known as bagging or bootstrap aggregating.

The RF algorithm builds multiple decision trees on several random subsets of

the original dataset and aggregates the results by finding the mean or mode of

the predicted classes. By creating multiple decision trees, RF reduces the

chances of overfitting the model to the training data and improves the accuracy

and robustness of the model.

42

RF algorithm is highly efficient while working with high-dimensionality data.

It is also lesser chance of overfitting than a single decision tree, as each DT in

the RF is trained on a different subset of data.

The RF algorithm is illustrated in the diagram below, which shows a simple

example of how the algorithm works.

Fig 3.14 Decision Tree Algorithm (courtesy of java point, Random Forest)

The RF algorithm is mainly used over other algorithms due to the following

reasons:

• The training time is very less compared to other ML algorithms.

• The algorithm’s prediction accuracy is high, not taking into

consideration the size of the data set.

• Even with a noticeable number of data missing, this algorithm can keep

its performance regardless.

43

a. Advantages of using Random Forest in Machine Learning

• Both classification and regression tasks can be taken care of by Random

Forest.

• Large datasets with excessive features can be handled by this algorithm.

• The performance of the model is raised, and overfitting is prevented.

b. Disadvantages of using Random Forest in Machine Learning

• It is not possible for regression problems as it is for classification

problems.

3.2.1.6 Ensemble Stacking

Using output from several nodes (such as kNN or NB or LR), the ensemble

learning method that creates a new model by stacking them is the Ensemble

Stack. To make predictions on the test dataset, the final model is employed.

Stacking involves combining the outputs from several different machine

learning models on the same dataset. A stacking model includes of two or more

estimators, also referred to as level-0 models (model stack), and a final

estimator, or level-1 model (meta learner), which makes the final prediction and

joins the output predictions of the level 0 estimators.

Fig 3.15 Ensemble Stacking

44

• Estimators to training data and whose predictions are received are

referred to as Level-0 Models (Model Stack)

• Final estimator that learns the best way to integrate predictions from the

model stack.

The model stacks’ extrapolations from non-sample data are used to train the

final estimator. In other words, data that was not utilised to train the base models

is fed into the base models or level-0 models, which then make predictions and

offer outcomes that serve as the input and output pairs of the training dataset to

which the final estimator is fitted.

A popular method for creating the training dataset for the meta-model is to

perform k-fold cross-validation on the level-0 models, using the out-of-fold

predictions as the basis of prediction.

The final estimator model's training data may also contain base model inputs,

such as training data input components. This can give the final estimator (meta

model) more context for deciding how to combine its predictions.

The basic models may be trained on the complete original training dataset while

the meta-model can be trained separately on this dataset after it has been

constructed.

While several machine learning models perform well on a dataset but not on

some, stacking is acceptable. We can conclude that there is little or no

association between the model predictions and the mistakes in those predictions.

Estimators are consistently complex and different. Therefore, it is wise to adopt

multiple complex models, such as linear models, DTs, SVMs, ANNs, and more,

those that can predict how to obtain good predictions. As first estimators,

different ensemble techniques like RFs can also be employed.

45

3.2.2 Dimensionality Reduction

3.2.2.1 Information Gain

Machine learning uses the feature selection technique to pick the most pertinent

subset of the features that are present in a dataset. By doing this, the data noise

can be reduced, and a more accurate prediction or classification can be made.

More features always do not mean more information for the model. Sometimes

there are unnecessary features in the data set, which may cause the model to get

trained with useless information. For example, how much a person reads in a

day does not relate to whether they have diabetes or not.

a. The Mathematics behind the Algorithm

Information Gain is obtained as,

I (x) = - log2p (x)

Entropy is a measure of system dysfunction. High entropy systems would be

unpredictable, more disorganized, and less unexpected. On the other hand, a

system with lower entropy would be more orderly and highly predictable.

Information

Entropy measures how unpredictable a data distribution is in the context of data

science.

Entropy is obtained as,

𝐸 (𝑆) = ∑ − 𝑝𝑜 𝑖 𝑙𝑜𝑔2 𝑝𝑜

𝑐

𝑖=1

46

3.2.2.2 Principal Component Analysis

In machine learning, an unsupervised learning strategy known as PCA is used

to reduce dimensionality. It is a statistical process that turns observations of

correlated attributes into a collection of linearly uncorrelated data using

orthogonal transformation. These newly revised features are the Principal

Components. This is a popular tool for exploratory data analysis and predictive

modelling. It is a strategy for detecting meaningful patterns in a given dataset

by reducing variances.

PCA typically seeks the surface with the lowest dimensionality to project the

high-dimensional data onto. PCA works by taking each characteristic's variance

into account, because a high attribute demonstrates a firm divide between

groups, lowering the dimensionality. PCA's practical applications include

image processing, movie recommendation systems, and power allocation

optimisation across numerous communication channels. Because it employs a

feature extraction technique, it retains the significant variables while discarding

the useless ones.

The PCA theory is backed by mathematical solutions like:

• Variance and Covariance

• Eigenvalues and Eigen Vectors

A few terms used often in the PCA algorithm:

• Dimensionality: It is the quantity of dimensions or features in the

dataset in question. The dataset’s no. of columns makes this easier to

decide.

• Correlation: This term describes the degree to which dual features are

connected to each other. In any case, if one feature changes, the other

features likewise are altered. The correlation score ranges under -1 and

47

+1. Here, -1 denotes an inverse relationship between the variables, while

+1 implies a strong correlation between the variables.

• Orthogonal: It sets up that there is no connection between the variables,

and as a result, there is none.

• Eigenvectors: If a nonzero vector v is supplied along with a square

matrix M. In a case where Av is divisible by v’s scalar, v is known to be

an eigenvector.

• Covariance Matrix: It is a matrix having covariance between two

variables.

The Principal Components are the newly altered characteristics or the result of

PCA, as previously said. These principal components are either the same

number or less than the first characteristics that were included in the dataset.

Following are a few characteristics of these primary components:

• The linear combination of the original dimensions must be the principal

part.

• There is zero correlation between any two variable/components owing

to orthogonal nature of the components.

• If a case of n principal components, the first component is the most

significant while the nth component is the least significant.

a. Steps for Principal Component Analysis

1. Picking the dataset and dividing it into dependent and independent sets.

2. We then stand for the dataset as a two-dimensional matrix.

3. Standardization of the dataset.

4. Calculate the covariance of matrix Z.

5. Calculate the Eigen Values and Eigenvectors

6. Sort the Eigenvectors.

7. Derive the principal components

8. Drop unnecessary components.

48

3.2.3 k-Fold Cross Validation

k-Fold Cross Validation is a technique used in machine learning to evaluate the

performance of a model. It involves splitting the available dataset into k equal

parts, or “folds.” One of the folds is used as the testing dataset, while the other

k-1 folds are used as the training dataset. This process is repeated k times, with

each of the k folds being used once as the testing dataset.

The results from k evaluations are aggregated to produce an estimate of the

model’s performance. Doing so helps in reducing the variance in the

approximation of the model’s capabilities in terms of performance, while

providing near accurate accuracy scores.

K-fold cross validation is mostly effective in situations where the size of the

dataset is small, or when there is a possibility of overfitting to the training

dataset. The general performance of the model can be improved by using

multiple folds to train and test the model, which in our case, we have used the

value of K as 10.

Fig 3.16 Working of K-fold Cross Validation

49

When the value of K is large, or when implemented on a large dataset, k-fold

cross validation presents a drawback, in which the time taken to train, and test

becomes large due to computational expensiveness. Nonetheless, there are

techniques to make the process faster, like parallelizing the testing and training

of the model.

3.2.4 Evaluation Metrics

In order to measure the performance of the model, the evaluation parameters

below have been implied:

• True Positive Rate: The rate of correct predictions of scam (phishing)

websites. It is also referred to as recall.

𝑇𝑃𝑅 =
𝑇𝑃

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• False Positive Rate: Rate of incorrectly predicted legitimate URLs.

𝐹𝑃𝑅 =
𝐹𝑁

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝐹𝑁

𝑇𝑃 + 𝐹𝑁

• Precision: Degree of exactness.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

• F1 score: Harmonic mean on precision and recall.

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2.
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

• Accuracy (%): Rate of correctly recognized legitimate and phishing

websites.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

• Matthew’s Correlation Coefficient (MCC): It measures the

correlation between predicted and actual data labels. It ranges from -1

to 1.

𝑀𝐶𝐶 =
𝑇𝑃𝑥𝑇𝑁 − 𝐹𝑃𝑥𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

50

CHAPTER 4: PERFORMANCE ANALYSIS

4.1 EXPERIMENTAL RESULT

4.1.1 Model Results

4.1.1.1 Before Feature Selection

The results obtained before as follows:

a. Logistic Regression:

Fig 4.1 (a) Confusion Matrix for LR(Before Feature Selection)

The model had a TNR and TPR of 41.43% and 37.34% respectively. The FNR

and FPR were found to be 12.58% and 8.66% respectively.

51

b. Support Vector Machine

Fig 4.1 (b) Confusion Matrix for SVM (Before Feature Selection)

The model had a TNR and TPR of 37.88% and 34.67% respectively. The FNR

and FPR were found to be 15.24% and 13.20% respectively.

c. Decision Trees

Fig 4.1 (c) Confusion Matrix for DT (Before Feature Selection)

The model had a TNR and TPR of 46.43% and 46.78% respectively. The FNR

and FPR were found to be 3.13% and 3.65% respectively.

52

d. k-Nearest Neighbors

Fig 4.1. (d) Confusion Matrix for KNN (Before Feature Selection)

The model had a TNR and TPR of 44.66% and 37.66% respectively. The FNR

and FPR were found to be 12.25.% and 5.42% respectively.

e. Random Forest

Fig 4.1. (e) Confusion Matrix for RF (Before Feature Selection)

The model had a TNR and TPR of 48.38% and 48.05% respectively. The FNR

and FPR were found to be 1.86% and 1.71% respectively.

53

f. Ensemble Stacking

Fig 4.1. (f) Confusion Matrix for ES (Before Feature Selection)

The model had a TNR and TPR of 47.77% and 48.12% respectively. The FNR

and FPR were found to be 1.79% and 2.32% respectively.

4.1.1.2 After Principal Component Analysis

The results obtained before as follows:

a. Logistic Regression:

Fig 4.2 (a) Confusion Matrix for LR (After Feature Reduction)

54

The model had a TNR and TPR of 45.36% and 46.30% respectively. The FNR

and FPR were found to be 4.46% and 3.87% respectively.

b. Support Vector Machine

Fig 4.2 (b) Confusion Matrix for SVM (After Feature Reduction)

The model had a TNR and TPR of 45.60% and 47.20% respectively. The FNR

and FPR were found to be 3.57% and 3.63% respectively.

c. Decision Trees

Fig 4.2 (c) Confusion Matrix for DT (After Feature Reduction)

55

The model had a TNR and TPR of 44.44% and 45.43% respectively. The FNR

and FPR were found to be 5.34% and 4.79% respectively.

d. k-Nearest Neighbours

Fig 4.2 (d) Confusion Matrix for KNN (After Feature Reduction)

The model had a TNR and TPR of 46.83% and 44.47% respectively. The FNR

and FPR were found to be 6.30% and 2.41% respectively.

e. Random Forest

Fig 4.2 (e) Confusion Matrix for RF (After Feature Reduction)

56

The model had a TNR and TPR of 46.63% and 47.05% respectively. The FNR

and FPR were found to be 3.72% and 2.60% respectively.

f. Ensemble Stacking

Fig 4.2 (f) Confusion Matrix for ES (After Feature Reduction)

The model had a TNR and TPR of 46.81% and 47.73% respectively. The FNR

and FPR were found to be 3.04% and 2.43% respectively.

4.1.1.3 With Feature Selection (Information Gain)

The results obtained before as follows:

a. Logistic Regression :

Fig 4.3 (a) Confusion Matrix for LR (After Feature Selection)

57

The model had a TNR and TPR of 45.80% and 46640% respectively. The FNR

and FPR were found to be 3.36% and 4.20% respectively.

b. Support Vector Machine

Fig 4.3. (b) Confusion Matrix for SVM (After Feature Selection)

The model had a TNR and TPR of 47.03% and 47.48% respectively. The FNR

and FPR were found to be 2.52% and 2.97% respectively.

c. Decision Trees

Fig 4.3. (c)Confusion Matrix for DT (After Feature Selection)

58

The model had a TNR and TPR of 46.40% and 46.82% respectively. The FNR

and FPR were found to be 3.18% and 3.60% respectively.

d. k-Nearest Neighbors

Fig 4.3 (d) Confusion Matrix for KNN (After Feature Selection)

The model had a TNR and TPR of 47.80% and 45.35% respectively. The FNR

and FPR were found to be 4.65% and 2.20% respectively.

e. Random Forest

Fig 4.3 (e) Confusion Matrix for RF (After Feature Selection)

59

The model had a TNR and TPR of 47.76% and 48.22% respectively. The FNR

and FPR were found to be 1.78% and 2.24% respectively.

f. Ensemble Stacking

Fig 4.3 (f) Confusion Matrix for ES (After Feature Selection)

The model had a TNR and TPR of 47.94% and 48.15% respectively. The FNR

and FPR were found to be 1.85% and 2.06% respectively.

4.1.2 Overall Result

This section provides an overall analysis of experimental results along with their

visualization (Confusion Matrix). All the six classifiers are made to classify

phishing between phishing URLs and safe URLs by using all the eighty-seven

features.

Table 4.1 shows the training time, testing time, accuracy, recall, precision and

F1 score of each classifier. It shows that RF supplies the highest accuracy

(96.43%) followed by ES (95.89%), DT (93.21%), KNN (82.33%) and LR

(78.76%). SVM supplies the least accuracy of 72.55%.

Figure 4.4 can show us the comparison of all the classifiers on the basis of

accuracy, recall, precision, MCC and F1-score.

60

Table 4.1: Classification Results before Feature Selection (with 87 features)

Classifier Train

time

(s)

Test

time

(s)

Accuracy

(%)

Recall

(%)

Precision

 (%)

F1 score

(%)

MCC

LR 0.106 0.006 78.76 74.80 0.81 0.78 0.576

SVM 4.801 2.196 72.55 0.69 0.74 71.63 0.452

DT 0.108 0.006 93.21 93.73 92.75 93.24 0.594

KNN 0.012 0.419 82.33 75.46 87.41 80.99 0.653

RF 0.965 0.076 96.43 96.28 96.57 96.42 0.929

ES 6.766 0.460 95.89 96.41 95.40 95.90 0.918

Fig. 4.4 Comparison of the Models based on Evaluation Metrics before

applying Feature Selection/Reduction

Next, we selected the top 21 components using PCA methods and then we used

the same classification algorithms to classify between phishing and safe URLs.

Table 4.2 shows the training time, testing time, accuracy, recall, precision and

F1 score of each classifier after performing feature reduction. Out of six

0.00

20.00

40.00

60.00

80.00

100.00

120.00

LR SVM DT KNN RF ES

Performance Measure Without Dimensionality
Reduction

Accuracy (%) Recall (%) Precision (%) F1 score (%)

61

machine learning models built using the 21 components after feature reduction,

we found that highest accuracy is given by the RF classifier with 94.68% and

then followed by ES(93.53%), SVM (92.80%), LR (91.67%), and KNN

(91.29%). The least accuracy is given by the DT classifier with an accuracy of

91.67 %. Figure 4.5 can show us the visualization of all the models based on

accuracy, recall, precision, MCC and F1-score.

Table 4.2: Classification Results after Feature Reduction using PCA (with 21

Components)

Classifier Train

time

(s)

Test

time

(s)

Accuracy

(%)

Recall

(%)

Precision

 (%)

F1

score

(%)

MCC

LR 0.031 0.003 91.67 91.21 92.28 91.74 0.833

SVM 1.041 0.305 92.80 92.98 92.86 92.92 0.856

DT 0.286 0.002 89.87 89.49 90.47 89.97 0.797

KNN 0.001 0.367 91.29 87.59 94.87 91.08 0.828

RF 2.777 0.076 94.68 94.68 96.76 95.71 0.894

ES 18.170 0.855 93.53 94.01 95.16 94.58 0.890

Fig. 4.5 Comparison of Models based on Evaluation Metrics after Feature

Reduction(PCA)

82.00

84.00

86.00

88.00

90.00

92.00

94.00

96.00

LR SVM DT KNN RF ES

Performance Measure after applying PCA

Accuracy (%) Recall (%) Precision (%) F1 score (%)

62

Finally, we selected the top 22 features from the already existing 87 features.

For the feature selection we used Information Gain or Mutual Information. We

calculated the dependence between two variables and calculated those features

that have the largest mi-scores.

We again used the same six machine learning models to classify the Phishing

urls and the safe URLs. Table 4.3 shows the training time, testing time,

accuracy, recall, precision and F1 score of each classifier after performing

feature selection. We again notice that ES provides the highest accuracy with

96.08 % followed by RF (95.98%), SVM (94.51%), DT (93.21%), and KNN

(93.14%). In this method LR gives the minimum accuracy of 92.44%. Figure

4.6 can show us the comparison of all the classifiers on the basis of accuracy,

recall, precision, MCC and F1-score.

Table 4.3: Classification Results after Feature Selection using Information

Gain/Mutual Information (with 22 features)

Classifier Train

time

(s)

Test

time

(s)

Accuracy

(%)

Recall

(%)

Precision

(%)

F1 score

(%)

MCC

LR 0.078 0.013 92.44 93.29 91.74 92.51 0.849

SVM 1.723 0.208 94.51 94.96 94.11 94.53 0.89

DT 0.081 0.007 93.21 93.63 93.85 93.24 0.864

KNN 0.004 0.164 93.14 90.69 95.36 92.97 0.864

RF 1.115 0.049 95.98 96.47 95.56 95.99 0.919

ES 15.598 0.257 96.08 96.29 95.88 96.10 0.923

63

Fig. 4.6 Comparison of Models based on Evaluation Metrics after Feature

Selection (Mutual Information)

From the above tables, we can conclude that with the decreasing number of

features the training time and testing time of each model reduces gradually.

However, the time difference for Ensemble Stacking seems to be non-uniform.

This is mainly because we selected the top performing model and at each stage

the top performing model is different and hence, we notice non-uniformity.

Also, we see some slight non-uniformity in the time difference in each method

and it can be due to internet speed that often changes every second.

We noticed that the Random Forest classifier was the best classifier for this task,

hence we took all three models from our project and implemented K-fold Cross

Validation on them. We set the value of K to 10 and the results are given in

Table 4.4 and Figure 4.7.

82.00

84.00

86.00

88.00

90.00

92.00

94.00

96.00

LR SVM DT KNN RF ES

Performance Measure after applying PCA

Accuracy (%) Recall (%) Precision (%) F1 score (%)

64

Table 4.4: Performance Measure of the three RF models after applying K-fold

Cross Validation

Classifier Train

time

(s)

Test

time

(s)

Accuracy

(%)

Recall

(%)

Precision

 (%)

F1 score

(%)

MCC

RF 15.471 0.081 99.61 99.65 99.56 99.61 0.992

RF (FS) 14.489 0.053 99.58 99.65 99.51 99.58 0.991

RF (PCA) 42.220 0.072 99.37 99.09 99.65 99.37 0.987

Fig. 4.7 Performance Measures of RF models after K-fold Cross Validation

As seen in the table and graph, the Random Forest model without any

dimensionality reduction has the highest accuracy, 99.61% but not a huge

difference from the other two RF models that both have accuracy scores above

99.37%. With the results, we decided to use the cross validated RF model

without any dimensionality reduction for our Chrome Extension.

98.80

98.90

99.00

99.10

99.20

99.30

99.40

99.50

99.60

99.70

Random Forest Random Forest(After
Feature Selection)

Random Forest(After PCA)

Performance Measure for RF Models after K-fold
Cross Validation

Accuracy (%) Recall (%) Precision (%) F1 score (%)

65

4.1.3 Use Case – Chrome Extension for Detection of Phishing URLs

The Chrome Extension is also one of the results (product achieved) from this

project, which can be used practically in many circumstances. The extension

was built for the purpose of identifying URLs as either phishing or legitimate.

The Chrome Extension displays an alert pop up box in case a user visits a

suspected phishing URL and also mentions the URL as unsafe with a red cross

graphic. when the user visits a legitimate URL, the extension displays that the

URL is safe with a green tick graphic.

The snippets are shared in the following figures Fig. 4.8 and Fig. 4.9:

Fig. 4.8 The Chrome Extension When Visiting a Safe URL

66

Fig. 4.9 The Chrome Extension When Visiting an Unsafe URL

67

CHAPTER 5: CONCLUSION AND FUTURE SCOPE

5.1 CONCLUSION

Through this project, we were able to build an efficient system that can classify

phishing and legitimate URLs. Dimensionality reduction methods were

implemented along with different machine learning algorithms to improve the

accuracy of the model. The performance of six classifiers built without feature

selection, with feature reduction (PCA) and with feature selection (Information

Gain/ Mutual Information Gain) were compared side by side. The results after

the experiments showed that the overall accuracy of the model improved upon

performing dimensionality reduction. We also noticed some slight changes in

the build time when using all the features and when performing dimensionality

reduction. However, since the model was built on Google Colab, which runs in

the cloud, the build time was highly affected by the internet speed.

Furthermore, we developed a Chrome extension that uses the best machine

learning model to classify URLs in real-time. The Chrome extension allows

users to check whether a website is safe to use or not by simply clicking on the

extension icon. We integrated the best model with the Flask framework and

hosted it on Railway.app, a cloud-based platform for easy deployment. The use

of Flask allowed us to create an API endpoint that the Chrome extension could

communicate with. The extension was designed using manifest 3,

background.js, popup.html, and internal CSS in the popup.html file. The

extension successfully classified URLs with high accuracy, making it a useful

tool for users to detect phishing websites.

68

5.2 FUTURE SCOPE

Regarding future scope, our product can be improved by adding a feature that

directly detects an email for phishing by checking the email content, through

reading hyperlinks. While phishing emails are very common, it is also the

method that works the most for cybercriminals, hence the need for a detection

tool in the inbox of every email service is proving to be essential. Additionally,

the extension can be integrated with popular email clients to supply real-time

scanning of links in emails.

There is also a room for improvement in our model’s performance. While the

accuracy is at 99.61% at its current state, it can still be improved using different

methods or modifying parameters that can help the model achieve higher

performance levels and lower testing and training times.

The Chrome Extension can also be improved by adding a better User Interface

and implementing some extra features like the ability to scan a URL for phishing

manually by the users. The extension can also be improved by making it more

responsive and reducing loading times.

With the evolving techniques for phishing, we must be cautious about new

trends in phishing URLs. Hence, it is important to keep updating the database

of phishing URLs and add more data points to the dataset, which we are

currently working on.

69

REFERENCES

[1] S. Tiwari, "Web page Phishing Detection Dataset", Kaggle, [Online].

Available: https://www.kaggle.com/datasets/shashwatwork/web-page-

phishing-detection-dataset/download?datasetVersionNumber=2

[2] IRONSCALES releases Findings from State of Cybersecurity Survey,

https://ironscales.com/blog/ironscales-releases-findings-from-state-of-

cybersecurity-survey/

[3] Gone Phishing Tournament Report 2020,

https://terranovasecurity.com/2020-gpt-

report/?utrm_campaign=En_GPTReport2020&utm_medium=Google&u

tm_source=Ads&utm_content=NewAd3

[4] ESET Threat Report 2020, https://www.welivesecurity.com/wp-

content/uploads/2020/10/ESET_Threat_Report_Q32020.pdf

[5] KnowBe4 TOP-CLICKED PHISHING TESTS,

https://blog.knowbe4.com/q3-2021-top-clicked-phishing-report-

infographic-with-global-data

[6] B. B. Gupta, N. A. Arachchilage, and K. E. Psannis, “Defending against

phishing attacks: taxonomy of methods, current issues and future

directions,” Telecommunication Systems, vol. 67, no. 2, pp. 247–267,

2018.

[7] R. S. Rao, and A. R. Pais, "Detecting Phishing Websites using

Automation of Human Behavior." In Proceedings of the 3rd ACM

Workshop on Cyber-Physical System Security, ACM, 1994, pp. 33-42.

[8] A.K Jain, & B.B Gupta, "Towards Detection of Phishing Websites on

Client-Side using Machine Learning Based Approach."

Telecommunication Systems, vol. 67, no. 2, pp. 687-700, 2018.

[9] E. Gandotra, D. Gupta, "An Efficient Approach for Phishing Detection

using Machine Learning" in Multimedia Security, Springer, 2021, pp.

239-253

70

[10] E. Gandotra, D. Gupta, "Improving Spoofed Website Detection Using

Machine Learning", Cybernetics and Systems: An International Journal,

vol. 52, no.2, pp. 169-190, Oct. 2020

[11] M. Almseidin, A. A. Zuraiq, M. Al-kasassbeh, & N. Alnidami, "Phishing

Detection Based on Machine Learning and Feature Selection Methods."

iJIM, pp. 171-183, 2019.

[12] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri," Machine Learning

Based Phishing Detection from URLs", Expert Systems with

Applications, vol. 117, pp.345–57, 2019, doi:

10.1016/j.eswa.2018.09.029.

[13] A. Zamir, H. U. Khan, T. Iqbal, N. Yousaf, F. Aslam, A. Anjum, & M.

Hamdani, "Phishing Web Site Detection using Diverse Machine Learning

Algorithms." The Electronic Library, 2020

[14] A. F. Hossain, A. K. Das, M. A. M. A. Haque and M. M. Hasan, "Phishing

Detection Using Machine Learning: A Comparative Study," in IEEE

Access, vol. 8, pp. 131078-131089, 2020.

[15] R. Khanna and S. Gupta, "Phishing Detection Techniques: A Survey," in

Proceedings of the 2021 IEEE International Conference on Inventive

Computation Technologies (ICICT), 2021, pp. 146-151.

[16] M. R. Islam, M. A. Khan, and J. H. Park, "An Ensemble Learning

Approach to Phishing Detection," ACM Transactions on Internet

Technology, vol. 18, no. 3, pp. 1-26, May 2018. DOI: 10.1145/3182376

[17] S. Roy and S. K. Singh, "A Comparative Study of Phishing Detection

Using Machine Learning Algorithms," in IEEE Access, vol. 8, pp.

147583-147596, 2020.

[18] C. Zhao and Y. Liu, "A Phishing Website Detection Method Based on

Feature Selection and Ensemble Learning," 2020 IEEE 20th International

Conference on Software Quality, Reliability and Security (QRS), 2020,

pp. 432-441, doi: 10.1109/QRS51294.2020.00060.

[19] S. Yadav, A. Jain, and R. Jain, "A Novel Approach for Phishing Detection

using Machine Learning Techniques," Journal of Information Security

71

and Applications, vol. 57, pp. 102852, 2021. doi:

10.1016/j.jisa.2020.102852

[20] A. Singh, A. Singh, and V. Tyagi, "Phishing Detection using Machine

Learning Techniques: A Review," Journal of Intelligent and Fuzzy

Systems, vol. 39, no. 2, pp. 1955-1974, 2020. doi: 10.3233/JIFS-191542

[21] Y. Yang, Y. Li, and F. Wang, "Phishing Website Detection using Machine

Learning Techniques and Website Features," Journal of Ambient

Intelligence and Humanized Computing, vol. 12, no. 1, pp. 1311-1324,

2021. doi: 10.1007/s12652-020-02268-8

[22] H. K. Dam, K. T. Tran, and H. T. Nguyen, "Phishing Detection Using

Machine Learning Techniques," ACM Transactions on Information and

System Security, vol. 21, no. 4, pp. 1-23, Aug. 2018. DOI:

10.1145/3239747

[23] A. Kumar, A. Kumar, and R. Kumar, "Machine Learning Techniques for

Phishing Detection," ACM Transactions on Internet Technology, vol. 19,

no. 3, pp. 1-24, Aug. 2019. DOI: 10.1145/3337005

72

