

Building a RESTful API with Go using Three Layered

Architecture

Major project report submitted in partial fulfillment of the

requirement for the degree of Bachelor of Technology

in

Computer Science and Engineering

by

Piyushika Sachdeva (191217)

UNDER THE SUPERVISION OF

Dr. Ruchi Verma

to

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology,
Waknaghat, 173234, Himachal Pradesh, INDIA

 iv

ACKNOWLEDGEMENT

Foremost, I would like to express my heartiest gratefulness to almighty God

for his divine blessing that made it possible for me to complete the project

successfully.

I am highly indebted to our training instructors Ms. Mithali R. Shetty, Mr.

Vageesha BR and Mr. N for their guidance and constant supervision as well as

for providing necessary information regarding the project. I also would like to

thank Mr. V. Vaishnav and Ms. Spoorthi for mentoring me throughout my

internship and helping me learn new concepts and technologies. It is indeed

with a great sense of pleasure and immense sense of gratitude that I

acknowledge the help of these individuals.

I am extremely grateful to my supervisor, Dr.Ruchi Verma, Assistant Professor

(SG) , Department of CSE Jaypee University of Information Technology,

Waknaghat, for her assistance. Her never-ending patience, intellectual

direction, constant encouragement, constant and energetic supervision,

constructive criticism, and good suggestions made it possible to finish this job.

I would also like to express my gratitude to everyone who has directly or

indirectly assisted me in making this project a success. Finally, I must express

my gratitude for my parents' unwavering support and patience.

Piyushika Sachdeva(191217)

Computer Science & Engineering and Information Technology Department.

Jaypee University of Information Technology, Waknaghat, Sola

 v

TABLE OF CONTENT

Content Page No.

Declaration i

Certificate ii

Plagiarism Certificate iii

Acknowledgement iv

List of Abbreviations vi

List of Figures vii

List of Tables viii

Abstract ix

Chapter 01: INTRODUCTION 1

1.1 Introduction 1

1.2 Objectives 3

1.3 Motivation 3

1.4 Tools and Language Used 3

1.5 Technical Requirements 4

1.5.1 Hardware Configuration 6

1.5.2 Software Configuration 6

Chapter 02: LITERATURE SURVEY 7

Chapter 03: SYSTEM DESIGN DIAGRAM 9

Chapter 04: IMPLEMENTATION 10

4.1 Identification of features 10

4.2 SQL Schema 10

4.3 Study Material 11

4.5 Layer working and Swagger Documentation 31

Chapter 05: CONCLUSION 49

5.1 Result Analysis 49

5.2 Results achieved 50

5.3 Applications 50

5.4 Limitations 50

5.5 Future Work 50

REFERENCES 51

 vi

LIST OF ABBREVIATIONS

URL Uniform Resource Locator

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

SQL Structured Query Language

GOFR Go Framework

MYSQL My Structured Query Language

IDE Integrated Development Environment

BASH Bourne Again Shell

SUDO Superuser do or substitute user do

vii

LIST OF FIGURES

Fig. No Name of figure

3.1 System Design Diagram

4.1 Three layered architecture flow

4.2 SQL Schema

4.4 Code Snippets

4.5 Swagger documentation snippets

4.6 Test Coverage

 viii

LIST OF TABLES

Table. No Name of table

1.5.1 Hardware Configuration

1.5.2 Software Configuration

ix

ABSTRACT

Creating a web application is quite simple but the challenge comes when the

code has to be tested, structured, cleaned and maintained and thus here we

follow the Three Layered Architecture using Go language.

The three layers are handler, service and datastore which are all independent

of each other. The handler layer receives the request body and then parses

anything that is required from that request. It then calls the service layer

where all the business logic of the program is defined, ensures that the

response is the required format and writes it to the response writer. This layer

further communicates with the datastore layer. It takes whatever it needs from

the handler layer and then calls the datastore layer. The datastore layer is

where all the data is stored. It can be any data storage. The use case layer is

the only layer that communicates with the datastore. That is how we test each

layer independently making sure that no layer affects the other.

 1

CHAPTER 1 : INTRODUCTION

1.1.1 Company

Zopsmart Technologies is a dynamic and innovative technology company

that provides tools and techniques to help offline businesses go online.

Zopsmart's goal is to create value and deliver mature,end-to-end products for

digital-savvy customers. Through human-centered design practices and

proven analytics, Zopsmart helps businesses re-imagine their consumer

interactions and innovate within predictable budgets.Founded in 2016, the

company has rapidly established itself as a leading provider of software

development, mobile app development, and web development services,

catering to diverse industries such as e-commerce, healthcare, education, and

more. Zopsmart is building next generation technology for the retail sector

and their customers range from a small furniture shop to multinational retail

chains and solutions include an e-commerce platform,Digital Marketing , m-

Commerce, automated logistics systems, management platform, order

management platform, and iOT devices. It also provides software solutions

to some of the top-most firms and has its own framework to work on.

1.1.2 Introduction

Software development and web application development are important

aspects of today's business world. In today's digital age, companies around

the world rely on software and web applications to increase productivity,

improve customer engagement and simplify operations.

Software Development comprises the process of designing, creating and

implementing software solutions to meet business needs. This includes

everything from creating new apps from the ground up to maintaining and

improving existing systems. The purpose of software development is to

create efficient, reliable and effective software solutions that improve

business processes and provide value to stakeholders.

 2

Web development is a subset of software development that entails designing

software applications that operate on the Internet through the use of a web

browser. Web applications can range from basic webpages to large

commercial processes, and their design and development necessitate the use

of specialized tools and techniques.

The web application covered in this project is a basic yet powerful three-

layered implementation of Create, Read, Update, and Delete (CRUD)

activities. The three independent levels of the three-layered architecture are

the http/ handler layer, the service/ business layer, and the store/ datastore

layer. Every layer has a unique set of jobs and responsibilities. The handler

layer handles user input and output, the service layer handles business logic

and rules, the store layer stores and retrieves data.

To ensure the app's quality and dependability, every layer of the architecture

is thoroughly tested using suitable unit testing techniques.

The unit tests were created to test the functionality of the programmes and

guarantee that each component of the application works as it should.

Furthermore, the application contains a middleware component that

authenticates HTTP requests before passing them to the server. This prevents

unauthorised access and guarantees that only authorised users have access to

the resources. The middleware acts as a bridge between the client and the

server, processing incoming requests and ensuring that they fulfil the relevant

security requirements.

The web application described in this project, provides a strong illustration of

how a three-layered architecture may be used to accomplish CRUD activities,

combining middleware and unit testing for increased functionality and

security.

 3

1.2 Objectives

Employing industry best practises, to produce tested, organised, tidy, and

maintainable web applications.

1.3 Motivation

Using the newest technology and development processes, the main goal of this

project is to plan and create a web application that is quick, scalable, and safe.

1.4 Tools Used (Libraries or Frameworks)

A simple, dependable, and effective programming language called GO was

created by Google developers to create code for apps. GO offers a number of

the packages used in this project, including net/http that provides us with http

client and server implementations. ‘json’ package implements json

encoding/decoding. database/sql is another package that provides with SQL

implementation.

The GOFR framework, created by ZopSmart with the intention of bringing

efficiency, uniformity, and usability to all GO projects, is also used in this

project.

WHAT IS ‘GOLANG’?

● The whole backend architecture of this project is developed in the Go

programming language, including HTTP request execution, server

response delivery, and programme logic creation.

● Go is an open-source programming language developed by Google[1]

in 2009 with a focus on speed, simplicity, and efficiency.

● In contrast to other languages, Go is statically typed, which means that

 4

variables must first be declared with a certain data type before they can

be used. This approach improves programme reliability by assisting in

compile-time error identification.

● Go also contains built-in concurrency support, allowing programmes

to do many tasks at the same time. The language employs channels for

communication between Goroutines, as well as lightweight threads

known as goroutines.

● Go also has a garbage collector, which releases memory when it is no

longer needed, making memory management easier for programmers

and decreasing memory leaks.

● Also, Go prioritises code readability and maintains its syntax simple,

making it easy to understand and update.

● Go features a robust standard library that provides programmers with

a diverse set of useful functions and packages to work with.

1.5 Technical Requirements

GoLand IDE:

JetBrains created GoLand, IDE for the Go programming language which has

capabilities like completion of code, debugging the code, version control,

refactoring, testing.

Keyboard shortcuts and tools for code analysis which this IDE provides help

developers in working more efficiently.

GitHub:

● GitHub is a version control and collaboration platform that enables

developers to store and manage their code repositories in the cloud.

● It serves as a single area for developers to collaborate on projects, track

code changes, and contribute to open-source software.

 5

● GitHub is compatible with a wide range of programming languages and

can be linked with a number of popular development tools and services.

Postman:

● Postman helps developers [7] to easily create, test, and document APIs.

● Postman may be used by developers to make HTTP requests to RESTful

APIs, evaluate responses, and detect issues in real time.

● It also provides automated testing tools, documentation, and API sharing

tools to developers and their teams.

Docker:

● Docker is a popular platform for developing, distributing, and executing

containerized applications.[6]

● It provides a lightweight and efficient method of combining apps and

their dependencies into a single unit that can be readily moved and

operated across several contexts.

● Docker helps developers to build, test, and deploy applications more

quickly and reliably, while simultaneously boosting scalability and

portability.

 6

1.5.1 Hardware Configuration

Table 1 : Hardware Configuration

Processor Intel® Core™ i5, 8-core CPU

RAM 16 GB

Hard Disk 512 GB

Monitor 14’’

Mouse

Keyboard

1.5.2 Software Configuration

Table 2 : Software Configuration

Operating System Ubuntu

Language GO

Runtime environment GO runtime

Package Manager GO

 7

CHAPTER 2 : LITERATURE SURVEY

Documentation for GO

The GO programming language comes with extensive documentation that

developers may use while creating programmes. The GO documentation

includes a detailed explanation to the language's syntax and usage, as well

as numerous examples, best practices, and advice for developing efficient

and secure code. The official GO documentation contains a language tour

as well as reference and package papers that define the GO standard

library.

Github and Git

The official documentation Introduction to Git and GitHub gives an

introduction of version control systems and how they function. It focuses

specifically on the Git version control system and how it combines with

GitHub, a major web-based platform for code hosting and collaboration.

The manual describes how to utilise essential Git concepts including

repositories, branches, commits, and merging in the context of software

development. It also explains how to get started with Git and GitHub,

including how to create accounts, create repositories, and collaborate with

other developers.

Documentation for MySQL

MySQL is a prominent open-source[4] relational database management

system for effectively storing, retrieving, and managing data and is built

to manage massive volumes of data and several concurrent users, making

it a popular choice for online applications that need a dependable database

system.

 8

Its SQL-based language supports a wide range of functions, including the

ability to save and retrieve data, handle transactions, and run complicated

queries.

GoMock

Gomock is a renowned mocking framework[2] that was created explicitly

for the Go programming language. It enables developers to generate and

design fake objects in order to test the behavior of their code without

having an interaction with the actual implementation process.

Developers may use Gomock to construct effective unit tests that are

segregated from external dependencies such as databases[3] or web

services. This framework is well-known for integrating seamlessly with

Go's built-in testing package, which makes it simple to use and set up.

 9

CHAPTER 3 : SYSTEM DESIGN DIAGRAM

Fig 3.1: System design diagram

 10

CHAPTER 4 : IMPLEMENTATION

4.1 Identification of features

Features of the web application:

- Creation of an entry of a brand and of a product with brand already existing

with the store

- Updation of the existing brand records identified by brand ID

- Fetching details of brands based on ID

- Fetching details of all products

- Fetching details of products based on product name

- Updation of existing products identified by ID

4.2 SQL Schema

 11

4.3 Study Material

Linux is a Unix-based[5] OS with both a command-line and graphical user

interfaces. BASH, a shell for Unix systems that provides robust command-line

features, is the standard shell in Linux.

In Linux, SUDO is a command that allows users to run commands as a different

user, often the superuser. In the system environment, Linux runs lots of

processes, and environment variables impact the programmes that use them.

Within Linux, environment variables can be set through hidden files such as

/.bashrc in the home folder (). The PATH variable indicates where to search for

commands.

Linux has several built-in commands, including:

1. ls: lists the files in a folder

2. cd: changes the current directory

3. touch: creates an empty file

4. pwd: prints the path to the current working directory

5. mkdir: creates a new directory or directories. To create nested folders:

mkdir -p folder/new

6. rmdir/rm: removes an empty directory (rmdir) or a directory and its

contents (rm -rf folder)

7. mv: moves or renames files

8. cat: displays the contents of a file

9. chmod: sets file permissions flags to define who can read, write, or

execute the file

10. vi: a text editor for creating and editing files.

Go Workspace

The Go language has a hierarchical structure with two root directories,

including:

 12

1. src: This directory contains Go source files.

2. bin: This directory contains executable commands.

In addition, the GOPATH environment variable is used to specify the location

of your workspace, while the GOROOT variable is used to define where your

Go SDK is located.

GO Packages

Each and every go program is made of packages. All the program in go

environment start running in the main package

math/rand:- In package rand, environment is deterministic i.e. when run rand.In

return same number, and if we want different results each time we use,

rand.Seed

With import use ()-for clarity[Factored statement] and " " with packages

When exporting names use Capital letter with its package- ex: Pi(math.Pi)

We can use fmt: formatted i/o package to format all this.

Functions:

Functions in go can take 0 or more arguments. A function may also take a

variable number of arguments. Such a function is called a variadic function. Eg:

func multiply(a,b int) int{

return a*b

}

In the above example, the data type of the arguments can be clubbed

if they are the same, and the return type of the function is specified

after mentioning the name and arguments.

A function may return any number of arguments and is called from

other functions using func_name(arguments) format.

 13

Goimport:

In Go, every package that is imported must be formatted in a certain way. The

built-in libraries are at the top of the bunch of imports. Then, third party

imports are written like sql-driver etc. Financially, the local packages are

mentioned at the bottom of the bunch. All of theses packages are imported in

alphabetical order.

File Watchers:

File watchers is one of the tools offered which helps in making the code clean

and concise.

go-imports: imports all the packages as and when needed as well as formats

then as needed by go.

go-fmt: formats the code i.e. its indentation, line spacing, etc as per a standard

which makes the code cleaner.

Variables

Variables in go can be declared in a lot of ways. The keyword ‘var’ is used

to declare a single or a list of variables.

Eg: var age int

var (

age int

check bool

name, id string

)

 14

Variables if not assigned any value, take the default value for that datatype.

Zero values for:

int= 0

 string= “”

bool= false

Except for global variables, shorthand notation can be used in Go, to declare

and define the value of a variable at once. := operator is used for the same.

Eg: age:=22

The above statement assigns variable age the type of the value on the right

hand side i.e ‘int’ and the value 22.

Global variables are mostly discouraged in GoLang, and it is a better practice

to define variables in functions.

FOR

There is only For loop in go and no while or do while loop.

Eg: for i:0;i<10;i++{}

The for loop can behave like a while loop as follows:

Eg: for ;j<10;j++{}

IF

Parentheses are optional but curly brackets are required in the if statements

of the Go language. If you are using a short statement, you can start the if

statement with it before running the actual statement, but it needs to be

followed by a semicolon. The else blocks can access any of the variables

stated in the short statement of an if statement.

 15

SWITCH

In contrast to other languages, the switch statement in Go behaves differently.

Go only executes the selected case, not the ones that come after it.

Furthermore, Go does not require the usage of break statements after each

case. In contrast to other programming languages, Go's switch statement's

cases and values can both be anything, not just integers.

In Go, a switch statement without a condition is similar to an if statement,

while a switch statement with a condition can be used to form an if-else

statement. In a Go switch statement, it is not permitted to have two cases with

the same condition. Otherwise, a compile time error or type mismatch error

would occur.

DEFER

The Go programming language has a special feature called "defer" that

delays the execution of a function until the enclosing function has finished

and returned. The arguments supplied to a deferred function are evaluated

immediately after the defer statement is executed, but the function call itself

is not executed until the enclosing function has finished running and is

about to return.

This makes defer statements handy for tasks like shutting files, releasing

resources, and other tasks that need to be completed after a function is done

running.

The most recently deferred function call will be executed first because Go

employs a stack to keep track of deferred function calls. "Last in, first out"

(LIFO) sequence is used in this situation.

The "defer" keyword is used followed by the function that has to be deferred

in a Go program to define a defer statement. This makes it simple to

guarantee that specific actions are always carried out, despite a mistake or

a panic.

 16

POINTERS

In Go, pointers are variables that store a value's memory address. They enable

oblique access to memory-stored values.

Use the * symbol and the type of the variable it will point to to declare a

pointer. As an illustration, the statement var p *int declares a pointer with the

name p that points to an integer value.

Use the & operator after the value to obtain the value's memory address. For

instance, x:= 10; p:= &x assigns the pointer p the memory location of x.

Use the * operator and the pointer name to dereference a pointer. As an

illustration, *p receives the value that p points to. Using *p = 20, a new value

can also be assigned to the memory location pointed to by a pointer.

A pointer's zero value is nil. A pointer that is nil indicates that it points to no

memory location.

Go creates a replica of the value you supply as an argument to a function.

However, you can indirectly change the initial value when you give a pointer

to a function.

Pointers can be used to build intricate data structures such as linked lists, trees,

and graphs.

STRUCTS

Structs are collection of fields

ex: type V struct{

X int

Y int }

 17

Func main(){

print(V{1,2})

} - basically prints 1,2

Struct fields are accessed using v= V{11,12}.

To access an struct field we use a struct pointer.

var (

v1 = Vtx{11,1 2} // has type Vertex

v2 = Vtx{X: 11} // Y:0 is implicit

p = &Vtx{11, 12} // has type *Vertex

)

Using structures, you can combine fields of various types into a single

composite type. For instance, a struct called "V" can be constructed with two

integer-type entries, X and Y. The print function can be used to generate a new

V value with the parameters X=1 and Y=2, which can then be printed to the

console as an example of how to use this struct. On a variable of type V,

structural fields can be accessed using dot notation.

A struct pointer can be declared using the & operator and used to access struct

fields with a pointer. One can declare and initialize a variable of type *V called

p to the address of a freshly formed V value, for instance. By utilizing the ->

operator on the pointer variable, one can access structural fields.

Additionally, field names in the format X: 11—the field name is followed by

a colon and the new value—can be used to assign values to struct fields.

Unspecified fields will automatically receive a value of zero. When only a few

of a struct's many fields need to be initialized with non-zero values, this can

be helpful.

 18

ARRAYS

Arrays are a data structure used to store a fixed number of elements of the same

type.

Once an array is declared, its length cannot be modified because it is a

component of the array's type.

In Go, the type and length of an array must be declared. For instance, you can

write the following to declare an array of integers with no length specified:

int var arr []

You can use the following syntax to set the array's initial values:

a:= []int 1, 2

In this instance, the array has two starting elements: 1 and 2.

It is vital to remember that Go arrays are zero-indexed, which means that the

index of the first element is 0. Using the index enclosed in square brackets,

you can access an element in an array as follows:

arr[0] = 10

The first element of the array will now have the value 10 assigned to it.

SLICES

Slices are frequently utilized as dynamically scaled arrays in Go. A slice is a

pointer to an array, and while not fixed, a slice's length is determined by the

type. We can declare a slice with an inclusive range of indices, such as

"s[low:high]". Slices just describe a portion of an array, they do not store any

data.

 19

When we modify a slice's elements, the corresponding elements of its

underlying array are also modified. This has an effect on other slices that have

similar elements. For instance, if we set 'a:= names[1:2]', 'a' would be a slice

pointing to a particular area of the 'names' array.

A slice literal, which is an array literal without the length, can be used to

generate a slice. A structure with a pointer to the underlying array, the slice's

length, and its capacity is used to internally represent a slice. The number of

elements in a slice is referred to as its length, while the slice's capacity is the

most elements it can hold.

The built-in "make" function can be used to build a slice; it generates a zeroed

array and returns a slice that refers to the array. By providing an integer input

to the "make" command, we may specify the length of the slice. By providing

a second integer input to the "make" command, we can also specify the slice's

maximum capacity.

The "append" function allows us to add elements to a slice. The capacity of

the slice is automatically doubled if it is less than the total amount of elements

to be appended. When the capacity doubles, a new slice and more memory

are created, but the underlying array is left unchanged.

RANGE

Iterating across a slice or map is done using a Range loop, a sort of for

loop. Each time an iteration occurs, an index is returned along with a

duplicate of the value at that position. You can assign "_" to the relevant

variable to skip either the index or the value. For instance, skipping the

value and index is indicated by the expressions "for j, _:= range power"

and "for _, value:= range power." If we only require one of the variables,

we can completely disregard the other.

A number can be multiplied or divided by a power of two using the

bitwise shift operators and >>, respectively. For instance, "1 5" evaluates

 20

to 32 and signifies "1 times 2 raised to the power of 5". Similar to "32 >>

5", which evaluates to 1, "32 >> 5" signifies "32 divided by 2 raised to

the power of 5"."

MAPS

Go has a built-in data structure called a map that associates keys with values.

A map's keys must be distinct and can only be found once. A map with a zero

value is considered to be nil, meaning it has no keys. We employ the built-in

make function with the suitable type to produce a map. For instance, we can

use the code below to make a map that converts texts to Vertex structs:

var m map[string]Vertex

m= make(map[string]Vertex)

We can also initialize a map with some key-value pairs using a map literal.

For example:

M := map[string]int{

“Year”:2023

“Age”: 22

}

The syntax m[key] = value can be used to add or modify values in a map.

The formula value = m[key] can be used to obtain a value. Use the built-in

delete function with the map and the desired key, as in delete(m, key), to

remove a key from a map. We can use the syntax value of ok = m[key] to

determine whether a key is present in a map. Ok is a boolean variable that is

true if the key is present in the map and false otherwise. Value is the zero

value for the element type of the map if the key is absent from the map.

It is important to remember that a key cannot be a slice in any particular map.

We can utilize maps to construct different data structures like hash tables,

sets, and graphs because a map value can be a slice.

 21

Function Closure

Functions in Go may access variables outside of their own scope thanks to

the useful feature known as function closures. In other words, closures enable

functions to "remember" the values of variables that were included in their

scope at the time of their definition, even if those variables are not included

in the scope at the time of the function call.

In Go, defining a function inside of another function results in a closure. After

the outer function has returned and the inner function has access to the

variables of the outside function. This is made feasible by the fact that Go

produces a fresh closure every time the outer function is called, complete

with a unique set of variables that are unrelated to those in any previous

closures.

Closures can be used, for example, to build generator functions. For instance,

you might create a function that, when called, returns a different function that

produces a series of integers. The closure can "remember" the state of the

generator, allowing it to pick up where it left off and continue producing

numbers.

Closures can also be utilized to build filtering or transformers. One could, for

instance, create a closure that accepts a slice of integers and returns a new

slice that only contains even values. The filter condition can be

"remembered" by the closure, making it possible to apply it on many slices

without having to redefine the filter function each time.

METHODS

A method in Go is comparable to a function with a unique receiver

parameter. A receiver whose type is defined in the same package as the

method can be used to define a method. Between the func keyword and

the method name is where the receiver can be found in its own argument

 22

list.

A type, even one that is not a struct, can have methods written on it. A

method, including built-in types like int, can only be declared with a

receiver whose type is defined in the same package as the method.

Use a pointer receiver to prevent copying the value on each method call

and to let the method edit the value the receiver points to, respectively.

When the recipient is a big struct, it might be more effective to do this.

There should not be a combination of value and pointer receivers in any

methods on a certain type.

A pointer receiver argument can refer to methods with both value and

pointer receivers while a value receiver argument can only refer to

methods with a value receiver when defining a receiver argument. When

employing slices or maps, for example, or when we do not want changes

to be reflected in the original value, we utilize value receivers. On the

other side, we can use a pointer receiver to access methods either way or

to ensure that changes are reflected. When the struct is big, pointer

receivers are also helpful for preventing duplicate copies.

INTERFACES

A set of methods with specific signatures that an implementing value must

have are defined by an interface type. The value of an interface type can

include any value that implements those methods, allowing diverse value types

to implement the same set of methods. An interface type can be defined using

the syntax "type name interface," where "name" denotes the name of the

interface. Without any explicit expression of purpose or use of the

"implements" keyword, interfaces are implicitly implemented in Go.

Any value that implements the interface's methods may be stored in an

 23

interface value once it has been constructed. Calling methods on the interface

will not result in a null pointer exception if the concrete value held by the

interface is nil. However, because there is no type inside the interface tuple to

specify which concrete method to call, calling a method on a nil interface value

will result in a run-time error.

A method and a pointer receiver can be used to change the value that the

receiver points to. A larger struct may also benefit from not replicating the

value each time a method is called. All methods on a given type in Go should

have either a value receiver or a pointer receiver; neither should be present.

Interface, which has no methods and accepts any kind of value, is empty. In

Go, every type implements at least zero methods, hence code that deals with

values of unknown types frequently uses empty interfaces.

In conclusion, a Go interface type defines a collection of methods with specific

signatures that can be implemented by various types. Any value that carries

out those methods can be contained in an interface value. Calling a method on

a nil interface value will result in a run-time error since an interface with a nil

concrete value is itself non-nil. The value that the receiver points to can be

changed using a pointer receiver, and any type of value can be stored in the

empty interface.

TYPE ASSERTION & TYPE SWITCH

Accessing the concrete value that underlies an interface value is possible

through a type assertion. By asserting that the interface value "i" has a

concrete value of type "T" and assigning the underlying value of "T" to the

variable "t," we can say that "t:=i.(T)". The statement will result in a panic if

the interface value "i" does not contain a "T" value.

The underlying value and a boolean value that indicates if the assertion was

successful are the two values that a type assertion in Go can deliver. For

example, "t, ok:= i.(T)" will give "t" the underlying value and "ok" will be

 24

true if "i" contains a "T" value. "ok" will be false and "t" will be zero if "i"

does not have a "T" value.

Type SWITCH

Multiple type assertions may be made sequentially using a type switch. In a

type switch, cases are specified rather than values, and these types are

compared to the type of the value carried by the given interface value. This

is comparable to a switch statement in general. A type switch has the

following syntax:

switch s := i.(type) {

case T:

// here s has type A

case S:

// here s has type B

default:

// no match; here s has the same type as i

}

In a type switch, the declaration syntax is the same as in a type assertion i.(T),

but the term type is used in place of a specific type T.

REST- REpresentational State Transfer

A set of standards for creating web services that follow the Representational

State Transfer (REST) principles is known as the principles of RESTful

design. Some principles of RESTful design are as follows:

● Client-server architecture: A RESTful web service ought to be

developed with a client-server architecture, which requires the client

and server components to be separated. The resulting division of

 25

responsibilities increases the system's flexibility and scalability.

● Statelessness: Every request should provide all of the information

needed to complete it in a RESTful architecture. This means that no

client-specific data or session state should be retained on the server.

Instead, each request must include all relevant information from the

client.

● Cacheability: Caching should be considered while developing RESTful

web services. This implies that server responses should state if and for

what duration the response can be kept. The server's load reduces while

performance is improved.

● Layered architecture: When developing RESTful web services, an

architecture of layers should be employed. This implies that there

should be numerous layers between the client and the server. Each layer

being in control of a specific set of responsibilities is flexible and

expandable.

HTTP RESPONSE STATUS CODES

● An HTTP response status code indicates the status of the request made

by a client to a server and also gives additional information about the

response. A three-digit number identifies each among the five status

code classes. The first digit indicates the response's class, while the next

two digits provide further information about that specific response.

● The first type of response code is 1xx, which indicates that the website's

server continues to process the request at the moment so the client should

continue to wait for the end result of the request. These codes are purely

for informational reasons and do not indicate whether a request was

successful or unsuccessful.

● The second category of response codes are the 2xx response code, which

indicate that the request for data was successful and that the website's

server was able to satisfy the client's request. The most common 2xx

code value of 200 indicates the success of the request and a response

 26

from the server.

● The third group of response codes is 3xx codes, which indicate that the

client needs to take more action to accomplish the request. The codes

above are used for redirected links, which is when the server sends the

client to a different site to obtain the requested item.

● The fourth category of response codes consists of the 4xx response

codes, that represent client-side problems. 404 code is the most

commonin these which indicates that a resource was not found.

● The final group of response codes are the 5xx codes, that indicate that

the server encountered an issue. 500 is the most common among these

signifying internal server error.

HTTP package

Common HTTP Protocols:

● Create: POST method for adding new data

● Read: GET method for retrieving data

● Update: PUT method for updating data

● Delete: DELETE method for deleting data

ServeMux(Multiplexer)

● ServeMux is an HTTP request multiplexer that executes requests by

matching their URLs to the correct handlers.

● Use http.NewServeMux to create a new ServeMux and the Handle and

HandleFunc methods to add a URL handler.

● A string and a http.Handler are accepted by the handle method. An

interface with the ServeHTTP method is provided by the Handle

method's second parameter.

● The handler implementation is sent to HandleFunc as a function along

with the path for which it should be called.

● Server is an HTTP server that allows you to manage various routes and

paths by passing an instance of a ServeMux.

 27

● You can completely omit the ServeMux if you have a route or path that

you want to manage by passing an instance of a http.Handler instead.

● The net/http package contains the Handle and HandleFunc methods as

well as the DefaultServeMux.

● If you have used http.Handle and/or http.HandleFunc to define the

handler implementations for the corresponding routes, the handler

parameter for the http.ListenAndServe method, which starts the HTTP

server, can be nil.

HTTPtest Package

● httpRequest: By simulating HTTP requests and responses, the HTTP

Test package offers a straightforward way to test HTTP handlers. For

testing purposes, a new incoming server request can be generated and

delivered to an HTTP handler using the httptest.NewRequest function.

A http.Request type instance is returned by this function.

● httpResponseWriter: In order to test the HTTP handler's response, we

must record every piece of information that it will include in the

response and then retrieve the information that was included later.

ResponseRecorder, a type offered by the HTTP Test package,

implements the http.ResponseWriter interface and saves the HTTP

response for further review in tests. Using the httptest.NewRecorder

function, we can construct a ResponseRecorder instance.

● w.Result(): The ResponseRecorder's Result() function can be used to

get the HTTP response object after the HTTP handler has finished

writing the response. The response produced by the handler is

represented by a pointer to an instance of http.Response that is returned

by the Result() function. The StatusCode, Header, Body, and optional

Trailer fields of this returned object will all be filled in. The HTTP

handler's functionality can then be checked by looking at these fields.

 28

Layered Architecture:

Our application's layers are intended to be independent of one another, and

they communicate with one another via clearly defined interfaces. Our

codebase may be made modular, readable, and maintainable using this

strategy. The HTTP layer, the Service layer, and the Store layer are the three

separate layers of the application.

The HTTP layer is in charge of checking headers, managing request body

data, and validating query and path parameters. The business logic is put into

practice by the Service layer, which also interacts with the Store layer to carry

out any required data storage actions. Database-level queries must be

implemented by the Store layer.

Through clearly defined interfaces that outline input parameters and output

types, each layer communicates with the one underneath it and the one above

it. This makes it simple to test each layer by simulating the server, database,

or interface as necessary.

 29

Fig 4.1: Three layered architecture flow

Dependency Injection:

Dependency injection is a technique used in software engineering that

promotes the separation of concerns and the principle of modularity. It

enables us to produce more tested, maintainable, and modular code.

 30

Whenever an object or struct is initialized via dependency injection, its

dependencies are supplied. This implies that we consciously decide when to

employ previously created instances of our dependencies and when to build

new ones. By doing this, we can simply change the dependency's

implementation without having to change the code that depends on it.

This method also aids in simplifying and decoupling our code. Traditionally,

dependencies are created and managed by objects in object-oriented

programming. As a result, objects become tightly coupled, which makes it

more difficult to test and manage them. We transfer this responsibility from

the objects to a different component by using dependency injection. In this

manner, objects are loosely connected to their dependents, which facilitates

testing and maintenance.

UNIT TESTING

Unit testing is a crucial step in the development of software since it helps to

assure code quality and catch problems as they arise. Go's built-in testing

package, which offers a straightforward and effective way to build and run

tests, makes unit testing simple.

Simply create a file with the "_test.go" suffix and import the "testing"

package to construct a test in Go. Once that is done, create a function with

the signature "func TestXxx(t *testing.T)" where "Xxx" stands for the name

of the function being tested. You can create test cases within this function

that use the "t" argument to report test results.

The testing package in Go also includes helpful functions to indicate

problems and failures, such as "t.Errorf" and "t.Fatalf." Additionally,

performance testing and optimization are possible when creating benchmarks

using the "func BenchmarkXxx(b *testing.B)" signature.

 31

Table-driven testing, where test cases are described in a table format to make

it easier to create and manage test cases, is a key idea in Go unit testing. This

method enhances code coverage and identifies edge cases that conventional

testing could have overlooked.

4.4 Layer working and Swagger Documentation

Code

main.go : source file all routers

 32

Upon running the main file using : go run main.go,

● Http server established on port 8080.

● Metric server that is part of the GOFR framework, starts on port 2121.

● Upon hitting endpoint on port 8080 on postman, the control transfers

to main and then our middleware for authentication.

MIDDLEWARE

 33

If required authentication is valid, the control then goes over to the handler

layer.

For Product entity:

HANDLER LAYER

http pkg : in the handler layer, we unmarshal the json body (in create and

update), check for invalid parameters - id and body and then send it to the

service layer.

Index: Index for products performs the GetAll and GetByName functionality

as the response can have multiple records.

Read: This function performs the GetByID functionality, which retrieves

record for a particular product ID.

Create: Here we create a new entry by passing the requested json body

followed by unmarshalling it and then passing it to the service layer to check

if all the data passed is valid and according to the parameters defined.

Update: Here we update an existing entry by passing the requested json body

followed by unmarshalling it and then passing it to the service layer to check

 34

if all the data passed is valid and according to the parameters defined.

SERVICE LAYER

service.go : Before storing the data in the database, we want to make sure all

the business logic is correct and thus we do the same in this layer. We make

sure all the fields are validated according to the rules designed.

GetProduct: this function calls the service layer with product id received

from handler and bool value corresponding to inclusion of brand details in

product record. Any error returned by the service layer call is in turn returned

to the handler, else a response with product details is sent.

GetProductByName: This function returns the response and error value

received from the store layer function GetByName.

GetAllProducts: A slice of all products is sent as response from the service

layer if no error is received from the store layer.

CreateProduct: We check if the data added is all valid and according to

rules defined. Once we discover that there is no error we pass it to the

datastore layer to store data in the database.

UpdateProduct: We check if the data to be updated is all valid, i.e. no

missing parameters. If no error occurs, store layer function UpdateProduct is

called by passing the context, id and product details. If rows affected value

returned is 0 then response for no record found is returned and GetByID for

brand’s store layer is called, to include brand name in response body.

 35

DATA STORE LAYER

Store pkg: In this layer we write the query to store data in our database and

check there are no db based errors.

Create: In this layer we create a new record in the db by executing sql query

and storing data in db

Update: In this function an existing record is updated in the db with the data

received from layers above.

Get By Id: retrieves product details for a given ID from the db

Get By Name: retrieves product details from the db for a given product name

Get All : retrieves all product details from the db

 36

For Brand Entity:

HANDLER LAYER

http.go : in the handler layer, we unmarshal the json body (in create and

update), check for invalid parameters - id and body and then send it to the

service layer.

Read: for a valid id given as path parameter, this function calls the service

layer GetBrand function. The response returned from the service layer is then

returned if no error occurs.

Create: After unmarshalling the request body, for a valid request, service

layer’s CreateBrand function is called and if no error is returned then the

created brand details are returned as response.

Update: For a given id, after unmarshalling the request body, for a valid

request, service layer’s UpdateBrand is called. For 0 rows affected, error for

no record found is returned. Else the updated brand details are sent as

response.

SERVICE LAYER

service.go : Before storing the data in the database, we want to make sure all

the business logic is correct and thus we do the same in this layer. We make

sure all the fields are validated according to the rules designed.

GetBrand: Calls store layer’s GetByID function by passing the id received

from the handler layer. For nil error, the brand details response is returned to

the handler layer.

 37

Create Brand: After checking for missing name parameter, if no error

occurs, store layer’s Create function is called.

Update Brand: After checking for missing name parameter, if no error

occurs, store layer’s Update function is called.

DATA STORE LAYER

store.go: In this layer we write the query to store data in our database and

check there are no db based errors.

Create: This layer interacts with the database to insert brand record details

sent from layers above.

GetByID: This function retrieves id,name of brand from db for a particular

brand ID received from layers above. For any scan errors, ‘entity not found’

error is returned to the service layer.

Update: Updates brand details for a particular brand ID

 38

4.5 SWAGGER DOCUMENTATION

 39

PRODUCT:

 40

 41

 42

 43

 44

BRAND:

 45

 46

 47

SCHEMAS

 48

 49

CHAPTER 5: CONCLUSION

5.1 Performance Analysis

1. Unit Test Coverage

Performed unit test coverage and found all 32 tests ran successfully

i.e PASS with a total coverage of 100%.

2. Linter Check

Performed a linter check using command golangci-lint run which

makes sure that the program is properly formatted and follows

standard code guidelines such as no gocognit complexity or funlen to

be 0 etc. There were no linter errors found in this project.

 50

5.2 Results Achieved

The primary objective of the training was to grasp and implement the

fundamentals of GoLang, MySQL, and Unit Testing while building a web

application that performs essential CRUD operations. The application was

designed using a three-layered architecture and could be tested using

Postman.

5.3 Applications Contributions

GoLang has been utilized in various open source and real-world applications.

Below are some notable applications:

1. Docker, which is a suite of tools used to deploy Linux containers and the

Kubernetes container management system.

2. Swagger

3. Postman

5.4 Limitations

The application implements only the backend part but front end can be done

for the same to make the application more attractive and user friendly.

5.5 Future Work / Scope

1. Front-end for application

2. Make the program more extensive

 51

REFERENCES

[1] Documentation Go. Available at: https://go.dev/doc/

[2] Golang (no date) Golang/Mock: Gomock is a mocking framework for the

go programming language., GitHub. Available at:

https://github.com/golang/mock

[3] Data-Dog Data-dog/GO-sqlmock: SQL mock driver for Golang to test

database interactions, GitHub. Available at: https://github.com/DATA-

DOG/go-sqlmock

[4] MySQL documentation MySQL. Available at: https://dev.mysql.com/doc/

[5] Linux.org. Available at: https://www.linux.org/

[6] Docker docs: How to build, share, and run applications (2023) Docker

Documentation. Available at: https://docs.docker.com/

[7] Postman (2023) Overview, Postman Learning Center. Available at:

https://learning.postman.com/docs/introduction/overview/

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

