
Case Study of Self Driving Car

Lane Detection using Digital Image Processing

Project report submitted in partial fulfilment of the requirement for the degree of Bachelor of

Technology

in

Computer Science and Engineering/InformationTechnology
By

Aryan Bathla 191434

Under the supervision of

Dr. Himanshu Jindal, Assistant Professor (SG)

To

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat,

Solan 173234, Himachal Pradesh

(i)

PLAGIARISM CERTIFICATE

(ii)

ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for His divine blessing

makes it possible to complete the project work successfully.

I am really grateful and wish my profound indebtedness to Supervisor Dr. Himanshu Jindal,

Associate Professor (SG), Department of CSE Jaypee University of Information

Technology,Wakhnaghat. Deep Knowledge & keen interest of my supervisor in the field of

“Computer Science” to carry out this project. Her endless patience, scholarly guidance,

continual encouragement, constant and energetic supervision, constructive criticism, valuable

advice, reading many inferior drafts and correcting them at all stages have made it possible to

complete this project.

I would like to express my heartiest gratitude to Dr. Himanshu Jindal, Department of CSE, for

his kind help to finish my project.

I would also generously welcome each one of those individuals who have helped me

straightforwardly or in a roundabout way in making this project a win. In this unique situation, I

might want to thank the various staff individuals, both educating and non-instructing, which

have developed their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patients of my parents.

Group No. - 54

Aryan Bathla

191434

(iii)

TABLE OF CONTENT

Content Page No.

Declaration by Candidate I

Certificate by Supervisor II

Acknowledgment III

Abstract IV

Chapter 1: INTRODUCTION

1.1 General Introduction ...1

1.2 Problem Statement ..2

1.3 Objectives ...3

1.4 Methodology..4

(iv)

1.5 Organisation..13

Chapter 2: LITERATURE SURVEY

2.1 Elaborative literature review...14

2.2 Table of Comparison...17

Chapter 3: SYSTEM DEVELOPMENT

3.1 Analytical ..20

3.2 Computational..21

3.3 Mathematical..22

(v)

Chapter 4 : Experiments & Result Analysis

4.1 Analysis ...24

4.2 Methods..26

Chapter-5 Conclusions

(vi)

LIST OF FIGURES

Figure No. Description Page No.

1. Gaussian Kernel 4

2. Sobel Kernel 5

3. Non Maximum Suppression 5

4. Hysteresis Thresholding 6

5. Triangular Mask 7

6. Block Diagram 9

7. Block Diagram 10

8. Research Objective’s Breakdown Structure 11

9. Minimalistic approach-based lane detection 13

10. Pixel Summation Output 14

11. Output 14

12. Boundary Detection using Feature-Based Methods 15

13. Flowchart 15

14. Architecture of Proposed Lane-GAN 16

(vii)

15. Training dataset 21

16. Input image and Gaussian Distribution 22

17. Gradient Vector Convolutional Results 23

18. Edge Detection 23

19. Non-Maxima Points 24

20. Hysteresis Thresholding 24

21. Image Space 25

22. Hough Space 25

23. Image Space 26

24. Hough Space 26

25. Image Space 26

26. Hough Space 26

27. Hough Space 27

28. Image Space 27

29. Hough Space 27

30. Image Space 27

31. Hough Transformation 28

32. Polar System 28

33. Sinusoidal Representation 29

34. Sinusoidal Representation for values of X and Y 29

35. Preprocessed Image (Grey-Scale) 31

36. Gaussian Blur 32

(viii)

37. Canny Edge Output 33

38. Sampling of an Image 38

39. Quantization of an Image 39

40. Experimental Canny edge Output 44

41. Lines by Canny Edge and Hough Transform 45

42. Final Output/Result 45

43. Sobel and Canny Edge Detection 45

(ix)

List of Tables

S.No Description Page No.

 1 Literature Survey 19

2 Sampling and Quantization 38

(x)

ABSTRACT

Self-driving vehicles have expanded dramatically over the last few years. The introduction of

autonomous vehicles will alter human existence. Large datasets and powerful computers are

needed for such systems. An emulator exists that makes it simple to produce the desired amount

of photos of a moving vehicle. On the basis of only the available photographs, the challenge

tried to anticipate and detect traffic lanes.

We use our eyes to choose where to go when we are driving. The lines on the road show us

where the lanes are, and we can guide the car using them as a constant reference. Naturally, one

of the first features we would like to build into a self-driving car is the ability to detect and

recognise lane lines using an algorithm. The problem of lane detecting is difficult to tackle. It

has long caught the interest of the computer vision community..

Lane detection, which has proven to be challenging for computer vision and machine learning

algorithms to tackle, is fundamentally a multi-feature detection problem. We offer a technique

based on image processing that uses Canny Edge Detection and region masking.

A growing technology used in cars to enable autonomous navigation is lane detecting. The

majority of lane-detection systems are built for properly designed roads and rely on the presence

of markings. The main drawback of these methods is that they can yield incorrect results or fail

to function at all when there are indistinct markings or none at all. This paper reviews one such

method for spotting lanes on an unmarked road before moving on to a better method. Both

methods only use data from vision or cameras and are based on digital image processing

techniques. The primary goal is to acquire a real-time curve value that will let the driver or

autonomous vehicle make necessary turns and stay on the road.

(xi)

1

CHAPTER 1

 INTRODUCTION

1.1 GENERAL INTRODUCTION

With the expansion of knowledge and communication technology as well as vehicle design,

the competition to develop and commercialize intelligent and autonomous cars has become

increasingly fierce. The comfort of the driver, the steadiness of the automobile, and improved

traffic efficiency are all features of these vehicles. Through a human-machine interface, the

advanced driving assistance system (ADAS) assists drivers by using the lane departure

warning system, lane keeping assistance system (LKAS), front collision warning system, and

smart parking assistant system (SPAS). In order to keep the car on track and close to the

centre of the lane when the system notices it straying from its lane, LKAS continuously

provides a modest amount of counter-steering force [1]. SPAS provides services that simplify

parking. to assist a driver in getting into the right position before starting Automatic steering

assistance along a predefined path is offered to help a driver get to the appropriate starting

position for beginning to reverse into a parking space [2]. An autonomous vehicle can reach

its destination without the driver needing to focus on the road in front of them. The route

tracking strategy and development of a lane detection system using techniques utilized in

autonomous and intelligent automobiles are explained in this paper. The most popular lane

line detectors are the Hough transform and convolution-based techniques. Lane detection is

the course of detecting lane markers on the road and thereafter presenting these locations to

an intelligent system. Intelligent vehicles cooperate with the infrastructure to achieve a safer

environment and better traffic conditions in intelligent transportation systems. The use of an

automated lane detecting system can range from as simple as indicating out lane positions to

the user on an external screen to more complex responsibilities like forecasting a lane change

in real time to avoid collisions with other vehicles.

2

1.2 PROBLEM STATEMENT

Finding sufficient real-world data to be fed into the potent deep learning algorithms that are

needed to carry out tasks like lane detection is one of the key challenges in edge detection in

self-driving automobiles. For it to develop the algorithms for self-driving vehicle

applications, a significant amount of data must be gathered and labeled. Collecting and

labeling real-world data takes time and money, and it is impractical to test every conceivable

event in reality, such as a car smashing at high speeds into a brick wall.

For self-driving automobiles, the issue of road lane detection and signal detection is to

automatically identify lanes and traffic signs. The ability to recognize traffic signs and road

tracks from video frames throughout the self-driving process is entirely owing to advances in

image processing and deep learning. In this study, the vehicle incorporates YOLO version 1

for object detection, a polynomial regression model with thresholding for lane guidance, and

a controller to coordinate data across the systems. The suggested methods can be applied to

steering suggestion, object identification, object location detection (left, front, or right), and

road lane guidance.

A crucial challenge is the detection and identification of objects in real time. A notable

instance of a security failure involves the 2016 Tesla autopilot accident, in which the

vehicle's sensors were mixed by sunlight and the system did not recognize the truck

approaching from the right, resulting in the crash. Real-time identification and detection of

objects is a critical task. The Tesla auto-pilot disaster in 2016 is a well-known example of a

security failure. In that incident, the vehicle's sensors were masked by the sun and the

algorithm failed to detect a truck approaching from the right, which resulted in the collision.

3

1.3 OBJECTIVES

Self-driving vehicles are not only a reality today, but their technology also provides a

preview of what complicated technology can look like in the future. To produce the greatest

autonomous vehicles possible, a large number of specialists from diverse fields have

collaborated. Lane detection is already a standard function in vehicles, and training models

for it needs a lot of real-world data. This information must take into account all possible

weather conditions, road topographies, driver actions, and drivers who are vulnerable in

order to construct completely autonomous vehicles. With the eventual goal of using this

system to create data for training models in self-driving cars, the idea for the system is to

build a system for recognising road lanes using Python and OpenCV. To enable the model to

focus on recognising lanes, the algorithm will employ Canny edge detection to recognize the

margins of the lane and a masking function to hide undesirable elements in images like trees,

rocks, and electrical lines. The suggested method accurately determines lanes in real-time by

using the Hough Transform to detect and draw lanes.

The following objectives are intended to achieve through this research:

1. To utilize computer vision algorithms i.e., canny edge detection algorithm for

detecting lane edges in real-time.

2. To develop a system which would detect lanes and develop a large volume of datasets

for building a lane detection system in self-driving cars.

3. To contribute to minimizing the time complexity in terms of collecting real life

dataset for developing lane detection system in self-driving cars

4

1.4 METHODOLOGY

1.4.1 Hough Transform

The threshold is automatically selected for threshold processing based on with edge

information once the Canny operator has located the edge of the image's region of interest.

Three limitations from the angles and lane width are suggested to enhance the Hough

transform's recognition of lane lines. As a result, rectilinear regression is used to fit the

proper lane lines.

1. Noise Reduction

Noise may be an important issue which frequently results in erroneous detection, as is the

case with all edge detection techniques. The image is convolved (smoothed) using a 5x5

Gaussian filter to lessen the detector's sensitivity to noise. In order to do this, a kernel of

normally distributed values is used to run across the entire image, adjusting each pixel's

value to the weighted mean of its nearby pixels. In this case, the kernel is 5x5.

 Fig 1: 5x5 Gaussian Kernel. The asterisk(*) denotes convolution operation.

5

2. Intensity Gradient

The smoothed image is then used using a Sobel, Roberts, or Prewitt kernel (Sobel is used in

OpenCV) to identify if the borders are horizontal, vertical, or diagonal.

 Fig 2: Sobel kernel for calculating the primary derivative of horizontal and vertical directions

3. Non-maximum suppression

 Fig 3 : Non-maximum suppression on three-point

6

4. Hysteresis Thresholding

Strong pixels are proven to be present in the final representation of edges following non-

maximum suppression. To identify whether weak pixels represent an edge or noise, further

analysis is necessary. Applying two preset threshold values, minVal and maxVal, we decide

which pixels are edges and which pixels aren't edges and should be eliminated. Edges are any

pixels with gradients in intensity bigger than maxVal. Pixels having an intensity gradient

within minVal and maxVal are only considered edges if they are linked to a pixel that has an

intensity gradient beyond maxVal.

 Fig 4: Hysteresis Thresholding on two lines

5. Segmenting line area

To increase the efficiency of our later stages, we will manually create a triangular mask to

segment that roadway area and eliminate the unnecessary portions of the frame. The three

coordinates, denoted by the green circles, will be used to define the triangular mask.

7

Fig 5 : The triangular mask is going to be defined by three coordinates, indicated by

the green circles.

1.5 ORGANISATION

We have explained the fundamental principles of self-driving cars in this project report,

as well as how lane detection, a crucial element of self-driving cars, operates.

Additionally, in order to acquire the finest computing capabilities for the same, we will

be experimenting with various methods and methodologies.

The fundamental concept of self-driving automobiles was covered in part one. Section

two, or the literature review, is divided into two sections. Section three, or the system

development portion, is divided into two sections. The performance analysis and

comparisons are presented in Section 4. The conclusion/final solution will be presented in

Section 5.

8

 CHAPTER 2

 LITERATURE SURVEY

Tullimalli Sarsha Sree and Sandeep Kumar Sathapathy

In order to locate the lane lines along the road, we're employing a software programme that

we are currently working on. The development of algorithms for self-driving cars depends

on their capacity to distinguish and follow lanes. Here, we'll estimate the price of

developing a software pipeline for tracking traffic lanes using computer vision techniques.

We'll approach this task using two different approaches. They are the hough transform

technique and convolutional neural networks (CNN). However, for safe driving, lane

markings may be a vital point of reference. This work suggests a modified Hough

transform-supported lane line recognition algorithm to increase the accuracy and speed of

lane line recognition.

The threshold is automatically selected for threshold processing based on with edge

information once the Canny operator has located the edge of the image's region of interest.

Three limitations from the angles and lane width are suggested to enhance the Hough

transform's recognition of lane lines. As a result, rectilinear regression is used to fit the

proper lane lines.

9

 Fig 6 : Block Diagram

Nidhi Lakhani, Ritika Karande, Deep Manek, Vivek Ramakrishnan

The rapid societal development has led to the rise of the automobile as a mode of mobility.

On the congested road, there are a rising number of different kinds of automobiles.

Intelligent car systems have made use of lane detection, a hot topic in the fields of

computer vision and machine learning. It is a new field that has applications in the business

sector. The vehicle's position and trajectory with respect to the lane are reliably

approximated by the lane detection system, which uses lane markers in a complex

environment. The lane exit warning system heavily relies on lane detection at the same

time. The two fundamental components of lane detection are detection of edges and line

detection. In the method of lane detection, line detection is just as crucial as edge detection.

10

The Hough transform and convolution-based methods are the most often used lane line

detectors. The process of recognizing lane markings on the road and then presenting the

positions to an intelligent system is known as lane detection. In intelligent transportation

systems, intelligent cars work together with the infrastructure to create a more secure

atmosphere and better traffic conditions. The use of a lane detection system can range from

straightforward jobs like pointing out lane positions to the user on an external display

through more complex ones like anticipating a lane change in an instant to avoid colliding

with other vehicles.

 Fig 7: Block diagram

Iftikhar Ahmad , Jin Ho Lee , and Soon Ki Jung

Every day, humans make a variety of decisions, many of which are influenced by the

sensory data we gather from our environment. The majority of this perception when related

to driving is visual. Autonomous vehicles, commonly referred to as self-driving

automobiles, are built to be able to recognise items in their environment and decide how to

react to them quickly. This creates a number of computer vision issues for autonomous

vehicles, including identifying pedestrians, other vehicles, lanes, and traffic signs. This

study specifically addresses lane detection, which is a vital component of a vehicle's

movement planning.

11

In this approach,a lane detection method suggested for the Asphalt 8: Airborne real-time

racing game utilising the Canny edge detection technique. The programming language's

Python Imaging Library (PIL)'s ImageGrab module is used to access the game's screen.

OpenCV is used to determine the lanes' boundaries using Canny edge detection, a popular

technique in computational image processing, and a masking algorithm was employed to

remove obstructions including trees, rocks, and cables. The game's lanes were marked and

drawn using the Hough Transform. The gaming environment features real physics,

graphics, and a range of settings, including lane-keeping aids like abrupt corners, slopes,

and various weather conditions.

 Fig 8 : Research Objective’s Breakdown Structure (RBS) of our study

12

Raja Muthalagu, Anudeep Sekhar Bolimera, Dhruv Duseja, Shaun Fernandes

In the modern world, people spend a lot of time driving or dealing with other automobiles

while walking on the streets. 1.35 million people worldwide lose their lives in traffic

accidents every year, and every day, up to 3,700 people die in collisions involving buses,

lorries, cars, motorbikes, bicycles, or people (Singh, 2015). Worldwide, the number of cars

on the road is also rising quickly (Bellis et al., 2008). Researchers have found that the

majority of traffic accidents are caused by human error.

A fully autonomous self-driving automobile is being developed as a result of the Advanced

Driver Assistance Systems (ADAS) that have been created in recent years to improve

passenger safety and comfort (Lu et al., 2005; Bengler et al., 2014; Liyong et al., 2020).

Perception, planning, and control are the three main components that make up self-driving

car technology. Researchers have put in a lot of effort to create new methods for increasing

driving safety and lowering traffic accidents. The majority of ADAS systems use a range

of sensors to detect lanes and objects on the highway. The detection of the lanes and

objects is proposed using a variety of camera vision techniques. Our contributions to this

work are outlined as follows:

1. To identify the straight lane lines, a simple lane identification method is suggested.

2. A CNNs-based model that is capable of learning to drive a vehicle using the driver's

driving data has been developed. This method teaches the car how to drive by mimicking

the actions of its owner.

3. The basic remote-controlled automobile has front-facing cameras that collect video, and

it employs the suggested delayed detection approach to identify lanes and objects.

 Fig 9: Minimalistic approach-based lane detection

13

Vighnesh Devane, Ganesh Sahane, Hritish Khairmode, Gaurav Datkhile

For lane curve fitting, the method [4] proposes an effective variation of the sliding window

algorithm. This enhanced variant has the benefit of allowing sliding windows to be used

even on uneven lane markers. In the second way, the road borders from the binary image

are used to apply this technique. The curve value and the car's offset are then calculated

using the geographic coordinates of the roadway boundaries.

The overall goal of the project is to make lane detection possible on roads with limited

visibility or worn-out lane markings. With the aid of image warping, thresholding, and

techniques like pixel summation and sliding window algorithm, this research attempts to

build lane detection for an efficient autonomous car. Finally, the benefits and drawbacks of

the aforementioned techniques as well as the most appropriate application scenarios have

been discussed.

 Fig 10: Pixel summation output Fig 11: Output

Jamel Baili, Mehrez Marzougui, Ameur Sboui, Samer Lahouar, Mounir Hergli

Lane detection has been the subject of numerous studies in image processing. A summary of

14

these studies reveals that they can be divided into two main groups. In the first, markers for

lanes in an input picture from a rear-view camera are recognised using the bird's-eye view

transform. The second group makes advantage of the front-mounted camera. In the latter

case, various image processing methods have been developed, such as the Probability of

Picture Shape (LOIS) algorithm, the B-Snake technique, and others. These algorithms

employ a variety of ways to extract features from an image, such as edges, using a feature-

based approach.

The suggested method has performed well, but it has to be tweaked to accommodate

inclement weather (such as rain and snow) and poor lighting (nighttime). We intend to

develop an LDW System in an integrated processor in future work and assure a robust

monitoring mode using information from TLC calculation.

 Fig 12 : Flowchart of lane boundary Fig 13 : Flowchart of our methodology

 detection using feature-based method

Yan Liu , Jingwen Wang , Yujie Li , Canlin Li

This paper proposes a lane detection system to address the challenge of lane detection in

hazy settings. The following list highlights the main contributions made by this study.

1. This page includes a dataset of blurred lane lines.

15

2. To improve the characteristics of the lanes & increase the effectiveness of blurring lane

recognition in complicated road settings, an upgraded GAN is utilised.

3. The proposed method outperforms existing state-of-the-art detectors in high speed and

difficult road conditions (line curves, dirty lane line, illumination change, occlusions),

resulting in a significant improvement over the current state-of-the-art detectors.

 Fig 14: Architecture of Proposed Lane-GAN

Zequn Qin, Huanyu Wang, and Xi Li

Applying global image features-based row-based selecting to lane detection. In other

words, our approach involves leveraging the global features to choose the appropriate lanes

for each predefined row. Lanes are modeled in our formulation as row anchors are a

sequence of horizontal points in predetermined rows. The initial stage in representing

places is gridding. The location is separated into several cells on each row anchor. This

makes it possible to compare the identification of lanes to the selection of specific cells

over predetermined row anchors.

According to the suggested definition, lane detection is a row-based selection problem that

needs to be solved using global features. The issue of speed and no-visual-clue can be

16

solved in this way. It is also suggested to employ structural loss to explicitly model lane

prior knowledge. Both the qualitative and quantitative testing support the value of our

approach and the structural loss. Particularly, our model with the Resnet-34 backbone

could reach the highest levels of accuracy and speed. Even at the same resolution, a

lightweight Resnet-18 version of our approach was capable of 322.5 FPS with a

competitive performance.

Ling Ding, Huyin Zhang, Jinsheng Xiao, Cheng Shuand Shejie Lu

The approach has its roots in a roadway segmentation and lane detection technique and

incorporates the cavity convolution used in DeepLabv1 and LMD algorithms as well as the

discriminant loss function used in LaneNet. To increase the receptive field, void convolution

is used in place of the extracted feature part's common convolutional layer. The discriminant

loss function stands out due to its simplicity of integration into various network structures and

the fact that instance segmentation is accomplished through post-processing. Additionally,

some works on denoising images initial processing have been discussed in earlier articles.

The correctness and robustness in the suggested method are confirmed after being tested on

different data sets and lanes in various weather conditions.

The algorithm has a significantly slower detection speed but a much higher detection

accuracy, especially when it comes to the recognition of corners and false actual lane lines. In

comparison, the deep learning algorithm can produce precise detection and has none of these

issues when it comes to effective detection.

Y. Wang, E. K. Teoh and D. Shen

The lane model is essential for lane detecting. The lane modelling must make a few

assumptions about the real structure of the road in order to fully recover 3D data from the 2D

static image. As we focus on creating the 2D lane model in this work, both sides of the road

borders are taken to be in line on the ground plane.

A fresh B-Snake-inspired lane model has been developed to describe the viewpoint effect that

results from general lane borders (or markings). It can depict a wider range of lane structures

than other lane models, like straight and parabolic models. Here, the challenge of finding the

middle of the lane and the challenge of detecting the two ends of the lane.

17

Gonzalez, J.P., Ozguner

Here, a vision for a system of intelligent cars is suggested. To find lane markers, the

algorithm makes use of the properties of the road's grey level histogram. The relationships

between each lane marker are then studied using a decision tree, and structures specifying the

lane boundaries are created. Additionally, the system produces images that can be utilised in

pre-processing stages in algorithms for lane detection, lane tracking, or obstacle detection.

The system operates in real-time at roughly 30 Hz speeds.

The two suggested approaches to the lane detecting problem turned out to be reliable

solutions. While requiring very little computational effort, the histogram-based segmentation

outperformed many conventional methods. The methodology enables us to take into account

image attributes that other approaches would have to forgo due to processing restrictions. The

technique can be modified to be used for applications like off-road navigation or terrain

classification.The decrease in processing time acquired and the decrease in data to be

processed by the following step (we are analysing just under half of the elements in the

image) should both be taken into consideration. A combined approach employing edge

detection and histogram-based segmentation might produce an incredibly trustworthy result if

additional processing capacity were available.

Table 1: Literature Survey

S.No Authors Advantages Disadvantages

1 Tullimalli

Sarsha Sree

and Sandeep

Kumar

Sathapathy

This study proposes a lane

line identification algorithm

supported by modified

Hough transform to improve

the precision and real-time

efficiency of lane line

detection.

More Image Focused

than Video graphic

Input

18

2 Nidhi Lakhani,

Ritika Karande,

Deep Manek, Vivek

Ramakrishnan

 It is a new field that has

applications in the business

sector. The vehicle's position

and trajectory with respect to

the lane are reliably

approximated by the lane

detection system, which uses

lane markers in a complex

environment.

Time Consuming in

video graphic inputs

3 Raja Muthalagu,

Anudeep Sekhar

Bolimera, Dhruv

Duseja, Shaun

Fernandes

Accurate Results To combat overfitting,

initially the use of

Dropout was made.

However, the

performance was

much worse.

4 Vighnesh Devane,

Ganesh Sahane,

Hritish Khairmode

Overall purpose of this

project is to enable lane

detection in poor road

conditions

More Image Focused

than Video graphic

Input

5 Jamel Baili, Mehrez

Marzougui, Ameur

Sboui, Samer

Lahouar, Mounir

Hergli

Different algorithms for image

processing have been created in

this latter situation, including

the Likelihood of Picture Shape

algorithm, the B-Snake

algorithm etc.

It has to be tweaked

to accommodate

inclement weather

(such as rain and

snow) and poor

lighting (nighttime).

6 Yan Liu , Jingwen

Wang , Yujie Li ,

Canlin Li

Aiming at the difficulty of

lane detection in blurred

scenarios, a lane detection

network

a blurred image is proposed

in this article.

Time Consuming in

video graphic inputs

7 Zequn Qin, Huanyu

Wang, and Xi Li

Feature aggregation method for

high-level semantics and low-

level visual information is also

depicted.

proposed formulation

regards lane detection as

a problem of row-based

selecting

19

8 Ling Ding, Huyin

Zhang, Jinsheng Xiao,

Cheng Shuand Shejie

Lu

To increase the receptive field,

void convolution is used in

place of the extracted feature

part's common convolution

layer.

the algorithm is much

slower in

detection speed

9 Y. Wang, E. K. Teoh

and D. Shen

A novel B-Snake inspired lane

model has been devised that

represents the viewpoint effect

of parallel lines.

More Image Focused

than Video graphic

Input

10 Gonzalez, J.P., Ozguner

The histogram-based

segmentation outperformed

many conventional methods.

In light to medium

traffic scenes, the high

level classifier

performed quite well;

but, in heavy traffic

scenes, it performed less

well.

20

CHAPTER 3

SYSTEM DEVELOPMENT

3.1 Analytical

Three cameras, in particular, are positioned behind the data-acquisition vehicle's glass. The

steering angle that the human driver utilised is captured in the time-stamped video from the

cameras. The vehicle's Controller Area Network (CAN) bus is used to get this steering

command. To make the technology independent of the car's design, they express the

vehicle's driving instruction as 1/r, with r is the turning radii measured in meters. To avoid

a singularity when going straight, they use 1/r instead of r. While travelling straight, the

turning radius is infinite; as 1/r approaches 0, left turns (positive values) effortlessly shift

to tight turns (positive values). The corresponding steering instruction (1/r) consists of a

few isolated video stills combined with the training data. 101397 frames with related

angular position, torque, and speed descriptors make up the training data set. We then used

an 80/20 approach to divide this set of statistics into training and validation. There is also a

test set of 5615 frames available. The picture has a 640x480 original resolution.

5 distinct driving films were used to create the training images:

1. 221 seconds, bright sunlight, and several lighting variations. Good twists at the start,

errant shoulder lines, a lane merge in the conclusion, and a split highway

2. There are no shoulder lines, the road merges lanes after 791 seconds of a divided

highway, there are many shadows, there is a green traffic signal, Direct sunshine,

numerous extremely narrow corners where the central camera is unable to see much of the

road, and swift elevation changes that provide substantial advantages and disadvantages

over the top. Around the 350s, the roadway makes a U-turn and rapidly changes back to 2

lanes.

3. 99 second roundtrip travel over the peak part on a divided highway

21

4. 212 seconds, a guardrail, and a two-lane road; training may be difficult initially owing to

shadows, but everything will return to normal at the end.

5. A split multi-lane motorway with moderate traffic, 371 seconds

 Fig 15: Training dataset

3.2 Computational

In the field of computer vision & image processing, the Canny edge detector is likely the

most well-known and often used edge detector. Even though it's not really "trivial" to

comprehend the Canny edge detector, we'll split down the steps into manageable chunks so

we can see what's really going on. Fortunately for us, OpenCV has already included the

Canny edge detector for us in the cv2.Canny function due to how frequently it is used in

virtually all computer vision applications.

You'll probably find a call to the Canny edge detector inside in the source code of many

image processing projects. The Canny edge detector is frequently used as a crucial

preprocessing step, whether we are determining the distance between our camera and an

item, creating a document scanner, or seeing a Game Boy screen in an image.

It requires following the procedures listed below when spotting edges in an image.

22

1. Using a Gaussian filter, noise in the input image is removed.

2. Calculating the Gaussian filter's derivative to determine the gradient of an image's pixels

and to determine its magnitude along the x and y dimensions.

3. Reduce the non-max edge contributing pixel points by taking into account a group of

neighbours for any curve extending in a direction orthogonal to the specified edge.

4. Utilising the Hysteresis Thresholding method, ignore pixels that are less than the low

threshold value and maintain those that are more than the gradient magnitude.

3.2.1 Noise Removal or Image Smoothing:

The pixel might not even be close to resembling its neighbours when noise is present. This

could lead to the identification of edges being inaccurate or incorrect. The desired edges in

the output images are prevented by the Gausian filter, that's organised with the picture and

removes noise, in order to prevent the same.

In the example below, we are convolving an image I with a gaussian filter, or kernel,

g(x,y). We employ the matrix [1 1 1] to retain the closeness between pixels and eliminate

noise in this case because we want to ensure that any particular pixel must be equivalent to

its neighbouring pixels in the output.

 Fig 16: I is Input Image and g(x,y) is Gaussian Distribution

To get the magnitude of the gradient along the dimensions, compute the filter's derivative

with respect to the X and Y axes and combine it with I. The tangential component of the

23

angle formed by the two dimensions can also be used to determine the image's direction.

 Fig 17: convolution results in a gradient vector that has magnitude and direction.

Here is an illustration of how Gaussian Derivatives contribute to the edges in the final

images.

 Fig 18: Edge Detection

24

3.2.2 Non-Max Suppression

It is typically noticed that only a few spots along an edge increase edge visibility.

Therefore, we can disregard edge locations that don't significantly increase feature

visibility. We employ the Non Maximum Suppression approach to do the same. Here, we

indicate the locations along the edge's curve wherever the magnitude is greatest. This can

be discovered by searching for a maximum and a slice that is perpendicular to the curve.

Take a look at the edge in the figure below, which contains three edge points. Assume that

point (x,y) has the highest gradient of an edge. Look for edge points that are parallel to the

edges and check to see if the slope is lower than (x,y).

 Fig 19: Non-Maxima Points along the curve

25

3.2.3 Hysteresis Thresholding

 Fig 20: Hysteresis Thresholding

If a pixel's gradient is as follows:

- Identify it as an "edge pixel" above "High."

- "Low" describes it as a "non-edge pixel" below.

- In the range of "low" and "high."

If a pixel is connected to another "edge pixel" or through pixels between "low" and "high,"

it is first declared a "edge pixel" by repeatedly taking into account its neighbours.

A feature extraction technique used in the analysis of images is the Hough transform.

Any regular curve, such as lines, circles, ellipses, etc., can have its features isolated using

the Hough transform. In its most basic version, the Hough transform can be applied to find

lines that are straight in an image. Applications where a straightforward analytic

representation of features is impossible can benefit from the use of a generalised Hough

transform. People typically avoid utilising the technique due to its computational difficulty.

Additionally, learning-based algorithms are capable of extracting intricate elements from a

picture or footage that are better suited to the issue at hand.

The most basic boundary identified in the image is a straight line. A border can be far more

complicated than just a single straight line. The picture space is converted into a rough

space. This changes a line in picture space into a point in high-dimensional space.

26

 Fig 21: Image Space Fig 22: Hough Space

The equation for the line in the image space is y = mx + c, m stands for the slope and c for

the y-intercept. A point of the form (m, c) will be created from this line in the Hughes

space. But for vertical lines in this representation, m is infinite. Let's instead use polar

coordinates.

 Fig 23: Image Space Fig 24: Hough Space

The length of the segment ρ and the angle θ it creates with the x-axis serve as

representations for the line. The line in question will be changed into a point through

hough space with the form (ρ,θ).

The parameter space is represented by a histogram array created by the Hough transform,

which is a M x N matrix with M different radius ρ values and N different angle values θ.

The total amount of non-zero pixels from the image being input that would be near to the

corresponding line is then determined for every parameter combination, and, and the array

is properly increased at position (ρ,θ).

3.2.4 Intuition for line detection

27

The intersection of several lines in picture space corresponds to the intersection of

several points in three-dimensional space.

 Fig 25: Image Space Fig 26: Hough Space

Lines crossing at a point (m, c) in hough spaces can be translated to the line y = mx + c in

image space in the same way.

 Fig 27: Hough Space Fig 28: Image Space

When a line in the picture space is composed of numerous segments or points that are near

the same line equation, the result is a large number of intersecting lines in the high-

dimensional space.

So let's take a look at a line in the picture space that has a few small discontinuities and is

an edge detected line. We may convert this discontinuous line from image space to hough

space and search for intersecting points in hough space to identify the continuous line in an

image. The continuous line in image space will be represented by this intersection point in

rough space.

28

 Fig 29: Hough Space Fig 30: Image Space

3.3 Mathematical

Two variables can be used to express a line in image space. As an example,:

Cartesian coordinate system: Parameters: (m,b)

Polar coordinate system: Parameters: (r,θ)

 Fig 31: Hough Transformation

 Fig 32: Polar System

29

Arranging the terms: r = xcosθ + ysinθ

1. In general for each point (x0,y0), The famly of lines such passes through that location

can be defined as follows:

 rθ = x0 ⋅ cosθ + y0 ⋅ sinθ

Meaning that each pair (rθ,θ) represents each line that pases by (x0,y0).

2. If for given (x0,y0) we plot the family of lines that goes through it, we get a sinusoid.

For in-stance, for x0 = 8 and y0 = 6 we get the follo.wing plot (in a plane θ - r):

 Fig 33: Sinusoidal Representation

We consider only points such that r>0 and 0<θ<2π.

3. We can also repeat the previous technique for all of the points that exist in that

particular image. If the curves of two different points intersect in the plane (θ - r),

That is, both points are on the same line. For instance, following with the example

above and drawing the plot for two more points: x1=4, y1=9 and x2=12, y2=3, we

get:

30

 Fig 34: Sinusoidal Representation for different values of x and y

The three plots intersect in 1 single point (0.925,9.6), these coordinates are the parameters

(θ,r) or the line on which (x0,y0), (x1,y1) and (x2,y2) lay respectively.

4. What does all the above statements or calculations mean? It means that in general, a

line can be detected by locating the number of intersections between curves. The more

curve intersecting means that the line reprsented by that intersection have more

points. In general, we can define a threshold of the min. number of intersections that

are needed to detect a line.

5. The Hough Line Transform performs this. It maintains note of where the curves of each

point in the picture cross. If the amount of intersections exceeds a certain threshold, it is

declared as a line with the intersection point parameters (,r).Standard and Probabilistic

Hough Line Transform

OpenCV implementations has two kind of Hough Line Transforms:

a. The Standard Hough Transform

● It basically comprises of what we just stated in the previous part. It gives you as result

a vector of couples (θ,rθ)

● It is implemented in OpenCV by the function HoughLine().b. The Probabilistic

Hough Line Transform

b. Probabilistic Hough Transformation

31

● A more efficient Hough Line Transform implementation. It gives as output the

extremity of the detected lines (x0,y0,x1,y1)

● HoughLinesP() is used in OpenCV library.

3.4 Experimental

We must convert our picture into grey scale because the Canny Edge detector requires such

images. Red, Green, and Blue pixels are being combined into one channel with a pixel's value

that is between [0,255].

import cv2 as cv

import numpy as np

import matplotlib.pyplot as plt

After importing libraries, we upload the image.

from google.colab.patches import cv2_imshow

from google.colab import files

files = files.upload()

Converting the uploaded image into grey scale using these lines of code:

img = cv.imread("um_000063.png")

gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

plt.imshow(gray)

plt.show()

32

 Fig 35: Preprocessed image (Grey scale)

Adding a Gaussian blur to our grayscale image is optional because the clever detector will

take care of this step for us.

blur = cv.GaussianBlur(gray, (10, 10), 0)

plt.imshow(blur, cmap ="grey")

plt.title("GaussianBlurr"), plt.xticks([]), plt.yticks([])

plt.show()

 Fig 36: Gaussian Blur

The gaussian filter's goal is to minimise image noise. We do this as Canny's gradients are

extremely noise-sensitive, so we need to get rid of as much noise as we can.

cv.GaussianBlur(image, ksize, sigma)

1. image – Image that is to be processed

33

2. ksize - dimension of the kerenel which we convolute over the image.

3. Sigma - defines the standard deviation along x axis.

The basic notion is to identify edges by detecting abrupt changes in luminance, such as a

transition from white to black or from black to white. The parameters are 3.

● The img option specifies the image on which we will identify edges.

● The threshold-1 variable filters out all gradients that are less than this value (they

are not considered edges).

● The threshold-2 parameter specifies the value at which an edge is considered valid.

● Any gradient in between the two thresholds will be considered if it is attached to

another gradient who is above threshold-2.

edges = cv.Canny(blur, 50, 150)

plt.imshow(edges)

plt.show()

 Fig 37: Canny edges image output

lines = cv.HoughLinesP(masked_edges, rho=6, theta=np.pi/60, threshold=160,

minLineLength=40, maxLineGap=25)

The algorithm's main logic is contained in just one line of code. The component that

converts those collections of white pixels from our remote area into actual lines is known

34

as the Hough Transform.

line_image = np.zeros_like(img)

for line in lines:

 x1, y1, x2, y2 = line[0]

 cv.line(line_image, (x1, y1), (x2, y2), (0, 255, 0), 5)

plt.imshow(line_image)

plt.show()

The lines generated by the cv2.HoughLinesP function are averaged out using this function.

Two solid lines having the mean slope & y-intercept of every line segment positioned to

the left and right, respectively, will be the outcome.

Each line segment has two coordinates in the final result of the cv2.HoughLinesP function:

one indicates the line's beginning, and the other its conclusion. We will determine the

slopes and the y intercepts of every line segment using these coordinates.

35

CHAPTER 4

EXPERIMENT AND RESULT

DIGITAL IMAGE PROCESSING TOOLS

4.1 GOOGLE COLABORATORY

A product of Google Research is Colaboratory, or "Colab" for short. Colab is especially

well-suited to machine learning, data analysis, and education. It enables anyone to create

and execute arbitrary Python code using the browser. Technically speaking, Colab is a

service for hosted Jupyter notebooks that offers free access to computer resources,

including GPUs, and requires no initial setup to use and is absolutely free to use.

The resources available to Colab are neither limitless nor assured, and the consumption limits

occasionally shift. This is required for Colab to provide resources without cost. Colab

prioritises its resources for active use cases. Actions related to mass computing, those that

have a harmful effect on others, and those that circumvent our policies are all prohibited. The

following are disallowed from Colab runtimes:

● file hosting, media serving, or other web service offerings not related to interactive

compute with Colab

● downloading torrents or engaging in peer-to-peer file-sharing

● remote control such as SSH shells, remote desktops, remote UIs

● connecting to remote proxies

● mining crypto currency

● running denial-of-service attacks

● password cracking

● using multiple accounts to work around access or resource usage restrictions

● creating deep fakes

Colab notebooks can be loaded through GitHub or stored in Google Drive. Similar to how

36

you would share Google Docs or Sheets, Colab notebooks can also be shared.

A virtual machine that is exclusive to your account runs code. Virtual machines have the

maximum lifetime imposed according to the Colab service and are removed after being

inactive for a while.Colab places a high premium on interactive computing. Inactivity will

cause runtimes to expire.

The no-cost edition of Colab's notebooks can run free up to 12 hours based on supply and

usage patterns. Colab Pro, Pro+, and Pay As You Go provide you more compute

availability based on the remaining amount of your compute units. According to

availability and usage patterns, notebooks usually have an optimal operating time of twelve

hours. Backend termination is what you may anticipate if you use up all of your allotted

compute sessions on a Pro, Pro+, or Pay As You Go plan.

If you possess enough processing power, Colab Pro+ provides continuous code execution

for a maximum of 24 hours. Idle timeouts are only effective following code execution.

You can use Colab's free edition to access virtual machines with a typical system memory

profile. You may use computers with a large memory system profile in Colab's paid

editions, subject to capacity and your computing unit level. The term "memory" refers to

the computer's memory. The memory profile is the same across all GPU chips.

When you are through working in Colab, think about closing your open tabs. Try to avoid

using extra memory or GPUs unless they are absolutely necessary. You will be less likely

to encounter use caps within Colab as a result of this. If you reach your limits, you can

always use Pay As You Go to buy more compute.

4.2 DIGITAL IMAGE PROCESSING

The practise of applying different techniques to the image in order to enhance it or extract

useful information from it is known as image processing. A photo is used as the input in

this particular type of signal processing, and the output may include another picture or

features or properties associated with the original image. One of the innovations that is

37

evolving swiftly is image processing. It is a focus of research in the domains of

engineering and information technology.

Basically, image processing involves these three steps:

● using image acquisition tools for image importation;

● analysing and editing the imported image;

● output, the output that can be a summary based on an image analysis or a changed

image.

Image processing techniques are classified into two types: conventional and digital.

Analogue image processing can be used on hard copies such as printouts and photographs.

Image analysts use various interpretational fundamentals while using these visual

techniques. The usage of digital image processing technologies allows for computer-based

digital image editing. All types of data must go through three general phases when using

digital techniques: pre-processing, augmentation, and presentation, and information

extraction.

4.2.1 Sampling and quantization

An image function f(x,y) has to be digitised both spatial and in amplitude to be appropriate

for digital processing. The analogue video stream is typically sampled and quantized using an

image grabber or digitizer. Therefore, we must convert continuous data into digital format in

order to build a digital image. These require two steps to complete it:

● Sampling

● Quantization

The number of grey levels in the digitised image is determined by the quantization level,

while the sampling rate defines the spatial resolution of the digitised image. In image

processing, the size of the sampled image is represented as a digital value. Quantization is the

process of converting an image function's continuous values into their digital counterparts.

38

For humans to be able to perceive the fine shading features in the image, the quantization

level count should be high enough. The fundamental issue with an image that is being

quantized with inadequate brightness levels is the appearance of spurious outlines.

Sampling Quantization

Digitization of co-ordinate values Digitization of amplitude values.

x-axis(time) – discretized and y-

axis(amplitude) – continuous.

x-axis(time) – continuous and y-

axis(amplitude) – discretized.

Before to the quantization procedure,

sampling is carried out.

Following the sample procedure is

quantification.

It establishes the digitised images' spatial

resolution.

It establishes how many grey levels there are

in the digitised photos.

It reduces c.c. to a series of tent poles over a

time.

It turns c.c. into a never-ending flight of

stairs.

 Table 2

 Fig 38: Sampling of an Image

39

 Fig 39: Quantization of an image of level 256

4.2.2. Resizing the Image

picture interpolation is the process of scaling or distorting a picture from one pixel grid to

another. Remapping is possible when correcting for lens distortion or rotating an image,

however image scaling is necessary when changing the total number of pixels. Zooming is

the process that increases the amount of pixels in an image in order to see more detail.

Interpolation makes use of known data for approximating values at unknowable points. By

using the numerical values of nearby pixels as a base, image interpolation aims to get the

most accurate estimate of a pixel's intensity. It has two directions of operation. Adaptive

and non-adaptive interpolation techniques are the two main categories.

4.3 PYTHON FOR DIP

Many libraries are available in Python for image processing, like

● OpenCV is a real-time computer vision-focused image processing library that finds

utility in a variety of fields, including object identification, mobile robots, 2D and

3D features toolkits, facial and gesture recognition, and human-computer

interaction.

● For processing and manipulating images, use the Numpy and Scipy libraries.

● Numerous image processing algorithms are offered by Sckikit.

40

● Python Imaging Library (PIL) – To carry out fundamental operations on images,

such as thumbnail creation, resizing, rotation, and file format conversion.

A 2D operation A picture can be represented by F(x,y), where x and y are spatial

coordinates. The peak to trough of F at that specific value of x,y is used to determine the

brightness of an image at a given location. If the x, y, and amplitude values are all finite,

we refer to the object as a digital image. In an array, pixels are arranged in rows and

columns. Pixels are the elements of an image that contain data about colour and intensity.

In the three-dimensional form of images, X, Y, and Z are changed into spatial coordinates.

Pixels are arranged in a matrix-like pattern. An RGB picture is what is meant by the term.

Images come in a variety of forms:

● Red, Green, and Blue bands make up the three layers of this two-dimensional RGB

image.

● Images in the grayscale format only have one channel and various degrees of black

and white.

Classic Image Processing algorithms include:

4.3.1 Morphological Image Processing

Because binary regions created by straightforward thresholding can be damaged by noise,

morphological image processing attempts to clean up the flaws in the binary images.

Utilising opening and closing processes, it also aids in bringing the image into focus.

Grayscale pictures can be used as an extension for morphological operations. It includes

non-linear processes that are connected to the organisation of an image's characteristics. It

depends not only on the numerical values of the pixels but also on their related ordering.

This method compares the related neighbourhood pixels with a small template called a

structuring element that is placed in various potential positions throughout the image.

41

4.3.2 Gaussian Image Processing

The outcome of blurring a picture with a Gaussian function is gaussian blur, commonly

referred to as gaussian smoothing. It is employed to lessen details and visual noise. This

kind of blurring creates a similar visual impression to seeing a picture through a translucent

screen. It can be used as a way to augment data in deep learning or for image improvement

at various scales in computer vision.

4.3.3 Fourier Transform in image processing

An image is broken down into cosine and sine components using the Fourier transform.

It can be used for many different things, including image filtering, image compression, and

image reconstruction. We shall consider the discrete Fourier transform as we are

discussing images.

Let's think about a sinusoid, which consists of three elements:

● Magnitude and contrast-related terms

● brightness-related spatial frequency

● Phase: connected to information about colour

4.3.4 Edge Detection in image processing

Edge detection is a method of image processing that locates the edges of objects in

pictures. It operates by looking for changes in brightness. Since the majority of the shape's

information is included in the edges, this could be quite helpful in obtaining valuable

information from the image. Traditional edge detection techniques find brightness

discontinuities. When detecting the changes in grey levels in a picture, it can react quickly

if a certain amount of noise is found. Edges are referred to as the local gradient maxima.

4.4 IMAGE PROCESSING LIBRARIES

4.4.1 OpenCV

Open Source Computer Vision Library is what it stands for. This collection contains more

42

than 2000 optimised algorithms that can be used for machine learning and computer vision.

Image processing techniques uses OpenCV in a variety of ways, some of which are given

below:

● Converting images between colour spaces, such as between BGR and grayscale,

BGR and HSV, etc.

● Applying thresholding techniques to picture data, such as basic thresholding and

adaptive thresholding.

● Blurring and using custom filters to photos are examples of image smoothing.

● Morphological manipulations of pictures.

● Building pyramidal images.

● Utilising the GrabCut algorithm to extract foreground from photos.

● Watershed algorithm image segmentation.

4.4.2 Scikit-image

It is an image preparation library that is open-source. With just a few built-in functions, it

can execute complicated manipulations on images using machine learning.

Even for individuals who are brand-new to Python, this module is pretty straightforward

and works with numpy arrays. Among the operations that scikit image may perform are:

● Use the try_all_threshold() method on the picture to implement thresholding

operations. Seven global thresholding techniques will be used. The filters module

contains this.

● Utilise the sobel() technique within the filters module to accomplish edge detection.

We must first convert an image to grayscale because this method demands a 2D

grayscale picture as an input.

● Use the filters module's gaussian() function to achieve gaussian smoothing.

● Use the exposure module to apply histogram equalisation, the equalize_hist()

method to apply conventional histogram equalisation onto the original image, and

the equalize_adapthist() method to apply adaptive equalisation.

● Use the rotate() function found in the transform module to rotate an image.

● Use the rescale() method in the transform module to rescale the image.

43

● Use the binary_erosion() and binary_dilation() functions in the morphology module

to perform morphological operations.

4.4.3 NumPy

You may also use this library to carry out basic picture operations like flipping, feature

extraction, and analysis.

Numpy multi-dimensional arrays can be used to represent images, hence their type is

NdArrays. A three-dimensional numpy array is a colour image. The RGB channels of the

multidimensional array can be divided.

The image can be subjected to the following operations using NumPy (the image is loaded

into a variable called test_img using imread).

● Use np.flipud(test_img) to flip the image vertically.

● Use np.fliplr(test_img) to flip the picture in a horizontal manner.

● Use test_img[::-1] to flip the image (the image is named img_name> after being

stored as a numpy array).

4.5 RESULTS

The following lines of code provided the desired output of this project:

● Importing the python libraries on google colab

import cv2 as cv

import numpy as np

import matplotlib.pyplot as plt

● Uploading the Image:

from google.colab.patches import cv2_imshow

from google.colab import files

files = files.upload()

● A png image file with name um_000063.png is uploaded and preprocessed by

converting it into grayscale for image processing

img = cv.imread("um_000063.png")

44

gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

plt.imshow(gray)

plt.show()

● Gaussian Blur

blur = cv.GaussianBlur(gray, (5, 5), 0)

plt.imshow(blur, cmap ="gray")

plt.title("GaussianBlurr"), plt.xticks([]), plt.yticks([])

plt.show()

● Canny Edge

edges = cv.Canny(blur, 50, 150)

plt.imshow(edges)

plt.show()

 Fig 40: Canny Edge detection output

● Region of Interest

mask = np.zeros_like(edges)

height, width = img.shape[:2]

roi_vertices = [(0, height), (width/2, height/2), (width, height)]

mask_color = 255

cv.fillPoly(mask, np.array([roi_vertices], dtype=np.int32), mask_color)

masked_edges = cv.bitwise_and(edges, mask)

● Hough Transformation

lines = cv.HoughLinesP(masked_edges, rho=6, theta=np.pi/60, threshold=160,

minLineLength=40, maxLineGap=25)

45

● Drawing Lines

line_image = np.zeros_like(img)

for line in lines:

 x1, y1, x2, y2 = line[0]

 cv.line(line_image, (x1, y1), (x2, y2), (0, 255, 0), 5)

plt.imshow(line_image)

plt.show()

 Fig 41: Lines created by Canny Edge Detection and Hough Transformation

● Overlaying lines on the original image and the display the final output

final_image = cv.addWeighted(img, 0.8, line_image, 1, 0)

plt.imshow(final_image)

plt.show()

 Fig 42: Final Output/Result

The Sobel operator's key benefits are that it is less complicated and takes less time.

46

The edges, though, are jagged. On the other side, non-maxima suppressing and

thresholding are used in the Canny techniques, which results in edges that are more

smooth. The Canny algorithm has the drawback of being more intricate and time-

consuming than Sobel. Having an understanding of these variations might help you

choose the best strategy or method for a given application.

Fig 43: Comparison of Sobel and Canny Edge Detection Methods

47

V

CONCLUSION

When we are driving, we make decisions based on our vision. Our constant point of

reference concerning where to direct the car is the lines on the roadway that the model

has identified as the lane markings. Additionally, this steering is automatic. Naturally,

automatically detecting lane lines with an algorithm is one of the initial tasks we would

like to achieve when creating a self-driving car. The region of interest (ROI) for road

detection must be adaptable.

The horizon will shift when moving upward or downward along a steep incline and

will no longer be determined by the frame's proportions. Additionally, this is

something to take into account when there are tight corners and heavy traffic.

In-depth research, designing, and planning resulted in the development of a lane

detection system that autonomous driving systems can use to identify lanes, ensuring

safer travel for the passengers in the car as well as for pedestrians and other vehicles in

the area. The system preprocesses the image frame using the clever edge detection

method before applying the Hough transform algorithm to highlight the lanes for the

user's convenience.

This method's key benefit is that it can anticipate the lane configurations on the road

without the need for a trained model. Instead, it actively receives the video frames as

input and actively recognizes the frame boundaries, which are subsequently returned to

the user as lanes. As a result, no effort is wasted creating, training, and testing a

dataset. With the help of this technology, users can swiftly integrate lane detection into

their autonomous driving systems.

Highway cameras can also use this technique to identify and ticket vehicles who are

driving outside of their lanes, endangering other drivers on the same route.

The standardization of associated image processing technology shall be done in

48

accordance with how artificial intelligence is now advancing the field of algorithm

research in digital image processing. Image enhancing methods based on deep

convolution neural networks are being gradually proposed, influenced by the

advancement of artificial intelligence and deep learning. This kind of approach can

provide the speed and accuracy requirements for digital image processing. This further

demonstrates the development of intelligence in underwater image processing.

It is possible to perform specific operations on an image in order to improve it or

extract valuable information from it. It is a kind of signal processing where a picture

serves as the input and the output can either be another image or attributes related to

the input image. One of the technologies with the quickest growth rate nowadays is

image processing. It also opens up a significant area for research in computer science

and engineering.

However, ease and miniaturization are also challenges which digital image processing

techniques must solve in order to expand the audience.

In summary, the technology for processing images has a significant social impact and

is employed in almost every aspect of people's lives. Digital image processing

continues to have a lot of new areas to investigate and will continue to advance and

develop in a more positive manner as long as human requirements continue to expand

49

REFERENCES

[1] Tullimalli Sarsha Sree and Sandeep Kumar Sathapathy, Volume: 07 Issue: 06 | June 2020,

‘Lane Line Detection using Hough Transform and Convolutional neural Networks’

[2] Nidhi Lakhani, Ritika Karande, Deep Manek, Vivek Ramakrishnan, Volume: 09 Issue: 04

| Apr 2022, ‘Lane Detection using Image Processing in Python’

[3] Raja Muthalagu, Anudeep Sekhar Bolimera, Dhruv Duseja, Shaun Fernandes, Volume:

22, no.4, 2021 , ‘Object and Lane Detection Techniques for Autonomous Car using Machine

Learning approaches’

[4] Vighnesh Devane, Ganesh Sahane, Hritish Khairmode, Gaurav Datkhile, ITM Web of

Conferences 40, 03011 (2021), ‘Lane Detection Techniques using Image Processing’

[5] Jamel Baili, Mehrez Marzougui, Ameur Sboui, Samer Lahouar, Mounir Hergli,2017

Second International Conference on Anti-Cyber Crimes (ICACC), ‘Lane Departure

Detection using Image Processing Techniques’

[6] Yan Liu , Jingwen Wang , Yujie Li , Canlin Li, Accepted: 28 April 2022 | Published:

30th April 2022 ‘Lane-GAN: A Robust Lane Detection Network for Driver Assistance

System in High Speed and Complex Road Conditions’

[7] Nushaine Ferdinand, May 5, 2020, ‘A Deep Dive into Lane Detection with Hough

Transform’

[8] Zequn Qin, Huanyu Wang, and Xi Li, August 5, 2020, ‘Ultra Fast Structure-aware Deep

Lane Detection’

[9] Ling Ding, Huyin Zhang, Jinsheng Xiao, Cheng Shuand Shejie Lu, CMES, vol.122, no.3,

pp.1039-1053, 2020, ‘A Lane Detection Method Based on Semantic Segmentation’

50

[10] Y. Wang, E. K. Teoh and D. Shen, 22, P 269-280, 2004, ‘Lane detection and tracking

using B-snake, Image and Vision Computing’

[11]Qiu, D., Weng, M., Yang, H., Yu, W. and Liu, K., 2019, June. Research on Lane Line

Detection Method Based on Improved Hough Transform. In 2019 Chinese Control And

Decision Conference (CCDC) (pp. 5686-5690). IEEE.

[12]Wu, P.C., Chang, C.Y. and Lin, C.H., 2014. Lane-mark extraction for automobiles under

complex conditions. Pattern Recognition, 47(8), pp.2756-2767.

[13]de Paula, M.B. and Jung, C.R., 2013, August. Real-time detection and classification of

road lane markings. In 2013 XXVI Conference on Graphics, Patterns and Images (pp. 83-

90). IEEE.

[14]Kunz, N. Chase. (2017) Vision-Based Control of a Full-Size Car by Lane

Detection. All Graduate Theses and Dissertations. 6534. Utah State University, United

States.

[15]Open-Source Autonomous Driving Dataset. (2017)

[16]Eskandarian A. (2012) Fundamentals of Driver Assistance. In: Eskandarian A.

(eds) Handbook of Intelligent Vehicles. Springer, London.

[17]Zhao, Z.Q., Zheng, P., Xu, S.T. & Wu, X. (2018) Object detection with deep

learning: A review, arXiv e-prints, arXiv:1807.05511.

[18]Bellis, Elizabeth, & Jim. (2008) National motor vehicle crash causation survey

(NMVCCS) .(SASanalytical user’s manual. No. HS-811 053.)

[19]Hernández, D.C., Hoang, V.D. and Jo, K.H., 2013, July. Vanishing point based image

segmentation and clustering for omnidirectional images. In the International Conference on

Intelligent Computing (pp. 541-550). Springer, Berlin, Heidelberg.

