

A COMPARATIVE ANALYSIS OF CODE AND NO-CODE/LOW-

CODE PLATFORMS

Project report submitted in partial fulfillment of the requirement for the

degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Akshat Gopal Sundriyal (191410)

Under the supervision of

Dr. Saurabh Srivastava

Dr. Ruchi Verma

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

i

CERTIFICATE

CANDIDATE’S DECLARATION

I hereby declare that the work presented in this report entitled “A COMPARATIVE ANALYSIS

OF CODE AND NO-CODE/LOW-CODE PLATFORMS” in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology in Computer Science and

Engineering/Information Technology submitted in the department of Computer Science &

Engineering and Information Technology, Jaypee University of Information Technology

Waknaghat is an authentic record of my own work carried out over a period from Feb 2023 to May

2023 under the supervision of Dr Saurabh Srivastava , Assistant Professor (Mathematics) and

Dr Ruchi Verma, Assistant Professor (CSE/IT).

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

Akshat Gopal Sundriyal, 191410

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr Saurabh Srivastava

Assistant Professor (SG)

Mathematics

Dated:

Dr Ruchi Verma

Assistant Professor (SG)

CSE/IT

Dated:

ii

PLAGIARISM CERITIFICATE

iii

ACKNOWLEDGEMENT

I would want to take this opportunity to show my sincere gratitude to everyone who offered their

unwavering cooperation and assisted me in successfully finishing my internship.

I want to start by thanking Miss Shivani Premi and Mr. Utkarsh for being my mentors, guides, and

challenges. I also want to express my gratitude to my family and friends for their unwavering

support while I was doing my internship.

I also appreciate the constructive criticism and assistance from my project supervisors, Drs.

Saurabh Srivastava and Ruchi Verma, as well as the other staff members of the Computer Science

and Engineering department at Jaypee University of Information Technology.

Akshat Gopal Sundriyal

191410

iv

TABLE OF CONTENT

1 INTRODUCTION

i. Introduction

ii. Description of Industry

iii. Problem Statement

iv. Objective

v. Methodology

1-15

2 LITERATURE SURVEY

16-17

3 SYSTEM DESIGN AND DEVELOPMENT

i. System Design Diagram

ii. System Design Implementation

18-34

4 PERFORMANCE ANALYSIS & RESULTS

i. Output using Traditional MERN Stack

ii. Output using NoCode Platforms

35-40

5 CONCLUSION

41

6 REFERENCES 42

v

LIST OF FIGURES

S.NO Figure Detail Page Number

1 Company Overview 3

2 MERN Diagram 7

3 3 Tier Diagram 10

4 Appsmith Logo 13

5 Apache Hop Architecture 14

6 Frontend Design 18

7 Backend Design 19

8 Hardware Requirements 20

9 Backend Folder Structure 20

10 Frontend Folder Structure 21

11 Index File of Server 22

12 Index File of MongoDB 23

13 Input Component 24

14 Main Controller File 25

15 CSS File 26

16 Get Pipeline 27

17 Post Pipeline 28

18 Update Data Pipeline 29

19 Fetch Webservice 30

20 Update Webservice 30

21 Save data Webservice 31

22 Appsmith Dashboard 32

23 Ngrok Setup 33

24 Update API 33

25 Save API 34

26 MERN Form 35

27 Dynamic Inputs 36

vi

28 Table with Pagination 37

29 Appsmith Form 38

30 Appsmith Table 39

vii

ABSTRACT

This project involves a comparison between the traditional coding platforms, that is MERN stack

with no-code/low-code platforms that are a buzz in the current industrial scenario. The project was

assigned to me by the company in order to help me get a better understanding of the skills and the

development tools that would be required in the company’s live project.

We start the project with creating a dynamic data capturing platform using the conventional coding

tools. We observed the advantages and disadvantages faced while making the platform according

to our needs. The similar process is repeated, now using the no-code/low-code platform. It was

ensured that the end product from both the techniques, should be as similar as possible.

In the end, we explored the benefits and limitations of both, MERN stack and No-code/Low-code,

platforms we faced and listed them out. In the conclusion, we find that these No-code/Low-code

platforms have the potential to provide a streamlined experience given more resources and better

customization as well as community support.

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The project's goal is to assess how no-code/low-code development and conventional coding fare

when it comes to platform interaction. Platforms for no-code/low-code development have become

increasingly popular in the software development sector in recent years. Platforms that require

little or no coding allow people to construct software applications. Instead, users can design their

apps using visual interfaces and pre-built modules, greatly decreasing development time and the

requirement for technical skills. Faster development cycles, lower costs, and greater development

process efficiency have all contributed to this transition. Additionally, no-code/low-code platforms

help companies get around the problem of the industry's lack of qualified developers. Businesses

of all kinds, from small startups to major corporations, are drawn to this new trend because they

want to create specialised apps fast and affordably. No-code/low-code platforms are positioned to

be crucial in the software development business as the demand for customised software

applications keeps rising.

No-code/low-code development platforms have become more popular recently, enabling users to

construct software applications without needing to write conventional code. These platforms aim

to democratise software creation by increasing accessibility while also accelerating development,

cutting costs, and lowering costs. The most typical method of creating software applications is still

traditional coding, which many developers still like because of its control and flexibility.

Platform integration is one area where choosing between standard coding and no-code/low-code

development is very crucial. Platform integration entails linking several software programmes and

services so they can operate together without any glitches. The success and effectiveness of the

integration can be greatly impacted by the development method that is used for this process, which

can be complicated.

2

On the one hand, traditional coding entails the creation of software programmes using

programming languages and custom code. While traditional coding has long been the standard, it

can also be a costly and time-consuming procedure. Additionally, creating custom applications is

challenging for non-technical people because it requires technical knowledge. Traditional coding

offers the freedom to interact with other systems as well as the capacity to construct highly

sophisticated and customised applications.

For some activities, such as creating intricate algorithms, designing systems, or low-level

programming, traditional coding is still required. Traditional coding, however, is frequently

viewed as a bottleneck in the development process, resulting in extended development periods and

higher expenses. Businesses are increasingly looking into new ways to enhance their software

development processes because traditional coding is no longer the only choice for creating

software applications since the introduction of no-code/low-code platforms.

1.2 Description Of Industry

Paxcom

PAXCOM provides cloud-based multichannel process management services for Commerce

(hereafter referred to as “Services”).

The Services are facilitated by a team of 400+ Ecommerce enthusiasts at PAXCOM, who love to

utilize their technology and knowledge for enabling Digital Commerce of products in all global

markets.

Data, statistics, consultation, and marketing solutions provided by PAXCOM are trusted and

implemented by some of the world's leading brands like PepsiCo, Mondelez, Britannia, Lenovo,

Wipro, and Abbott for their ecommerce-driven marketing strategy.

Our principles:

1. Honesty

Nothing is more important to Paxcomer than honesty and integrity in our work, and in the people,

we work with. We value authenticity and are committed to delivering real results.

3

Figure 1: Company Overview

2. Customer attraction

Our customers have made a significant contribution to what we are today. We work with our

customers as partners who care about their success, and we work hard to meet their needs and gain

their trust by making them happy.

3. Long-distance travel

When it comes to innovating, discovering new opportunities, simplifying things, and continuing

to learn and improve, we think a lot! We have never learned to ignore, either to our customers or

to ourselves.

4. Speed

Paxcomers believe in anticipation, planning, preparation, and action rather than simply responding

to circumstances.

5. Collaboration

4

We all work together to achieve the same goals as a large family. We respect and trust each other,

and we recognize the importance of the individual's role in our success.

6. Build a Paxcom logo

Every Paxcomer is a product representative and Paxcom agent. In all that we do, each one of us

integrates and reflects the values we stand for, and we strive to advance and strengthen the brand.

7. Have fun

We believe the work can be fun and rewarding. As a result, we strive to create a work environment

where Paxcomers can be fun and productive at the same time.

Paymentus

Paxcom is part of the Paymentus team - the world's leading electronic payment and payment

solutions.

Paymentus (NYSE: PAY) is a leading provider of cloud-based payment technology solutions and

solutions. We present our next-generation product list using a state-of-the-art technology stack for

more than 1,300 bill payers across North America. Our omni-channel platform provides consumers

with an easy-to-use, flexible and secure electronic payment billing experience with their favorite

payment channel and brand.

Paymentus's proprietary Instant Payment Network ™, or IPN, expands our reach by connecting

IPN partner forums with tens of thousands of debt collectors in our integrated payment, billing,

and reconciliation capabilities.

Paymentus offers taxpayers' costs for all sizes in a different vertical industry, including services,

financial services, insurance, government, communications and health care.

In 2004, Paymentus was born out of a desire to improve the way debt is repaid. Vision, innovation

and exemplary service have propelled Paymentus to be the leading electronic payment solution

and payment solution in the market, resulting in 1,700 customers, including some of North

America's largest taxpayers.

5

We know that in order to keep our solutions current and relevant, we need people with knowledge,

driving and the ability to promote the most exciting customer experience. Our highly dedicated,

intelligent staff have transformed the vision into a secure Customer Partnership, established by

SAAS and Payment Forum; one that enables direct billing organizations to provide integrated

customer information and improve the acceptance of electronic payment and payment services

services.

Recognized by Deloitte as one of North America’s fastest-growing companies for 4 years,

Paymentus consistently strives to develop better, faster, more secure, less expensive payment and

payment platforms. We are always looking for the highest number of our customers, in both

solutions and service.

That is what has led to our amazing growth over the past decade. We succeed when our clients are

successful. They thrive when their customer relationships are improved and, 25 subsequently, their

customers participate in these cost-effective electrical services at higher prices.

Paymentus differences: a payment tech that increases your compliance, effectiveness, key and

customer skills

1. MOST FUNNY

We believe in configuration, not customization. Our enhanced, law-based engine solves your

business needs and payment rules without customization.

2. ACKNOWLEDGMENTS

Our cloud-based platform is accessible through a host of APIs, iFrames and fully customized

solutions that offer 360 degrees of control over your user experience.

3. NEXT

As a compliant provider of PCI Level I, we help businesses reduce and eliminate the burden

of PCI.

4. SAFE AND RELIABLE

6

Our system is designed for 100% downtime and high security. Multi-layer detection and

blocking system, multi-level authentication, encryption and token processing ensures the

reliability and security of the transaction.

5. VERY CONNECTED

We cover more than 350 key programs, including the CIS, accounting and ERP systems, which

facilitate seamless payments, reporting and reconciliation to key financial systems and

operations.

6. BUILT FOR THE FUTURE

It is built from the ground up. On the basis of a single code and no version, we are able to

innovate constantly and stay ahead of ever-changing needs

1.3 Problem Statement

The software development industry has been undergoing a transformation in recent years with the

emergence of no-code/low-code development platforms. These platforms aim to provide a solution

to the shortage of skilled developers and enable non-technical users to create complex applications

quickly and easily.

However, the integration capabilities of these platforms with traditional coding approaches are still

uncertain.

• This project aims to address this problem by comparing traditional coding with no-

code/low-code development platforms to determine their integration capabilities.

• The project seeks to evaluate whether no-code/low-code platforms can deliver results

similar to traditional coding and provide an alternative approach for software development.

• The project also aims to identify the limitations and advantages of both traditional coding

and no-code/low-code platforms, thus helping developers and businesses choose the most

suitable approach for their software development needs.

7

1.4 Objective

This project compares the MERN stack's typical coding capabilities to those of newly developing

no-code and low-code development platforms, notably AppSmith and Apache Hop. The goal of

the project is to determine the benefits and drawbacks of both strategies for creating a dynamic

data capture platform.

• The primary goal is to evaluate whether no-code/low-code platforms can deliver results

similar to traditional coding and provide an alternative approach for software development.

The project will develop a Dynamic Data Capture Platform using both traditional coding

with the MERN stack and no-code/low-code platforms with AppSmith and Apache Hop.

This will provide a basis for comparing the development time, ease of use, and overall

effectiveness of both approaches. The project will also examine the level of customization

and flexibility offered by each approach, along with the ability to integrate with other

systems.

• The secondary objective of this project is to determine the potential of no-code/low-code

platforms, such as AppSmith and Apache Hop, to transform the software development

industry by enabling non-technical users to create complex applications quickly and easily.

The project will also highlight the limitations of no-code/low-code platforms and the

situations where traditional coding may still be necessary.

1.5 Methodology

1.5.1 Mern stack

• What is MERN Stack, and how does it work?

Figure 2: MERN Diagram

8

A whole suite of open-source software tools called the MERN Stack is used to develop online

applications that are scalable, high-performing, and reliable. The four main components of the

stack, referred to as MERN, are MongoDB, Express.js, React, and Node.js.

A database using NoSQL known as MongoDB is made to hold data in a document-oriented

fashion. Compared to conventional relational databases, it enables developers to store and

manage data in a more flexible and scalable manner.

Node.js, a server-side JavaScript runtime environment, uses the web application framework

Express.js to develop web apps and APIs.

React is a JavaScript library that is used to create user interfaces for web applications and is

well known for being fast and having reusable code.

Node.js is a flexible technology for creating web applications since it is used for server-side

scripting and enables developers to use JavaScript on the server-side.

The MEAN stack first appeared in the middle of the 2000s, as JavaScript gained popularity

and single-page apps became more common. The NoSQL database MongoDB, the web

application framework Express.js, the front-end JavaScript framework AngularJS, and the

server-side JavaScript runtime environment Node.js made up the MEAN stack. Building

scalable online applications and real-time applications was where this stack was most helpful.

As we can see, Angular.js is used by MEAN's end-to-end JavaScript framework, whereas

React and its ecosystem form the foundation of the MERN stack. MERN Stack was created to

enable updates as easily as feasible.

• Why should we build mobile and web apps with the MERN Stack?

Because it offers a strong and flexible set of technologies to construct contemporary, scalable

applications, the MERN stack is a well-liked option for developing online and mobile

applications.

Search Engine Optimized: Search engine optimisation, or SEO, is the act of making a website's

pages more friendly to search engines like Google, Yahoo, and others so that the material may

be found by users entering relevant search terms. The objective is to increase organic traffic to

9

the website and the website's position in search engine results pages (SERPs). A website is

inherently SEO friendly if it was created with MERN technology.

Better Performance: A website is said to perform better when the reaction time between the

backend and the frontend is reduced, which leads to quicker loading times and increased speed.

This makes it possible for consumers to access website material more quickly and easily,

improving website performance as a whole.

Enhances Security: The security of online applications is significantly improved by MERN

technology. Web application security is the use of various procedures, methods, and tools to

safeguard web servers and online programmes, such as APIs, from attacks from the internet.

Applications built on the MERN stack can simply be linked with secure hosting companies,

increasing security. The security precautions of MERN-based apps are also strengthened by

the use of security technologies like MongoDB and Node.js.

Fast Delivery: MERN Stack makes it possible for web and mobile applications to be developed

and delivered more quickly, offering clients prompt service. The technological stack offers

effective tools and resources that let developers create and launch apps efficiently. Businesses

benefit from the time and resource savings, which gives them a competitive edge in the market.

Fast Conversion: The MERN stack technology enables online and mobile applications to be

quickly converted to meet client needs. The technology stack's effective tools and resources

enable developers to easily adapt and change programmes to suit the needs of certain clients.

This makes it possible for companies to provide their clients better and more accommodating

services.

The MERN stack's four technologies are all open source and publicly usable, giving developers

important tools to address problems that can occur while working on open portfolios. In the

long run, this is advantageous for developers since it makes it simple for them to acquire

resources and support from a community of developers using related technologies. The MERN

stack's usage of a single language allows for a seamless change from client to server, making

10

the development process quick and easy. It is an effective and adaptable technological stack

for developing web and mobile applications since switching between client and server is

simple.

• What is the structure of MERN and how does it work?

The 3-tier architectural system at MERN is composed of three layers:

Figure 3: 3 Tier Diagram

The user interface components, such as web pages or mobile applications, are found at the

uppermost layer, sometimes referred to as the Presentation layer or Client-side layer.

The middle layer, sometimes referred to as the application layer or server-side layer, is where

the programme's business logic and processing elements that control and handle user requests

are located.

The database or data storage components of the programme that store and retrieve application

data necessary to fulfil user requests are included in the bottom layer, also referred to as the

database layer or data access layer.

Let’s learn about these three layers.

11

React.js is a crucial part of the MERN stack for the frontend layer and is frequently used to

create the user interface of online applications. It is renowned for making it simple to develop

powerful client-side apps. With React, developers can create intricate user interfaces with just

one component and connect them to the data on the backend server. Using React Native, React

can be used to create both online and mobile applications. Additionally, it encourages code

reuse, which has several benefits and helps engineers save a lot of time. One of its standout

benefits is the capacity to modify page data without requiring a complete page reload, enabling

the development of expansive web applications with improved user interfaces.

The server is the middle tier of the MERN system's three tier design, and it is primarily

managed by the MERN stack's Express.js and Node.js libraries. Because Express.js is a

component of the Node.js server, these two parts operate together. Express.js is a powerful

server framework that is frequently used to improve JavaScript Frameworks and provides

developers with simple access to trustworthy APIs and web servers. Node.js, on the other hand,

is an open-source server platform that works with JavaScript code without the requirement for

a browser. JavaScript is used by Node.js to help users build a variety of network services,

online applications, and mobile applications. Additionally, the server-side layer of the MERN

stack's HTTP objects can benefit from Node.js' beneficial functionalities.

The database, which houses all the data related to your application, including content,

analytics, user profiles, comments, and more, is an essential component of the MERN Stack.

The backend of the website is mostly managed by MongoDB, which also guarantees the data's

security and integrity. The database keeps an accurate and current record of the data used by

the application, which is readily available to users as needed. To guarantee that users may still

access the requested information even if the system malfunctions, the website stores data and

makes several copies of the data files. However, because MongoDB takes a distinct approach

to data storage and retrieval, it cannot be used with a website structure that is built on tables.

A well-known NoSQL database, MongoDB doesn't need relational tables or a defined schema

to hold data. MongoDB instead stores data in a special format without tables, rows, or columns.

12

1.5.2 AppSmith

Programmers can quickly create web applications without writing a lot of code using the open-

source, low-code AppSmith development platform. Users can design custom UI components and

workflows that match their specific needs using the platform's drag-and-drop interface. With

AppSmith, users may build programmes that connect to a variety of databases, external services,

and APIs.

The JSX programming language, which is built on the React framework, is used by the AppSmith

platform. Users have access to a selection of UI components that are already in use and may be

included in the user interface of their application. This collection contains widgets that are

frequently used in web applications, such as buttons, text input fields, dropdown menus, and other

widgets.

Additionally, AppSmith enables users to include a variety of data sources, including SQL

databases, NoSQL databases, and APIs, into their apps. The popular databases PostgreSQL,

MySQL, MongoDB, and DynamoDB, as well as the APIs offered by services like AWS, Google,

and Facebook, are all supported by AppSmith.

Appsmith has several advantages, including the following:

• Improves development speed by providing pre-built UI components and a drag-and-drop

interface.

• Allows easy integration with various data sources and third-party services, such as

databases and APIs.

• Enhances application security through built-in security features like access control and user

authentication.

• Enables collaboration among team members through version control and collaboration

features.

• Provides an open-source platform that allows developers to customize the platform and

contribute to its development.

• Simplifies the deployment and scaling process, reducing the need to manage infrastructure.

• Facilitates low-code development, which allows developers with little coding knowledge

to build web applications quickly.

13

The server-client design of Appsmith uses Node.js to build the server, which offers backend

services like authentication, authorization, and database connectivity. The user interface is

delivered by a client that was created using React.

The platform uses an API to communicate amongst its many microservices, which divide various

functions into discrete units. For instance, the database microservice manages database

connectivity and query execution while the authentication microservice handles user

authentication and authorisation.

In order to facilitate integration with different data sources and services, Appsmith uses a plugin

architecture. Node.js-based plugins can be installed and set up by users to integrate with their

applications.

The platform can be deployed on a variety of cloud platforms, including AWS, Google Cloud, and

Microsoft Azure, thanks to its scalable and fault-tolerant architecture, which uses tools like

Kubernetes and Docker.

Figure 4: Appsmith Logo

1.5.3 Ngrok

Using the tool Ngrok, developers may create secure tunnels between a public endpoint and a local

web server. It performs the function of a reverse proxy by enabling external access to programmes

that are run locally or behind a firewall.

It assigns a distinctive URL that enables visitors to the outside world to access the local application

by establishing a connection between the local server and Ngrok's server. The confidentiality and

privacy of the sent data are guaranteed by Ngrok's encryption.

14

By doing away with the requirement to deploy programs to a remote server for testing, it

streamlines the development process. Developers may easily create a tunnel and choose the port

on which their server is running thanks to its simple command-line interface.

1.5.4 Apache Hop

An open-source platform for data processing and integration called Apache Hop assists users in

managing data pipelines for the movement and transformation of data from diverse sources. Users

of the platform can drag and drop components to create data pipelines using the platform's

graphical user interface. Each element carries out a certain data processing function, such as

reading data from a file, filtering the data, and writing the data to a database.

It allows users to develop unique components while also providing pre-built components for

readers, writers, transformations, and validators. The data formats, sources, and sinks that Apache

Hop supports include databases, file systems, messaging systems, CSV, JSON, and XML.

Figure 5: Apache Hop Architecture

15

Multiple users can work on the same data pipeline at once because to the platform's version control

and collaboration features. Additionally, it provides monitoring and logging features that allow

customers to keep tabs on how their data pipelines are being used and troubleshoot problems.

Each module in the architecture of Apache Hop has a particular function in the processing of the

data flow. The platform is made to be scalable, effective, and extensible, and it is created using

Java.

• The core module of Apache Hop manages pipeline execution, which includes pipeline

scheduling, component execution, and error handling. The metadata module manages

pipeline component metadata, including input and output fields, and provides an API for

accessing and modifying the metadata.

• The GUI module of Apache Hop provides a graphical user interface that allows users to

build and manage data pipelines through drag-and-drop components on the canvas,

configure properties, and connect components to form a pipeline.

• The plugins module of Apache Hop enables users to extend the platform's functionality

with custom components. This allows users to create their components using Java or other

programming languages and integrate them into their pipelines.

• The hop-server module of Apache Hop provides a REST API for remotely executing and

monitoring data pipelines through a web-based interface. This allows users to schedule

pipeline execution, monitor pipeline progress, and retrieve pipeline results.

16

CHAPTER 2

LITERATURE SURVEY

2.1 React Documentation

The React documentation is a thorough manual offered by the React team that provides developers

using the React library with in-depth explanations, examples, and directions. It provides code

snippets and best practices to help with building effective React code, covering all crucial topics

like components, state management, hooks, and more.

The documentation is frequently updated and contains details on the most recent releases as well

as migration instructions. It is a priceless tool that gives both novice and seasoned developers the

information and direction they need to create effective React apps.

2.2 Javascript Documentation

Developers working with the JavaScript programming language can find thorough instructions,

explanations, and examples in the JavaScript documentation. It covers a variety of JavaScript

features, including syntax, data types, functions, objects, and built-in APIs. As a reference guide,

this documentation provides thorough explanations of JavaScript features, functions, and

properties.

Additionally, it provides information on browser compatibility, allowing programmers to confirm

that their code runs properly on various web browsers. New language features and standards are

continually incorporated into the JavaScript documentation. Developers of all skill levels can use

it as a useful tool to help them understand and utilize JavaScript's full capabilities in their projects.

2.3 Mongodb Documentation

MongoDB uses its library - mongoose to make the code more readable, concise and efficient.

Mongoose is used widely to enhance the code readability.

17

2.5 Express Js Documentation

Express is a minimal and flexible Node.js web application framework that provides a robust set of

features for web and mobile applications. Routing, middleware, request handling, template

engines, and other subjects are covered.

2.4 Appsmith Documentation

Companies create in-house applications, referred to as admin tools or internal tools, to aid their

teams in carrying out specific tasks such as managing dashboards, handling databases, and

facilitating customer support. Appsmith, an open-source developer tool, streamlines the swift

development of such internal tools. Its drag-and-drop feature enables the construction of user

interfaces on a grid-style canvas, while facilitating seamless integration between the UI and data

sources to enhance application development. Additionally, Appsmith supports JavaScript within

widgets, queries, and various components, allowing for the inclusion of logic, data transformation,

and the creation of intricate workflows.

2.5 Apache Hop Docs

The documentation for the Apache Hop data integration platform is a thorough and in-depth source

that provides advice and instructions on utilizing it. It addresses a number of Hop-related topics,

including as installation, configuration, transformation development, workflow construction, and

deployment, and it gives developers the knowledge they need to properly utilize the platform's

capabilities and functionalities.

18

CHAPTER 3

SYSTEM DESIGN AND DEVELOPMENT

3.1 System Design Diagram

Figure 6: Frontend Design

Figure 7: Backend Design

19

3.2 System Design Implementation

Identification of features:

• Creation of an adaptive form incorporating versatile fields capable of accommodating

dynamic data types.

• A single form can encompass numerous dynamic fields.

• Simultaneous inclusion of multiple forms is feasible.

• Displaying a dynamic Data Grid upon request.

• The Data Grid incorporates flexible column labels and the ability to customize the

number of rows to be displayed.

• The Data Grid page seamlessly implements pagination based on the specified row display

count.

• Creation of Database in the event of nonexistence, followed by seamless retrieval of the

collection to enable comprehensive CRUD operations.

• Creation of API end points to interact between frontend and database of our application.

Hardware configuration:

Figure 8: Hardware Requirements

20

Implementation using traditional coding (MERN Stack):

Folder hierarchy and workspace:

Figure 9: Backend Folder Structure

Figure 10: Frontend Folder Structure

21

Backend Implementation:

Libraries and Tools:

• Express.js: Web application framework for handling routing, middleware, and server logic.

• Mongoose: MongoDB object modeling tool for schema creation and database interaction.

• Body-parser: Middleware for parsing request bodies.

• CORS: Middleware for handling Cross-Origin Resource Sharing.

Initialization of primary index file:

The project's primary file, index.js, serves as the starting point for a Node.js application. It uses

essential elements for handling HTTP requests, including Express.js, body-parser, and CORS

middleware. The programme is set up to listen on port 3000 so that it can take inbound queries.

Figure 11: Index File of Server

Three important API endpoints—GET, POST—have been defined in the file. When utilising the

imported Mongoose model as the interface for dealing with the MongoDB database, these

endpoints are in charge of carrying out specified activities.

• The GET endpoint utilizes a route handler to retrieve data from the database using the

Mongoose model and sends it back as a response to the client.

22

• An instance of the Mongoose model is created with the supplied data in the case of a POST

request, and it is saved in the database by the route handler after being extracted from the

request body.

• Users can delete a particular resource by its ID using the POST endpoint itself. The route

handler uses the Mongoose model to locate and remove the appropriate resource, returning

a response to show that the operation was successful.

Creation of Model Repository:

The data models are kept in a single location, folder named models. It is made up of several files,

including an index file for utilising the Mongoose library to connect to the MongoDB database.

The schemaless design of the form using Mongoose is defined in another file located in the models

folder. The structure and validation guidelines for the form data are contained in this file.

Figure 12: Index File of MongoDB

This particular model is accessible for use in the project's server component due to the main index

file of the models folder, which exports it.

23

Frontend Implementation:

Creation of Source Folder:

The src folder, serving as the core directory of a React application, encompasses a diverse range

of subfolders and files essential to its overall functionality. Within this folder, the components

subfolder is of importance, containing crucial reusable components pivotal to the application's

operations.

Components Folder:

• The Form component emerges as a pivotal entity responsible for rendering and managing

user input within an intelligently structured form. It not only establishes an aesthetically

pleasing layout for capturing data but also incorporates robust validation mechanisms to

ensure data integrity.

• The Input component plays a pivotal role in the user interface by enabling the creation of

input fields where users can conveniently furnish their data. Armed with a multitude of

features, including placeholder text, input type validation, and meticulous error handling,

it provides a seamless user experience and augments data accuracy.

Figure 13: Input Component

24

• The Table component, a formidable asset within the system, possesses the ability to

showcase tabular data in a highly structured and visually pleasing manner. Offering an

array of advanced functionalities such it empowers users to efficiently analyze and interact

with data, thereby elevating the overall data visualization experience.

• The Table component, a fundamental building block of the application, showcases data in

a tabular format with exceptional flexibility. It not only allows for the customization of

column labels, providing a user-friendly interface that adapts to varying data sets, but also

grants users the ability to personalize the number of rows displayed at a time. By

implementing pagination functionality based on the specified row display count, the Table

component ensures efficient navigation through large datasets.

• The Pagination component, an integral part of the system, serves the purpose of presenting

data in a segmented and organized fashion. By dividing large data sets into manageable

pages, it empowers users to effortlessly navigate through different sections.

Controllers Folder:

The folder serves as a crucial part of the application's backend structure. It contains a JavaScript

file that acts as a bridge between the frontend and the backend server. This file utilizes the axios

library to facilitate communication and data exchange between the two components.

25

Figure 14: Main Controller File

The App.js file is a central component in the application's frontend structure. It serves as the main

container where different components and functionalities are brought together to create a dynamic

and interactive user interface. It orchestrates the rendering of various elements, such as forms,

inputs, pagination, and tables, allowing users to capture and manipulate data

Styling the Application:

The styling of the application is done using CSS. The use of CSS for styling has a number of

benefits. The presentation can be easily separated from the underlying HTML structure, to start.

This makes a website more adaptable and maintainable since changes to the visual appearance

may be made without affecting its structure or content.

All major web browsers accept CSS, making it a dependable and widely used standard for web

styling. This guarantees predictable and consistent style rendering across many devices and

browsers.

Figure 15: CSS File

26

Implementation using No Code/ Low Code Platforms:

Backend Implementation Using Apache Hop:

Creation of Pipelines:

For the project, pipelines have been built utilising Apache Hop to carry out various data processes.

These pipelines, which go by the names getData, postData, and updateData, each play a particular

part in how data is handled by the application.

• The primary goal of the getData pipeline is to extract data from the MongoDB database. It

processes data from the database as input to produce a JSON output. This pipeline plays a

key role in extracting data and structuring it so that it can be used or processed further by

other application components.

Figure 16: Get Pipeline

Extracting information from a MongoDB collection is the responsibility of the "Mongo

Input" component. It creates a connection to the MongoDB server and retrieves the

pertinent information based on the parameters you specify, like queries or filters. The

subsequent pipeline component receives the obtained data after that.

The "Enhanced JSON output" component, on the other hand, uses the input data from the

"Mongo Input" component and adds further processing to create an array called "result."

This array represents a modified version of the input data that includes certain

improvements in accordance with pipeline specifications.

27

• HTTP POST requests are handled by the postData pipeline. Data from the request body is

taken, properly formatted, and checked to make sure it is in the right format for MongoDB

database storage. This pipeline is crucial in maintaining fresh data given via POST

requests, which enables the application to successfully store and handle user-generated

content.

Figure 17: Post Pipeline

A body variable from the request supplied by the browser is received by the "Get

Variables" component. The data in this body variable needs to be handled by the pipeline.

This information is retrieved by the component and sent to the pipeline's following stage.

The "Enhanced JSON Output" component does the required changes to put the input data

that it receives from the "Get Variables" component into the proper format. The data may

need to be formatted in accordance with predetermined criteria, certain fields may need to

be filtered, or data modifications may be applied.

The "Mongo Output" component, which connects to the MongoDB database, receives the

processed data at the end. The component then stores the data by inserting it into the proper

MongoDB collection.

• The updateData pipeline is in charge of updating current data in the MongoDB database.

Data from an HTTP request is received, formatted in accordance with the necessary update

criteria, and compared to the pertinent data in the database. The pipeline, in addition to

updating data, also provides the functionality to delete files using the "isDeleted" boolean

attribute present in each data entry. When triggered by an HTTP POST request by a discard

button, this pipeline identifies the specified data entry, marks it as deleted by setting the

28

"isDeleted" boolean to true, and updates the corresponding record in the MongoDB

database.

Figure 18: Update Data Pipeline

The body variable from the request sent by the browser must be obtained via the "Get

.Variables" component. The data in this body variable needs to be handled by the pipeline.

The component gathers the necessary variables and sends them on to the pipeline's

following step.

The "JSON Input" component does the necessary transformations to guarantee that the

input data is in the proper JSON format after receiving it from the "Get Variables"

component. Depending on the demands, it can entail parsing and reformatting the JSON

structure.

To the "Mongo Output" component is where the processed data is transferred. In this

instance, the component is set up to update the data in the MongoDB database because the

"update data" checkbox is selected. The component locates the corresponding data in the

database by using a matching key that was chosen using a set of criteria. The appropriate

modifications are subsequently applied to the MongoDB collection's matching records.

Creating API Endpoints:

A part of the Apache Hop framework called Apache Hop WebsService Metadata is used to specify

and set up web services within a project. It offers a methodical way to handle the particulars and

preferences pertaining to the creation, deployment, and use of web services. Users and outside

29

systems can communicate with the application's data features through these endpoints. It includes

various options like:

• Name - The name of the web service. This is the name that is passed into the webService

URL.

• Enabled - Enables or disabled the web service

• Filename on the server - This is the filename on the server. Make sure that the pipeline you

want to execute is available on the server.

• Output transform - The name of the transform from which this service will take the output

row(s).

• Output field - The output field from which this service will take data from, convert it to a

String and output it

• Content type - The content type which will get reported by the webService servlet

• List status on server - Enable this option if you want the executions of the web service

pipeline to be listed in the status of the server.

• Request body content variable - This is the name of the variable that, when it is being used

in a programme, will hold the request body content. When making a POST request to the

webservice, this is helpful.

Following API endpoints are created using the Webservice Metadata

• The fetch pipeline serves as an API endpoint for retrieving data from the MongoDB

database. It responds to HTTP GET requests and returns the data in JSON format.

Figure 19: Fetch Webservice

30

• The updateData pipelines function as API endpoints for submitting new data and updating

existing data in the MongoDB database. They handle HTTP POST requests, and process

the incoming data accordingly.

Figure 20: Update Webservice

• The postData pipeline is responsible for processing incoming data sent through an HTTP

POST request. This pipeline takes the data from the request's body, formats it according to

the desired structure, and then inserts it into the MongoDB database.

Figure 21: Save data Webservice

31

By integrating these pipelines with Apache Hop Server, the project can easily create API endpoints

for data retrieval, submission, and updates.

Frontend Implementation using AppSmith:

Creation of Landing Page:

First, we create a new application from our dashboard. Then we create the main page of our

application. There is a container that contains a table on this page.

The table's columns have headers like Name, Phone, Address, and Age to give the data a structured

look. A fetch API call is conducted to get the required information that will be displayed on the

website before rendering the table. By doing this, it is ensured that the table has the pertinent data

that was retrieved from the backend of our application.

The table includes particular features, such as the "Update" section. An "Update Data" button is

included in this area, and clicking it causes the associated update API to run. The most recent data

is then refreshed and obtained through a fetch API request, guaranteeing that the updated

information is appropriately shown.

Using the "Discard" button on the table, values can be softly deleted from the database. The

application changes the appropriate data entry's "isDeleted" field to true and marks it for deletion

when the discard button is pressed. After that update API is called and the above process is repeated

to ensure refreshed data is shown.

The user is directed to the form page via a button on the website. This button offers a simple way

to move around the application's components.

Form Page:

A container component that acts as a form for data entry is present on the page. The container

originally has a default field with the label "Name." On the other hand, the user has the freedom

to add more dynamic input fields in accordance with their needs. There is a delete option next to

each of these fields, allowing the user to eliminate any blank fields.

32

Figure 22: Appsmith Dashboard

The page has a submit button, which is inactive until all the input fields are filled in, to protect the

integrity of the data. The user can submit the form after filling it out with the necessary data. A

post API call is started when the button is clicked, sending the form's data to the database for

storage. The form is then reset, enabling the user to enter fresh data without the influence of earlier

inputs.

Integrating Backend with Frontend:

Data pipeline integration into the Appsmith application is made simple by integrating Apache Hop

with Ngrok. To enable external access to the locally hosted Apache Hop server, Ngrok functions

as a tunnelling service.

Ngrok is set up to expose the Apache Hop server to the internet in order to establish the integration.

Ngrok creates a public URL that routes incoming requests to the local server by providing the local

port of the Apache Hop server.

33

Figure 23: Ngrok Setup

The configuration allows for the integration of Apache Hop with Appsmith.

Creation of various APIs in AppSmith:

Figure 24: Update API

34

Figure 25: Save API

35

CHAPTER 4

PERFORMANCE ANALYSIS & RESULTS

4.1 Output Using Traditional Mern Stack:

A highly flexible and interactive online application was produced by using the MERN (MongoDB,

Express.js, React, Node.js) stack to create dynamic data capture platform with data presentation

features.

Figure 26: MERN Form

React, a flexible JavaScript toolkit renowned for its component-based architecture, was used to

construct the frontend. The virtual DOM and effective rendering of React allowed for the creation

of reusable and modular components for the dynamic form. The building of logical input fields,

dropdown menus, and buttons was possible thanks to the ease with which the frontend

development route could be navigated. The form validation, data manipulation, and submission

processes were made easier using React’s component lifecycle functions, enabling a responsive

and engaging interface.

36

Figure 27: Dynamic Inputs

Express.js was the backend framework used to manage HTTP requests and create API endpoints.

Due to its flexible and basic design, routing and middleware configuration were made easier while

the frontend and MongoDB database were smoothly integrated. A scalable environment for

processing form data and assuring high-performance execution was given by the backend, which

was driven by Node.js.

The effective storing and retrieval of form data was made possible by the integration with

MongoDB, a NoSQL database. The dynamic nature of the form combined with MongoDB’s

flexibility in its schema and document structure allowed for simple adaptation to meet changing

data needs.

37

Figure 28: Table with Pagination

Overview of MERN Stack:

• Complete Customization and Control: The MERN stack gives developers total flexibility

and control over the whole development process. Developers have the freedom to plan and

construct any component of the application to meet their unique needs, from the frontend

using React through the backend with Express.js and Node.js. High-end, one-of-a-kind

solutions can be developed with this degree of control.

• Huge Community and Ecosystem: The MERN stack has a sizable and active developer

community, which means there are a tonne of tools, guides, and open-source libraries

accessible. Rapid development and problem-solving are made possible by MERN’s broad

ecosystem since developers can use already-developed solutions and draw on community

knowledge. This network of support speeds up development and increases productivity.

• Development Time and work: Compared to low-code platforms like Appsmith and Apache

Hop, building a project from scratch using the MERN stack takes more time and work.

Although the MERN stack allows for customization and flexibility, it also necessitates

manual coding and configuration, which can lengthen the development cycle.

38

4.2 Output Using Nocode/Low Code Platform:

Using AppSmith and Apache Hop, a dynamic data capture platform that can display data was

successfully created. The project’s goal was to use the low-code platforms’ capabilities to build an

extremely flexible and interactive form while 38inimize3838 the manual coding work and

complexity generally associated with conventional development methods.

Figure 29: Appsmith Form

The frontend components of the dynamic form were designed and implemented using an easy-to-

use visual interface offered by AppSmith, a potent low-code platform. It made it simple and quick

to create form elements like input fields, dropdown menus, and checkboxes because to its drag-

and-drop capabilities and pre-built UI widgets. The visual editor in AppSmith made it simple to

set up the form’s layout, design, and validation guidelines, removing the need for manual code and

shortening the development cycle.

The backend implementation of the dynamic form relied heavily on Apache Hop, a no-code data

integration platform. It supported smooth integration with the form and allowed for the extraction,

transformation, and loading (ETL) of data from diverse sources. The visual workflow designer in

Apache Hop made it possible to build data pipelines for the structured transformation, aggregation,

and storage of form submission data.

39

Figure 30: Appsmith Table

Thanks to Apache Hop’s ETL capabilities, the data that was submitted through the form was

quickly processed and saved in a backend database. The user-friendly data components in

AppSmith were then used to dynamically display the retrieved information.

The simplicity and quickness of development made using AppSmith with Apache Hop

advantageous. Due to the low-code nature of these platforms, substantial manual coding was not

necessary, allowing the project to go quickly. Without extensive knowledge of programming

languages or intricate backend infrastructure, developers were able to create and configure the

form and the accompanying data processing workflows thanks to the visual interfaces offered by

both platforms.

Overview of Apache Hop and AppSmith:

• Rapid Development: By reducing the need for human coding, AppSmith and Apache Hop

offer a low-code/no-code environment that speeds up development. To design and create

the dynamic form rapidly, developers can make use of pre-built components, drag-and-

drop capability, and visual interfaces. This greatly cuts down on development time and

speeds up prototyping and iteration.

• Simplified Integration: Apache Hop and AppSmith provide simple connectivity with a

range of data sources and APIs. Processes like data extraction, processing, and loading are

made easier by the built-in connectors and adapters they offer. This makes it easier to

40

integrate the dynamic form with databases, backend systems, and outside services. The

simplified integration possibilities get rid of manual configuration and 40inimize mistakes.

• Low Resources: When compared to well-known frameworks and stacks like the MERN

stack, low-code platforms like AppSmith and Apache Hop have less documentation and

community support, which could be a drawback. These platforms frequently have a smaller

user base, which results in less resources, tutorials, and community forums available to

handle complicated problems or offer thorough help. Because of the lack of thorough

documentation, troubleshooting and problem-solving procedures may take longer, which

could affect project completion dates and overall development effectiveness. Furthermore,

there may be fewer community-driven plugins, extensions, or integrations available,

necessitating more bespoke development or workarounds.

• Low-code platforms may offer a vast choice of pre-built components and functionality but

may be limited in their ability to be customised. It's possible that low-code platforms won't

be able to give the MERN stack with the same level of freedom and control as traditional

coding.

41

CHAPTER 5

CONCLUSION

5.1 Conclusion

This project report has examined the comparability of the MERN stack and no-code/low-code

platforms for creating online and mobile applications. The results imply that no-code/low-code

platforms can provide the MERN stack with considerable advantages when given better resources

and customisation choices.

Platforms that need little or no coding, like AppSmith and Apache Hop, make it easy to create

applications quickly. Because these systems support drag-and-drop capabilities, visual interfaces,

and pre-built components, they eliminate the need for manual coding and shorten development

cycles. Because no-code/low-code platforms are simple to use and offer streamlined integration

possibilities, they can be quickly prototyped and iterated upon, making them ideal for projects with

condensed development cycles.

However, it's critical to recognise that the availability of improved resources, in-depth

documentation, and a supportive community are crucial for no-code/low-code platforms to be

effective. The lack of development in these areas can be problematic for complicated projects or

cutting-edge functionality. Before deciding to use a particular no-code/low-code platform,

developers and organisations must carefully evaluate the resources and assistance offered by that

platform.

Overall, compared to the MERN stack, no-code/low-code platforms have the ability to provide a

more streamlined and effective development experience when given more resources and

customization possibilities. They are an appealing option for projects with shorter schedules or

those looking for a higher level of flexibility and simplicity of use because they enable rapid

prototyping, simplified integration, and significant customization. To make informed judgements

and increase development efficiency, it is essential to properly assess the capabilities and

limitations of no-code/low-code platforms in relation to project needs.

42

5.2 Future Scope

• Development of a fully functional application with additional features and functionalities.

• Deployment of the developed applications on Kubernetes and Docker containers for

enhanced scalability and portability.

• Exploration of the integration possibilities between no-code/low-code platforms and

artificial intelligence (AI) technologies.

43

REFERENCES

[1] React. (n.d.). React Documentation. Retrieved from https://reactjs.org/docs

[2] JavaScript. (n.d.). JavaScript Documentation. Retrieved from https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference

[3] MongoDB. (n.d.). MongoDB Documentation. Retrieved from https://docs.mongodb.com

[4] Express.js. (n.d.). Express.js Documentation. Retrieved from https://expressjs.com/en/api.html

[5] Node.js. (n.d.). Node.js Documentation. Retrieved from https://nodejs.org/en/docs

[6] Apache Hop. (n.d.). Apache Hop Documentation. Retrieved from

https://hop.apache.org/documentation.html

[7] AppSmith. (n.d.). AppSmith Documentation. Retrieved from https://docs.appsmith.com

[8] Ngrok. (n.d.). Ngrok Documentation. Retrieved from https://ngrok.com/docs

[9] MERN Stack. (n.d.). MERN Stack Tutorial - Build a MERN App From Scratch. Retrieved

from https://www.mongodb.com/mern-stack

https://reactjs.org/docs
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://docs.mongodb.com/
https://expressjs.com/en/api.html
https://nodejs.org/en/docs
https://hop.apache.org/documentation.html
https://docs.appsmith.com/
https://ngrok.com/docs
https://www.mongodb.com/mern-stack

