CONSTRUCTION OF 4-LANE CONNECTOR FROM DELHI MEERUT EXPRESSWAY (KM. 50+000 of PKG-IV) to (KM. 8+520) of NH-235 IN THE STATE OF U.P ON EPC MODE

A

PROJECT REPORT

Submitted in partial fulfilment of the requirements for the award of the degree

Of

BACHELOR OF TECHNOLOGY

IN

CIVIL ENGINEERING

Under the supervision

Of

Dr. SAURAV (ASSISTANT PROFESSOR)

&

Dr. SAURABH RAWAT (ASSOCIATE PROFESSOR)

By

NISCHAY THAKUR (191603)

То

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT SOLAN-173234

HIMACHAL PRADESH, INDIA

DECLARATION

I hereby declare that the work presented in the Project report entitled "CONSTRUCTION OF 4-LANE CONNECTOR FROM DELHI MEERUT EXPRESSWAY (KM. 50+000 of PKG-IV) to (KM. 8+520) of NH-235 IN THE STATE OF U.P ON EPC MODE" submitted for partial fulfilment of the requirements for the degree of Bachelor of Technology in Civil Engineering at Jaypee University of Information Technology, Waknaghat is authentic record of my work carried out under the supervision of Dr. Saurav and Dr. Saurabh Rawat. This work has not been submitted elsewhere for the reward of any other degree. I am fully responsible for the contents of my project report.

Nischay Thakur (191603)

Department of Civil Engineering

Jaypee University of Information

Technology, Waknaghat

CERTIFICATE

This is to certify that the work which is being presented in the project report titled "CONSTRUCTION OF 4-LANE CONNECTOR FROM DELHI MEERUT EXPRESSWAY (KM. 50+000 of PKG-IV) to (KM. 8+520) of NH-235 IN THE STATE OF U.P ON EPC MODE" in partial fulfilment of the requirements for the award of the degree of Bachelor of Technology in Civil Engineering submitted to the Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat is an authentic record of work carried out by Nischay Thakur (191603) during a period from February 2023 to May 2023. During this period I was working under highway Construction Company under Delhi Meerut highway project.

The above statement made is correct to the best of our knowledge.

Date:

Dr. SauravDr. Saurabh RawatAssistant Professor (Senior Grade)Associate ProfessorDepartment of Civil EngineeringDepartment of Civil EngineeringJUIT, WaknaghatJUIT, Waknaghat

ACKNOWLEDGEMENT

First, I express my heartiest thanks and gratefulness to Lord Shiva for His divine blessing to make it possible to complete the project work successfully.

I would like to express my sincere thanks and gratitude to my entire teaching staff for letting me work on this project. I am very grateful towards my department for their support and guidance in completing this project. The success and final end of this project necessitated a great deal of direction and assistance from a large number of people, and I am really fortunate to have received it over the duration of our project. All of what I have accomplished is due to such oversight and support, and I would want to thank everyone who gave their time and expertise to this project.

I would like to express my sincere appreciation towards Dr. Saurav Kumar, Assistant professor (SG) and Dr. Saurabh Rawat, Associate Professor, Department of civil engineering Jaypee University of Information Technology, Waknaghat for their invaluable assistance and compassionate supervision during the project

The success and final end of this project necessitated a great deal of direction and assistance from a large number of people, and I am really fortunate to have received it over the duration of my project. All of what we have accomplished is due to such oversight and support, and we would want to thank everyone who gave their time and expertise to this project.

No expression of appreciation is complete without recognition of the prayers, good wishes, advice and moral support of my affectionate parents, which helped me immensely to achieve my goal.

TABLE OF CONTENT

Title	Page No.
Declaration	Ι
Certificate	Π
Acknowledgement	III
List of Figures	VII
Abstract	IX
Chapter 1: Introduction	1
1.1 General Project Detail	1
1.2 Project Location	2
1.3 Location Map of Project	3
1.4 Project Technical Detail	4
1.5 Project Description	7
1.6 Pre Construction Activity	10
1.7 Key Plan of Project	11
1.8 Safety and Traffic Management	12
1.9 Mobilization Resource	13
1.10 Lab Equipment Report	14
1.11 General Notes	18
Chapter 2: Strip Plan of Highway	22
2.1 Planning from Chainage ($0+000$ - To $-2+710$)	23
2.2 From Chainage (3+240 - To - 6+420)	25
2.3 From Chainage (6+440 – To – 9+650)	27

2.4 From Chainage (9+660 - To – 12+880)	30
2.5 From Chainage (12+890 - To – 14+490)	32
Chapter 3: Structural Drawing and Work at Site	34
3.1 Vehicular Under Pass (VUP)	34
3.1.1 Planning of VUP	35
3.1.2 Section C-C of VUP	37
3.1.3 Construction of Haunch	38
3.1.4 Site Details	38
3.1.5 Notes	40
3.2 Light Vehicle under Pass (LVUP)	42
3.2.1 Cross section, front and side view of LVUP	43
3.2.2 Site view (side &front) of LVUP	44
3.2.3 Concreting of raft foundation	45
3.2.4 Weep holes and head wall	46
3.3 Box culvert at chainage (13+600) and (12+970)	48
3.3.1 Box culvert sectional plan (13+600)	49
3.3.2 Construction at site	50
3.3.3 Curing of structure	52
3.4: Pipe culvert	54
3.4.1 Planning of pipe culvert layout	56
3.4.2 Construction of pipe culvert	57
Chapter 4: Result and Site Work Progress	59
4.1 Structure progress	59

4.2 Physical progress	60
4.3 Road work progress	61

LIST OF FIGURES

Figure No.	Caption	Page No.
1	Location of Project	2
1.1	Location (Map) of the Project Highway	3
1.2	Site Location	4
1.3	Embankment Work	10
1.4	Batching plant at site	14
3.1	VUP detailing and planning	34
3.1.1	Staging of VUP(A)	35
3.1.1	Staging of VUP(B)	35
3.1.2	Plan of VUP (TOP VIEW)	36
3.1.3	Section C-C of VUP	37
3.1.4	Detailing of Haunch	38
3.1.5	Concreting of Haunch (250X250mm)	38
3.1.6	Curing of Slab and wall	39
3.1.7	Curing of Slab and wall	39
3.1.8	Tran mixer (7 cum ²) and Concreting of side wall, using vibrator	40
3.2	Plan of LVUP, at 7+193.5	42
3.2.1	(A) Cross Section of Underpass	43
3.2.1	(B) Front view of LVUP	43
3.2.2	Side view (A)	44

3.2.2	Front view (B)	44
3.2.3	Concreting of Rafting (Total concrete used = 33 cum.s)	45
3.2.4	(A) Weep hole at Side wall	47
3.2.4	(B) Head wall	48
3.3	Detail and plan of Box Culvert	49
3.3.1	(A) – Side view provides us length of Raft	49
3.3.1	(B) Front view providing details of Haunch, Wall and Slab	50
3.3.2	Structure ready for concreting (3.5 x 3.5m) (A)	50
3.3.2	Structure completed, removing of staging left (B)	51
3.3.2	Box culvert at 13+600 (C)	51
3.3.2	Box Culvert at 12+970 (D)	52
3.3.3	Concrete Strength Development versus Moist Curing of Concrete	53
3.4	Pipe Culvert drawing	55
3.4.1	Planning of Pipe Culvert	56
3.4.2	Laying of Pipe Culvert	58
3.4.2	(A) Head wall of pipe culver	58
3.4.2	(B) Head wall of pipe culvert	58

ABSTRACT

The acceleration of urbanization has promoted the increase in the number of urban highway projects, resulting in an increase of emphasis on the quality of urban highway projects. The quality and safety of highway construction directly affects the driving comfort, safety, and service life after it is put into operation. The economic growth of any country depends on transportation for its overall development. The highways in India follow heterogeneous traffic conditions in contrast to highways in other countries. India had the one of the biggest street arranges on the planet, traversing over an aggregate of 5.6 million kms. More than 64.5 for every penny of all products in the nation are transported through streets, while, 90 for each penny of the aggregate traveller activity utilizes street system to drive. More noteworthy availability between various urban areas, towns and towns has prompted expanded street activity throughout the years. Development in autos and cargo development orders a superior street arrange in India. Ascend in the quantity of 2 and 4 wheelers, expanding activity bolsters the development. The Delhi-Meerut expressway is vastly different from expressway or freeways in other countries due to its varied roadway and traffic conditions. It is a multi-lane urban road connecting nearby urban areas (Delhi and Meerut) with divided carriageway for high speed travel having partial control of access at frequent locations via basic, weaving, merge and diverge segments (at grade or grade separated). Construction of 4 Lane Connector from Delhi Meerut Expressway (KM. 50+000 of PKG-IV) to KM. 8+520 of NH-235 in the state of Uttar Pradesh on EPC mode is a 14 km expressway (PKG-IV) connecting Delhi, the national capital of India and Meerut, an important satellite city of Uttar Pradesh. It emphasizes improving road connectivity between Delhi and Meerut, by developing 4 lane divided highways between them. It is an urban multi-lane road for motorized traffic, with divided carriageways for high speed travel, having partial control of access at frequent locations via basic, weaving, merge and diverge segments.

CHAPTER 1

INTRODUCTION

1.1 GENERAL PROJECT DETIAL

Construction of 4 Lane Connector from Delhi Meerut Expressway (KM. 50+000 of PKG-IV) to KM. 8+520 of NH-235 in the state of Uttar Pradesh on EPC mode (Length 14+600 Kms)

Employer: National Highway Authority of India (NHAI)

Authority Engineer: M/s URS Scott Wilson India Pvt. Ltd.

EPC Contractor: M/s APS Hydro Pvt. Ltd. JV M/s Mathiyan Construction Pvt. Ltd.

NHAI has entrusted the development, maintenance and management of national highway no 235 including the Construction of 4 Lane Connector from Delhi Meerut Expressway (Km 50+00 of PackageIV) to Km 8.520 of NH-235 in the State of Uttar Pradesh. EPC contractor for Construction of 4 Lane Connector from Delhi Meerut Expressway (Km 50+00 of Package IV) to Km 8.520 of NH-235 in the State of Uttar Pradesh was awarded to M/s APS Hydro Pvt. Ltd. & M/s Mathiyan construction

The Consultancy Services For Authority's Engineer For Supervision of 4 Lane Connector from Delhi Meerut Expressway (Km 50+00 of Package IV) to Km 8.520 of NH-235 in the State of UttarPradesh on EPC Mode was awarded to M/s URS Scott Wilson India Pvt. Ltd. In Association with Sri Infotech.

1.2 PROJECT LOCATION

The site of four lane Project Expressway is new alignment comprises the section of Four lane connector from Delhi Meerut Expressway (km 50+00) to km 8+520 of NH 235 (Length 14.600 km) in the State of Uttar Pradesh on EPC basis.

The major purpose of four lanes is to connect Delhi-Meerut road to consume the time and to decrease the traffic related issues faced during transportation.

All work is done under the supervision of Nation Highway Authority of India (NHAI). By following proper MORTH and IRC: SP 14 -2014.

Each side paved carriageway shall be 7.5m and 3m wide paved shoulder on outer side and 0.75m wide edge strip on median side for 4-Lane Expressway excluding the median. The design speed shall be 120 km/hr. for plain terrain.

Figure 1: Location of Project

1.3 LOCATION MAP OF PROJECT

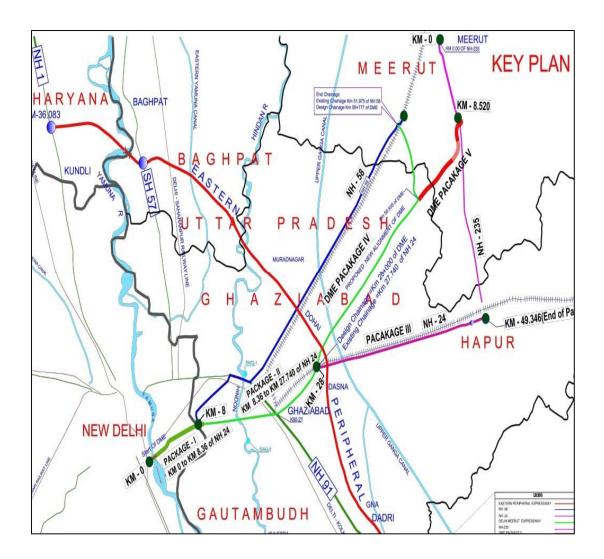


Figure 1.1: Location (Map) of the Project Highway

1.4 PROJECT TECHNICAL DETIALS

- A. Details of Length
- **B.** List of Structures
- C. Protection and Traffic Control

Figure – 1.2 Site Location

A. Details of length

SI. No.	Type of Cross- section	Туре	Length (Km)	Remarks
1	Project Length	Flexible	14.6	
2	Road Length	Flexible	13.98	14.043= (14.615- .470) Reconstruction as per TCS -150 mToll Plaza Road as per TCS -470m
3	Reconstruction Length	Flexible	(03.25) + (0.15)	
4	Length of Structure	ROB, FLYOVER, VUP & MNB	0.407	

Table 1.1 Length Details of Highway

B. List Of Structure

Sl.No			Number as per CA	
	Particulars	Unit	Recon	New
1	Box Culverts	Nos.	1	34
2	Hume Pipe Culverts (Irrigation Canal)	Nos.	-	20
2 Minor Bridges		Nos.	-	1
3 Major Bridge		Nos.	-	-
4	ROB	Nos.	-	1
5	Flyover	Nos.	-	2
6	VUP/LVUP/SVUP	Nos.	-	17

Table 1.2 No of Structure used in Project

C. Protection and Traffic Control

Sl. No.	Particulars	Total Scope
1	Advanced Traffic Management Systems (ATMS) (Incl. All Items asper CA)	14.6 KM
2	Length of Toe Wall (KM 8.680 to KM 9.850)	2,340 M

1.5 PROJECT DESCRIPTION

Table 1.4 Full Project Details Including all Structures

S.	Project Facilities	Location	Scope of Work
No. 1	Toll Plaza Road Side	2+645	In Accordance to NHAI Circular 17.5.82 dated 24 May,2021 Traffic Signs, Permanent Road Marking,
2	furniture/Road SafetyDevices	Will be decided after design & drawing	Boundary Wall, Hectare Stone & Kilometre Stone, Crash Barrier, Reflective Pavement Marker /Road Studs, Delineator, Blinker Lights
3	Lighting	Structures, At Grade & Elevated section of project highway incl. Slip /Service/MCW, Junction and Interchanges	Highway Lighting, High Mast & Solar Lighting with power backupsat Junctions & Interchanges

			Tree Plantation -12000
	Landscaping		Nos. in double rows,
4	& Tree	As per CA	Land Scaping as perCA
	Plantation		& Median Plantation.
			Also Drip Irrigation for
			Median & Sides
		Will be decided	
5	Vehicle Rescue	after design &	25 Sqm
	Post	drawing	
		Will be decided	
6	Medical Aid Post	after design &	30 sqm
		drawing	
		Will be decided	
7	Traffic Aid Post	after design &	25 sqm
		-	
		drawing Will be decided	
8	Toilet Blocks		95 sqm
		after design &	
		drawing	
	Use of C&D	Wherever, Filling	10 % wherever earth fill
	Recycle	of earth is required	is req. inproject
9	Material	(Embankment, RE	
		Wall,Subgrade,	
		GSB etc.)	
			50 MM HDPE pipe 8
			numbers encased in 600
			mm dia. Pipe with
10	OFC Duct	Median	inspection chambers
			(Size - 1.0 mx 1.0 m
			Clear) at 250 m intervals
			with cover slabs. Along
			with crossing facility at
			500 m intervals with 600

			mm dia. Pipe
11	Highway Patrol Unit	Project Site	1 no. (GPS Enabled) with req. staff& maintenance unit as per CA
12	Emergency Medical Services	At Toll Plaza	1 no. Ambulance with req. staff & maintenance unit as per CA
13	Crane Services	Project Site	1 no. (GPS Enabled) with req. staff& maintenance unit as per CA

1.6 PRE-CONSTRUCTION ACTIVITY

Table 1.5 Survey Details

S. No.	Description of Work	Status of Work
1.	Traverse Survey	Total length of 14.60 km completed.
2.	Topographic Survey	Total length of 14.60 km completed.
3.	TBM Checking	Complete
4.	OGL Recording	10.00 km Completed
6.	Centre line Marking	Complete
	Soil Investigation	Complete
	Geo-technical	Complete
7.	Investigation for	
	structures	
	Pavement	In Progress
	composition survey	

Figure 1.3 Embankment Work

1.7 KEY PLAN OF PROJECT

Ding Culvert	0+000	Bing Culvert
Pipe Culvert	0+000	Pipe Culvert
LVUP	0+280	LVUP
Box Culvert	0+630	Box Culvert
Pipe Culvert	0+700	Pipe Culvert
Tipe current	0+820	Tipe current
VUP	0+830	VUP
	0+840	
Box Culvert	0+870	Box Culvert
1	0+940	
FLY OVER	0+950	FLY OVER
	0+960	
Pipe Culvert	1+200	Pipe Culvert
	1+410	
VUP	1+420	VUP
	1+430	
Box Culvert	1+570	Box Culvert
Box Culvert	1+900	Box Culvert
SVUP	2+070	SVUP
Box Culvert	2+160	Box Culvert
Pipe Culvert	2+300	Pipe Culvert
SVUP	2+470	SVUP
Pipe Culvert	2+800	Pipe Culvert
LVUP	3+080	LVUP
	3+090	
Box Culvert	3+190	Box Culvert
Box Culvert	3+420	Box Culvert
Pipe Culvert	3+590	Pipe Culvert
Box Culvert	3+710	Box Culvert
Box Culvert	4+230	Box Culvert
	4+330	
VUP	4+340	VUP
	4+350	
Pipe Culvert	4+500	Pipe Culvert
Pipe Culvert	4+900	Pipe Culvert
Pipe Culvert	5+200	Pipe Culvert
Box Culvert	5+650	Box Culvert
VILID	6+100	1415
VUP	6+110	VUP
Ding Culurant	6+120	Ding Culuret
Pipe Culvert Box Culvert	6+250	Pipe Culvert
Box Culvert Box Culvert	6+420	Box Culvert
	6+750	Box Culvert
Pipe Culvert Box Culvert	7+000	Pipe Culvert Box Culvert
box cuivert	7+100	Box cuivert

Table 1.6 Structural details w.r.t to Chainage

1.8 SAFETY AND TRAFFIC MANAGEMENT

<u>Safety</u>

Road safety has been accorded very high priority. Traffic safety measures are adopted at all construction zones. Utmost care is being taken for safety of the labour force, plant areas, equipment as well as road users while carrying out the construction activities. Construction zones have been marked.

Ensuring that all necessary measures of the Occupational Health, Safety and Welfare, described are complied with throughout the duration of the contract.

Traffic Management

Traffic is being regulated by providing flagmen, signage, and diversion at various locations along the project highway. The two primary objective of temporary traffic control is to manage the traffic as efficiently and safely as possible under all work conditions and second objective of these guidelines is to lay down procedures to be adopted by field engineers to ensure the safe and efficientmovement of traffic and also to ensure the safety of workers at site undertaking the construction.

Safety audit and traffic management as per construction site requirement is constantly monitored.

Safety Measures

Necessary Safety Measures undertaken. Safety teams appointed are constantly carrying out the safety audit of the sites.

- PPE distributed to all staff and Periodic Tool Box instructions conducted at site for various departments.
- Safety Sign boards installed at various site locations.
- Barricading boards, delineators and sand bags provided at various construction sites.
- Dust control measures taken at site and crusher plant by water sprinkling

method.

- Designated Flagmen placed for Road works where construction is under progress
- Deployment of marshals on road at construction site for smooth and safe movement of vehicles
- Specific training on working at height and rescue, emergency medical & CPR arranged for employees and workers.

1.9 MOBILAZTION RESOURCES

Sr. No.	Equipment Name	Make	Actual Quantity
1	Tipper	TATA/AMW	80
2	Excavator	ΤΑΤΑ	20
3	MOTOR GRADER	ΤΑΤΑ	8
4	SOIL COMPACTOR	ТАТА НІТАСНІ	7
5	WATER TANKER	Mahindra/CASE	9
6	Back Hoe Loader	L&T/CASE	6
7	Transit Mixture	-	4
8	Batching Plant CP 30	-	2

Table 1.7 Vehicles used in Project

Figure 1.4 Batching plant at site

1.10 LAB EQUIPMENT DETIAL

SR.NO	Equipment name	Nos
1	CT MACHINE 2000 KN	1
2	CBR MACHINE	1
3	OVEN BIG	1
4	OVEN SMALL	1
5	A I V MACHINE	1
6	CUBE MORTOR MACHINE	1
7	CBR MOULD COMEPLETE	33
8	PROVING RING 10 KN	1
9	PROVING RING 25 KN	1
10	PROVING RING 50 KN	1
11	DIAL GAUGE	3
12	PROCTOR MOULD 100 MM	2
13	PROCTOR MOULD 150 MM	1

14	REMMAR 4.890 KG	2
15	REMMAR 2.9 KG	1
16	CASAGRANDE APPARATUS	1
	SAND POURING CYLINDER	
17	200 MM DIA	3
	SAND POURING CYLINDER	
18	150 MM DIA	3
	SAND POURING CYLINDER	
19	100 MM DIA	3
20	MOISTURE METER 25 %	3
21	BALANCE 500 GMS	2
22	BALANCE 5 KGS	1
23	BALANCE 30 KGS	1
24	BALANCE 50 KGS	2
25	BALANCE 100 KGS	1
26	SLUMP CONE	5
27	FLAKINEES GAUGE	1
28	ELOGATION GAUGE	1
29	SPATULA	8
	DIGITAL THERMOETER /	
30	HUMIDITY	2
31	HYDRO METER	3
32	SIEVE SHAKER 200 MM DIA	1
33	DENSITY BUKET 30 LTR	1
34	DENSITY BUKET 15 LTR	1
35	DENSITY BUKET 3 LTR	1
36	MOTOR CUBE 50*50*50 MM	24
37	VIBRATING TABLE BIG	1
38	HOT PLATE 200 MM DIA	2
39	CTSB MOULDS	9
	SURFACE REGULRITY	
40	APPARATUS	1
		1

41	BELCHA	1
42	TROWEL	3
43	WATER BATH	1
	SPECIFIC GRAVITY BOTTEL	
44	50 ML	2
	SPECIFIC GRAVITY BOTTEL	
45	25 ML	1
46	CONCRETE FLOW TABLE	1
47	WASH BOTTLE PVC	3
48	SCOOP 1 KG	3
49	TRAY 300 *250 MM	12
50	TRAY 200 *250 MM	8
51	TRAY 300 * 450 MM	8
52	TRAY 600* 450 MM	8
53	TRAY 600 * 600 MM	4
54	TRAY 900 * 900 MM	2
55	FSI JAR 100 ML	40
56	BOROSIL JAR 250 ML	2
57	BOROSIL JAR 500 ML	5
58	BOROSIL JAR 1000 ML	6
59	PVC JAR 250 ML	5
60	PVC JAR 500 ML	4
61	BEAKER 500 ML	6
62	PYCNOMETER 1.5 KG	2
	VICAT APPARATUS	
63	CEMENT	1
	CEMENT CUBE	
64	70.6*70.5*70.6 MM	24
65	IS SIEVE 2. MM 200 MM DIA	4
66	IS SIEVE 4.25 MIC	4
67	IS SIEVE 90 MIC	2
68	IS SIEVE 75 MIC	3
L	l	L

70 IS SIEVE 4.75 MM 3 71 IS SIEVE 2.36 MM 2 72 IS SIEVE 1.18 MM 3 73 IS SIEVE 600 MIC 4 74 IS SIEVE 300 MIC 2 75 IS SIEVE 15 MIC 2 76 IS SIEVE 15 MIC 2 76 IS SIEVE 45 MIC 2 78 IS SIEVE 710 MIC 2 79 IS SIEVE 355 MIC 2 80 IS SIEVE 850 MIC 1 81 IS SIEVE 180 MIC 2 82 IS SIEVE 16 MM 450 MM DIA 1 83 IS SIEVE 500 MIC 1 84 IS SIEVE 12.5 MM 2 85 IS SIEVE 63 MM 2 86 IS SIEVE 50 MM 1 88 IS SIEVE 25 MM 1 90 IS SIEVE 25 MM 1 91 IS SIEVE 22 MM 1 92 IS SIEVE 22 MM 1 91 IS SIEVE 22 MM 1 92 IS SIEVE 20 MM 2 93 IS SIEVE 40 MM <td< th=""><th>69</th><th>IS SIEVE 10 MM</th><th>2</th></td<>	69	IS SIEVE 10 MM	2
72 IS SIEVE 1.18 MM 3 73 IS SIEVE 600 MIC 4 74 IS SIEVE 300 MIC 2 75 IS SIEVE 15 MIC 2 76 IS SIEVE 1 MM 4 77 IS SIEVE 45 MIC 2 78 IS SIEVE 355 MIC 2 79 IS SIEVE 355 MIC 2 80 IS SIEVE 850 MIC 1 81 IS SIEVE 500 MIC 1 83 IS SIEVE 12.5 MM 2 86 IS SIEVE 63 MM 2 87 IS SIEVE 50 MM 1 88 IS SIEVE 25 MM 1 89 IS SIEVE 25 MM 1 90 IS SIEVE 22.40 MM 1 91 IS SIEVE 22.40 MM 1 92 IS SIEVE 1.40 MM 2 93 IS SIEVE 1.40 MM 2 94 IS SIEVE 1.40 MM 2 95 IS SIEVE 31.5 MM 2 94 IS SIEVE 31.5 MM 2 95	70	IS SIEVE 4.75 MM	3
73 IS SIEVE 600 MIC 4 74 IS SIEVE 300 MIC 2 75 IS SIEVE 15 MIC 2 76 IS SIEVE 1 MM 4 77 IS SIEVE 45 MIC 2 78 IS SIEVE 355 MIC 2 79 IS SIEVE 355 MIC 2 80 IS SIEVE 850 MIC 1 81 IS SIEVE 500 MIC 1 83 IS SIEVE 500 MIC 1 84 IS SIEVE 37.5 MM 1 85 IS SIEVE 63 MM 2 86 IS SIEVE 50 MM 1 88 IS SIEVE 50 MM 1 89 IS SIEVE 25 MM 1 90 IS SIEVE 75 MM 1 90 IS SIEVE 22.40 MM 1 91 IS SIEVE 22.40 MM 1 92 IS SIEVE 1.40 MM 2 93 IS SIEVE 19 MM 2 94 IS SIEVE 31.5 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 30 MM 3 97 IS SIEVE 4.75 MM 2 <td>71</td> <td>IS SIEVE 2.36 MM</td> <td>2</td>	71	IS SIEVE 2.36 MM	2
74 IS SIEVE 300 MIC 2 75 IS SIEVE 15 MIC 2 76 IS SIEVE 1 MM 4 77 IS SIEVE 45 MIC 2 78 IS SIEVE 710 MIC 2 79 IS SIEVE 355 MIC 2 80 IS SIEVE 850 MIC 1 81 IS SIEVE 850 MIC 1 81 IS SIEVE 180 MIC 2 82 IS SIEVE 180 MIC 2 83 IS SIEVE 180 MIC 1 84 IS SIEVE 100 MIC 1 85 IS SIEVE 12.5 MM 1 86 IS SIEVE 63 MM 2 86 IS SIEVE 50 MM 1 88 IS SIEVE 25 MM 1 90 IS SIEVE 22 MM 1 91 IS SIEVE 22 MM 1 92 IS SIEVE 22.40 MM 1 91 IS SIEVE 22.40 MM 2 93 IS SIEVE 140 MM 2 93 IS SIEVE 10 MM 2 94	72	IS SIEVE 1.18 MM	3
75 IS SIEVE 15 MIC 2 76 IS SIEVE 1 MM 4 77 IS SIEVE 45 MIC 2 78 IS SIEVE 710 MIC 2 79 IS SIEVE 355 MIC 2 80 IS SIEVE 850 MIC 1 81 IS SIEVE 850 MIC 1 81 IS SIEVE 180 MIC 2 82 IS SIEVE 500 MIC 1 83 IS SIEVE 500 MIC 1 84 IS SIEVE 500 MIC 1 85 IS SIEVE 12.5 MM 2 86 IS SIEVE 63 MM 2 87 IS SIEVE 50 MM 1 88 IS SIEVE 50 MM 1 89 IS SIEVE 75 MM 1 90 IS SIEVE 75 MM 1 91 IS SIEVE 22.40 MM 1 92 IS SIEVE 1.40 MM 2 93 IS SIEVE 40 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 <	73	IS SIEVE 600 MIC	4
76 IS SIEVE 1 MM 4 77 IS SIEVE 45 MIC 2 78 IS SIEVE 355 MIC 2 79 IS SIEVE 355 MIC 2 80 IS SIEVE 350 MIC 1 81 IS SIEVE 180 MIC 2 82 IS SIEVE 180 MIC 2 83 IS SIEVE 160 MIC 1 84 IS SIEVE 16 MM 450 MM DIA 1 85 IS SIEVE 37.5 MM 1 86 IS SIEVE 63 MM 2 87 IS SIEVE 63 MM 2 88 IS SIEVE 50 MM 1 89 IS SIEVE 25 MM 1 90 IS SIEVE 25 MM 1 91 IS SIEVE 25 MM 1 92 IS SIEVE 28 MM 1 91 IS SIEVE 22.40 MM 1 92 IS SIEVE 1.40 MM 2 93 IS SIEVE 1.40 MM 2 94 IS SIEVE 31.5 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM	74	IS SIEVE 300 MIC	2
77 IS SIEVE 45 MIC 2 78 IS SIEVE 710 MIC 2 79 IS SIEVE 355 MIC 2 80 IS SIEVE 850 MIC 1 81 IS SIEVE 180 MIC 2 82 IS SIEVE 500 MIC 1 83 IS SIEVE 16 MM 450 MM DIA 1 84 IS SIEVE 37.5 MM 1 85 IS SIEVE 63 MM 2 86 IS SIEVE 50 MM 1 87 IS SIEVE 50 MM 1 88 IS SIEVE 50 MM 1 89 IS SIEVE 50 MM 1 90 IS SIEVE 25 MM 1 90 IS SIEVE 75 MM 1 90 IS SIEVE 28 MM 1 91 IS SIEVE 22.40 MM 1 92 IS SIEVE 1.40 MM 2 93 IS SIEVE 1.40 MM 2 94 IS SIEVE 31.5 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 9.5 MM	75	IS SIEVE 15 MIC	2
78 IS SIEVE 710 MIC 2 79 IS SIEVE 355 MIC 2 80 IS SIEVE 850 MIC 1 81 IS SIEVE 180 MIC 2 82 IS SIEVE 180 MIC 1 83 IS SIEVE 16 MM 450 MM DIA 1 84 IS SIEVE 16 MM 450 MM DIA 1 85 IS SIEVE 12.5 MM 2 86 IS SIEVE 63 MM 2 87 IS SIEVE 50 MM 1 88 IS SIEVE 25 MM 1 89 IS SIEVE 25 MM 1 90 IS SIEVE 25 MM 1 91 IS SIEVE 22 MM 1 92 IS SIEVE 22 MM 1 93 IS SIEVE 22.40 MM 1 92 IS SIEVE 1.40 MM 2 93 IS SIEVE 19 MM 2 94 IS SIEVE 31.5 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 9.5 MM 2 99 IS SIEVE 9.5 MM <td>76</td> <td>IS SIEVE 1 MM</td> <td>4</td>	76	IS SIEVE 1 MM	4
79 IS SIEVE 355 MIC 2 80 IS SIEVE 850 MIC 1 81 IS SIEVE 180 MIC 2 82 IS SIEVE 500 MIC 1 83 IS SIEVE 500 MIC 1 84 IS SIEVE 16 MM 450 MM DIA 1 85 IS SIEVE 37.5 MM 1 86 IS SIEVE 63 MM 2 86 IS SIEVE 50 MM 1 88 IS SIEVE 50 MM 1 89 IS SIEVE 75 MM 1 90 IS SIEVE 28 MM 1 91 IS SIEVE 28 MM 1 92 IS SIEVE 240 MM 2 93 IS SIEVE 1.40 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	77	IS SIEVE 45 MIC	2
80 IS SIEVE 850 MIC 1 81 IS SIEVE 180 MIC 2 82 IS SIEVE 500 MIC 1 83 IS SIEVE 16 MM 450 MM DIA 1 84 IS SIEVE 16 MM 450 MM DIA 1 85 IS SIEVE 12.5 MM 2 86 IS SIEVE 63 MM 2 87 IS SIEVE 50 MM 1 88 IS SIEVE 25 MM 1 89 IS SIEVE 75 MM 1 90 IS SIEVE 28 MM 1 91 IS SIEVE 22.40 MM 1 92 IS SIEVE 140 MM 2 93 IS SIEVE 19 MM 2 94 IS SIEVE 31.5 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	78	IS SIEVE 710 MIC	2
IN STRUCT IN 81 IS SIEVE 180 MIC 2 82 IS SIEVE 500 MIC 1 83 IS SIEVE 16 MM 450 MM DIA 1 84 IS SIEVE 37.5 MM 1 85 IS SIEVE 12.5 MM 2 86 IS SIEVE 63 MM 2 87 IS SIEVE 50 MM 1 88 IS SIEVE 50 MM 1 89 IS SIEVE 50 MM 1 90 IS SIEVE 75 MM 1 90 IS SIEVE 28 MM 1 91 IS SIEVE 22.40 MM 1 92 IS SIEVE 1.40 MM 2 93 IS SIEVE 1.40 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 9.5 MM 2 99 IS SIEVE 9.5 MM 2	79	IS SIEVE 355 MIC	2
82 IS SIEVE 500 MIC 1 83 IS SIEVE 16 MM 450 MM DIA 1 84 IS SIEVE 37.5 MM 1 85 IS SIEVE 12.5 MM 2 86 IS SIEVE 63 MM 2 87 IS SIEVE 50 MM 1 88 IS SIEVE 50 MM 1 89 IS SIEVE 25 MM 1 90 IS SIEVE 75 MM 1 90 IS SIEVE 28 MM 1 91 IS SIEVE 22.40 MM 1 92 IS SIEVE 22.40 MM 2 93 IS SIEVE 1.40 MM 2 94 IS SIEVE 1.40 MM 2 95 IS SIEVE 19 MM 2 96 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	80	IS SIEVE 850 MIC	1
83 IS SIEVE 16 MM 450 MM DIA 1 84 IS SIEVE 37.5 MM 1 85 IS SIEVE 12.5 MM 2 86 IS SIEVE 63 MM 2 87 IS SIEVE 50 MM 1 88 IS SIEVE 25 MM 1 89 IS SIEVE 25 MM 1 90 IS SIEVE 75 MM 1 91 IS SIEVE 28 MM 1 92 IS SIEVE 22.40 MM 1 91 IS SIEVE 22.40 MM 2 93 IS SIEVE 1.40 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	81	IS SIEVE 180 MIC	2
84 IS SIEVE 37.5 MM 1 85 IS SIEVE 12.5 MM 2 86 IS SIEVE 63 MM 2 87 IS SIEVE 50 MM 1 88 IS SIEVE 25 MM 1 89 IS SIEVE 75 MM 1 90 IS SIEVE 75 MM 1 91 IS SIEVE 28 MM 1 92 IS SIEVE 22.40 MM 1 93 IS SIEVE 1.40 MM 2 93 IS SIEVE 1.40 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	82	IS SIEVE 500 MIC	1
85 IS SIEVE 12.5 MM 2 86 IS SIEVE 63 MM 2 87 IS SIEVE 50 MM 1 88 IS SIEVE 25 MM 1 89 IS SIEVE 75 MM 1 90 IS SIEVE 28 MM 1 91 IS SIEVE 28 MM 1 92 IS SIEVE 22.40 MM 1 92 IS SIEVE 1.40 MM 2 93 IS SIEVE 4.0 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 9.5 MM 2 99 IS SIEVE 9.5 MM 2	83	IS SIEVE 16 MM 450 MM DIA	1
86 IS SIEVE 63 MM 2 87 IS SIEVE 50 MM 1 88 IS SIEVE 25 MM 1 89 IS SIEVE 75 MM 1 90 IS SIEVE 28 MM 1 91 IS SIEVE 22.40 MM 1 92 IS SIEVE 22.40 MM 1 93 IS SIEVE 1.40 MM 2 93 IS SIEVE 40 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	84	IS SIEVE 37.5 MM	1
87 IS SIEVE 50 MM 1 88 IS SIEVE 25 MM 1 89 IS SIEVE 75 MM 1 90 IS SIEVE 28 MM 1 91 IS SIEVE 28 MM 1 92 IS SIEVE 22.40 MM 1 92 IS SIEVE 22.40 MM 1 93 IS SIEVE 1.40 MM 2 93 IS SIEVE 40 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	85	IS SIEVE 12.5 MM	2
88 IS SIEVE 25 MM 1 89 IS SIEVE 75 MM 1 90 IS SIEVE 28 MM 1 91 IS SIEVE 28 MM 1 92 IS SIEVE 22.40 MM 1 92 IS SIEVE 22.40 MM 2 93 IS SIEVE 1.40 MM 2 94 IS SIEVE 40 MM 2 95 IS SIEVE 19 MM 2 96 IS SIEVE 31.5 MM 2 96 IS SIEVE 5.6 MM 3 97 IS SIEVE 4.75 MM 2 98 IS SIEVE 9.5 MM 2	86	IS SIEVE 63 MM	2
89 IS SIEVE 75 MM 1 90 IS SIEVE 28 MM 1 91 IS SIEVE 22.40 MM 1 92 IS SIEVE 22.40 MM 2 93 IS SIEVE 1.40 MM 2 93 IS SIEVE 40 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	87	IS SIEVE 50 MM	1
90 IS SIEVE 28 MM 1 91 IS SIEVE 22.40 MM 1 92 IS SIEVE 1.40 MM 2 93 IS SIEVE 40 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	88	IS SIEVE 25 MM	1
91 IS SIEVE 22.40 MM 1 92 IS SIEVE 1.40 MM 2 93 IS SIEVE 40 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	89	IS SIEVE 75 MM	1
92 IS SIEVE 1.40 MM 2 93 IS SIEVE 40 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	90	IS SIEVE 28 MM	1
93 IS SIEVE 40 MM 2 94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	91	IS SIEVE 22.40 MM	1
94 IS SIEVE 19 MM 2 95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	92	IS SIEVE 1.40 MM	2
95 IS SIEVE 31.5 MM 2 96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	93	IS SIEVE 40 MM	2
96 IS SIEVE 2.36 MM 3 97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	94	IS SIEVE 19 MM	2
97 IS SIEVE 5.6 MM 2 98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	95	IS SIEVE 31.5 MM	2
98 IS SIEVE 4.75 MM 2 99 IS SIEVE 9.5 MM 2	96	IS SIEVE 2.36 MM	3
99 IS SIEVE 9.5 MM 2	97	IS SIEVE 5.6 MM	2
	98	IS SIEVE 4.75 MM	2
100 IS SIEVE 6.3 MM 2	99	IS SIEVE 9.5 MM	2
	100	IS SIEVE 6.3 MM	2

101	IS SIEVE 26.5 MM	2
102	IS SIEVE 10 MM	2
103	IS SIEVE 45 MM	1
104	IS SIEVE 53 MM	1
105	IS SIEVE 11.2 MM	1
106	CONTAINER SMALL	194
107	CONTAINER MEDIUM	25
108	CONTAINER 50 LARGE	80
109	PAN 200 MM DIA	4
110	PAN 450 MM DIA	2
111	HAMMMER	2
112	LPG CYLINER 5 KG	1
113	FRY PAN	1
114	CBR SPACER DISC	2
115	CUBE MOLD	100

1.11 GENERAL NOTES (IRC:SP: 84-2014)

The Codes, Standards and Technical Specifications applicable for the design and construction of project components are:

- i) Indian Roads Congress (IRC) Codes and Standards.
- Specifications for Road and Bridge Works issued by the Ministry of Road Transport & Highways (MORTH) hereinafter referred to as MORTH or Ministry's Specifications.
- iii) Any other standards referred to in the Manual and any supplement issued with the bid document.

The terms 'Ministry of Surface Transport', 'Ministry of Shipping, Road Transport & Highways' and 'Ministry of Road Transport and Highways' or any successor or substitute thereof shall be considered as synonymous.

In case of any conflict or inconsistency in the provisions of the applicable IRC Codes, Standards or MORTH Specifications, the provisions contained in this Manual shall apply.

General

- This section lays down the standards for geometric design and general features for four-lane divided carriageway.
- ii) In built-up areas, 4-lane divided carriageway along with service roads with and without footpaths shall be provided as part of 4-laning of the Project Highway. Such stretches where the requirement of footpath is dispensed with and only 4-laning with or without service road is to be provided will be as indicated in Schedule 'B' of the Concession Agreement.

Where there is constraint of ROW width, the Authority may specify construction of a bypass. The alignment of the bypasses shall be as specified in Schedule 'B' and in conformity with the site earmarked in Schedule 'A of the Concession Agreement.

- iii) The geometric design of the Project Highway shall conform to the standards set out in this section as a minimum.
- iv) As far as possible, uniformity of design standards shall be maintained throughout the length of the Project Highway. In case of any change, it shall be affected in a gradual manner.
- v) Where the existing road geometries are deficient with respect to minimum requirements and its improvements to the prescribed standards is not feasible

due to any constraint in acquisition of additional land, such stretches shall be as specified in Schedule 'B' of the Concession Agreement.

- vi) Existing horizontal curves which are found deficient in radius, layout, transition lengths or super-elevation shall be corrected to the standards specified in this section.
- vii) Any deficiencies in the vertical profile in respect of grades, layout of vertical curves and sight distance shall be corrected to meet the minimum requirements specified in this section.

Grade Separated Structures

- i) The structures through which the traffic flows at different levels are called grade separated structures.
- A grade separated structure which is provided for crossing of vehicles under the Project Highway is called as Vehicular Underpass (VUP).
- iii) A grade separated structure which is provided for crossing of vehicles over the Project Highway is called as Vehicular Overpass (VOP).
- iv) A structure provided below the Project Highway to cross the pedestrians is called Pedestrian Underpass (PUP).
- A structure provided below the Project Highway to cross the catties is called Cattle Underpass (CUP).
- vi) A pedestrian/cattle underpass through which light vehicles of height upto 3 m can also pass is called Light Vehicular Underpass (LVUP)
- vii) Flyover is synonymous to VUP/VOP/LVUP/PUP/CUP
- viii) A structure provided above the Project Highway to cross pedestrians is called Foot Over bridge.
- ix) A structure provided over the railway lines to carry the Project Highway is called Road over Bridge (ROB).
- x) A structure provided below the railway lines to carry the Project Highway is called Road under Bridge (RUB).

- xi) A Trumpet interchange is a grade separator structure provided at major Tjunction facilitating uninterrupted flow of traffic in each direction.
- xii) A Cloverleaf is a grade separator structure provided at a major cross road junction facilitating uninterrupted flow of traffic in each direction.

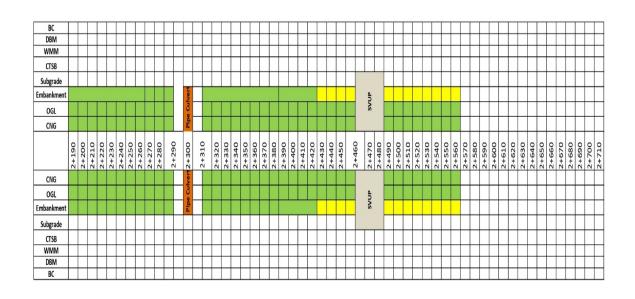
CHAPTER 2

STRIP PLAN OF HIGHWAY

A Strip Plan typically indicates the location, lengths, quality, etc. in a graphical manner. Preparation of strip plans is a very common practice to get the feel of the project details at a glance. Strip plans are prepared for a variety of projects like, roads, railways, canals, etc. These are also prepared at various stages like desk study (includes feasibility and DPR) and execution stages.

Considering a typical road project, the stages of preparation of the strip plan are described here.

- Initially, the details of the Road are collected and commonly referred to as Road Inventory Survey. Here all the details like the road condition, road width, drain details, village limits, road appurtenances, religious structures, monuments, cross drainage structures, bridges, etc. are indicated.
- 2. The Road centre-line is assumed to be straight and plotted according to the length of the project.
- 3. All the collected details are generally classified as linear features which include roads, bridges, village limits, drains, etc. and point features which include electric poles, culverts, telephone poles, bore wells, etc.
- All the linear features are plotted with reference to the center line on either side. All the point features are drawn judiciously to indicate this at the most possible correct location.
- 5. Sometimes even the details are tabulated below the drawing to indicate features and locations.


BC			Т	Т	Т	Т	Т	Γ	Π			Т	Т	Т	Т	Т	Г	Г			Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	П	Т	Т	Т	Т	Γ					T	Т	Т	Т	Т		Т	Т		
DBM			+	+	+	+	+	\vdash	Η	-		+	$^+$	+	+	+	+	\vdash			+	+	+	+	+		+	+	+	+	+	H	+	+	+	+	-		+	-	+	+	+	+	+	+	+	+	+	+	
WMM			+	$^{+}$	$^{+}$	t	1	\vdash	Π			$^{+}$	t	$^{+}$	T	T	T	T			+	+	$^{+}$	$^{+}$	T		1		t	T	t	Ħ	+	$^{+}$	$^{+}$	t					1	+	+	+	$^{+}$	+	1	$^{+}$	t	\square	
CTSB													Τ																																Τ						
Subgrade			1	T	T	T						1	t	1		T						T	t	T		Γ			t	1	T	Π		1	T	T						1	1		T	1		T	T	\square	
Embankment	ver		1	1	Τ	T							T									T	T			1	4		T			Π			T							1			T						
OGL	Cul					T			Π			+	T					\square					1			1	LVUP		T		T	Π				\top									╈						
CNG	Pipe		+	+	+	t		\square				+	t	+	1	1	1	\square			+	1	+	+	1				t	+	t	Ħ	+	+	+	$^{+}$					1	1	+		╈	1		+	+		
			+	1		t						+	+								+	+	+						t						+										+						
	000+0	0+010	0+020	0+030			0+070	0+080	060+0	0+100	0+110	0+120		0+140	0+160	0+170	0+180	0+190	0+200	0+210	0+220	0+230	0+240	092+0	0+270	0+280	0+290	0+300		0+330	0+340	0+350	0+360	0+370		0+400	0+410	0+420	0+430	0+440	0+450	0+460	0+470	0+480	0+490	0+500	0+510	0+520	052+0	0+550	
	÷	+0	ť	ť				ť	+0	÷	÷	t .	5	t d		t d	5	5	+0	+0	to	ť	5	5 2	to	+0	÷	+ 0			to	+0	ť	÷ ;		ŧ	+0	+0	÷	i+o	to	ť	ť	÷ o	÷	+	ť	÷ i	5 0	- + O	
CNG	vert																																																		
OGL	5			Τ	Т	Τ		Γ					Т	Т			Γ	Γ				Τ	Т	Т			4		Т	Т	Γ			Т	Т	Т						Τ			Т			Т	Τ		
Embankment	Pipe					T							T			Γ	Γ					T	T			1	LVUP		T			Π			T										T						
Subgrade																																																			
CTSB													T										T						T																						
WMM													T																																						
DBM																																																			
BC																																																			
BC			_	-		Т	T	Γ					-	_	T	Т	Т	Г			_	_	Т	_	-		_	_	Т	_	Т			_	Т	-	Г						_					_	Т		
DBM	\vdash		+	+	+	+	+					+	+	+	+	+	t	+	-		-	+	+	+	+			+	+	+	+	H	+	+	+	+	t	-		+		+	+	+	+	+	+	+	+	H	
WMM																1																																			
CTSB																																																			
Subgrade																																																		Π	
Embankment							tie							ver											₫				Ľ						ELV OVED																
OGL							Box Culvert							5											VUP										~																
CNG	\square					T	Box							Pipe		T	Γ																			•														П	
	0+560	0+570	0+580	0+590	0+000	01010	0+630	0+640	0+650	0+660	0+670	0+680	0+690	0+700	07/10	0+730	0+740	0+750	0+760	0+770	0+780	0+790	0+800	0+810	0+830	0+840	0+850		01840	0+890	006+0	0+910	0+920	0+930	0+940	0+960	0+970	0+980	066+0	1+000	1+010	1+020	1+030	1+040	1+050	1+060	1+070	1+080	1+090	1+110	
CNG	10	0	-	•					0	0	0						10	0	0	0	0	0			010	0	-					0	-			00	0	0	0	-	H	-	-	-	H	-	-	-		1	
	+	-	+	+	+	+	Box Culvert	F	Ħ		+	+		Cult		+	t	t	t			+	+		٩					+	+	Ħ	+		0.00	5	F					+	+	+	+	+	+	+	+	+	
()(4)						+			\vdash	-	\vdash	+	-	be	+	+	+	t	t			+	+		VUP		+		X	+	+	\vdash	+	-			F			+		+	+	+	+	+	+	+	+	+	
OGL Embankment	-			+			l e							a								- 1	- 1																					- L			- 1				
Embankment				+	_	+	Be					+	1	•		+	t														\top	Π					F					+	+	+	+	-	-	+	+	+	
Embankment Subgrade						+	Be					+		•		+	F	F	-			+	+		T				+	-	-		+	-	T	Ī				-			+	-	_	_		-	-		
Embankment							B							•									-						+							-						-		+		-					
Embankment Subgrade CTSB							B							•																																					

2.1 Planning from Chainage (0+000 - To – 2+710)

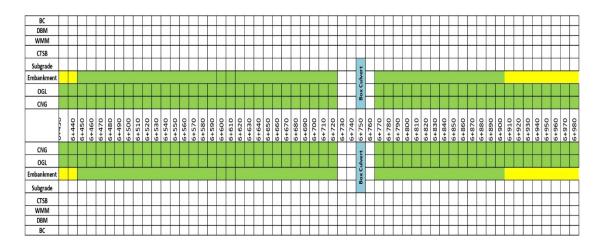
	_	_	_	_		_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_
BC																																																								
DBM																																																								
WMM																																																								
CTSB																																																								
Subgrade																																																		Τ						7
Embankment					T				Ver																						AUP																			T						1
OGL									Cul																						2																									
CNG									Pipe																																															
			_	_		_	_		_	-	_			_	-								_			_		_	_				_				-		-	_	_	_	_	_	_	_	_					_	_	_		
	20	8	6	000			8	6	8	19	2	80	6	20	60	2	80	6	8	10	20	30	40	50	60	20	80	06	8	10	5	30	40	50	60	2	80	6	8	19		D	6	2	8	2	80	6	8	19	20	8	64	202		
	1+120	1+1	Ŧ	1+150	Į.	Ŧ	1+1	1+190	1+2	1+210	1+2	1+2	1+240	172	1+2	1+270	1+2	1+290	1+3	1+3	1+3	1+3	1+3	1+3	1+3	1+370	1+3	1+3	1+4	1+4	1+420	1+4	1+440	1+450	1+4	1+4	1+480	1+4	1+500	1+2	1+520	1+530	1+5	1+550	1+5	1+570	1+5	1+590	1+0	1+610	1+620	1+630	1+6	1+0	1+6600	£.
CNG					T				ver																																								T	T						1
OGL									5																						VUP																			Τ						1
Embankment					Τ				Pip																						2																			Τ						1
Subgrade																																																								
CTSB																																																								
WMM																																																								
DBM																																																								
BC					T																																																			

	_	_			_	_				_	_	_		_		_	_	_	_		_	_			 _					-	_			_	_	_	_	_	_		_		_		_				_	_		_
BC																																																				
DBM																																											Γ									
WMM																																																				
CTSB																																																				
Subgrade					Τ			Τ	Τ	Τ				Τ									۲							Τ											Τ	Γ	Τ	Τ	Τ		Γ	Γ				
Embankment																							Culver																4										tie			
OGL			Τ		Τ			Τ	Τ	Τ			Τ	Τ	Τ	Τ	Γ	T	T	T			Box CL		Τ					Τ		Τ	Τ	Γ	Γ				SVUP		T	Γ	Τ	T	Τ		Γ	Г	Culv			
CNG																							ä																										Box			
	1+680	1+690	1+700	1+720	0000	1+/30	1+750	00111	00/+T	0//+T	1+780	06/+T	1+810	1+820	1+830	1+840	1+850	1+860	1+870	1+880		1+890	1+900	1+910	1+920	1+930	1+940	1+950	1+960	00001	1+980	066+T	2+010	2+020	2+030	2+040	2+050	2+060	2+070	2+080	060+0	2+100	01170	07177	07130	2+140		2+150	2+160	02170	0/717	2+180
CNG																							ť																										vert			
OGL																							Culve																SVUP										Cul			
Embankment																							Box C							-		i.							SV										Box			
Subgrade																							ě							Τ													Ι									
CTSB																																																				
WMM					Τ										Τ																												Т		Τ							
DBM																																										T	Τ	T	Τ		Γ					
BC					Τ			T		T					Τ				Γ											T											T		Τ		T							

	_	_	_	_	-	-	_	-	_	_	-	_	_	-	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	-	-	-	_	_	_	-	-	-	-	-	-	_	_	-	-	_	_	-	_	-	-	-
BC																											-																									
DBM																																																				
WMM																																																				
CTSB																																																				
Subgrade																															L																					
Embankment												Vert																	9	5																						
OGL												5																	CV11D	20]
CNG												Pipe																																								
	2+190	2+200	2+210	027+2	0000.0	2+240	052+2	2+270	2+280		2+290	2+300	2+310		7+320	2+340	2+350	2+360	2+370	2+380	2+390	2+400	2+410	2+420	2+430	2+440	2+450	2+460	02010	01442	2+460	2+500	2+510	2+520	2+530	2+540	2+550	02512	0+580	2+590	2+600	2+610	2+620	2+630	2+640	2+650	2+660	2+670	2+680	2+690	00/ +7	71170
CNG												Vert																																								
OGL												e Cu																	01175	5																						
Embankment												Pip																	10	2																						
Subgrade																																																				
CTSB																																																				
WMM																																																				
DBM																																																				
BC																																																				


2.2 From Chainage (3+240 - To - 6+420)

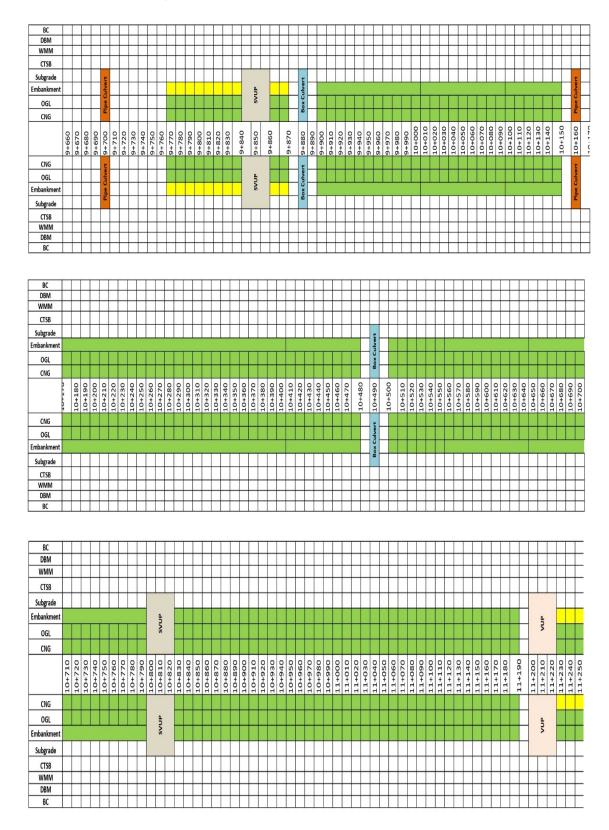
	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_		_	_	_	_	_	_		_	_	_	_	_	_	_	_		_	_
BC				_	_		_	_	_	_			+		+										1	+			1	1														4	_	_	_	_	_	_	_	4	_	
DBM				_	_	_	_	_	_	+		_	+	+	+			+	+	+	-		+	+	+	+	-	-	+	+	+	+	+	-	+	-						_	_	_	_	_	_	_	_	_	-	\downarrow	_	-
WMM	⊢	-		+	+	-	+	+	+	+	_	+	+	+	+	+	+	╞	╀	┝	+	+	+	+	+	+	+	+	╀	+	┝	+	┝	┝	+	+	-			_		+	+	+	+	+	+	+	+	+	+	+	+	+
CTSB					_				_	_			_												+		-			+													_	4	_				_	_			_	
Subgrade																			t																			ť														=		
Embankment																			ulve																4			ulve														ş		.,
OGL														Γ					Box Culvert										Γ									be C														Box Culve		
CNG									T					T					ő			T	Τ	T	T	T	T		T	T	Τ		Τ	Γ	Τ			Pi,						T				T	T			m		Τ
	3+240	3+250	3+260	3+270	3+280	3+290	3+300	3+310	3+320	3+330	3+340	000010	3+370	08272	3+390	3+400	2	3+410	3+420		3+430	3+440	3+450	3+460	02770	3+480	3+490	3+500	3+510	3+520	3+530	3+540	3+550	3+560	3+570	3+580		3+590	00972		3+610	3+620	3+630	3+640	3+650	3+660	3+670	3+680	3+690	3+700		3+710	3+720	3+730
	+ m	+ m	÷.	+ m	÷	÷	+ m	+ n	+ 0	+ -	+ +		+ +	t n	+ +	- +	;	÷ m	+ m		÷ m	i de la		1		1 1		+ m	+	1	+		- + m	+	+	+ m		÷	1	ĥ	÷ m	÷.	÷ m	Ť	÷.	÷ m	÷ m	Ŧ,	÷ m	÷		+	÷	+ m
CNG																																																						
OGL														T					Box Culvert				T	T	T				T				T	T	T			Culvert										T	1			Box Culvert		
Embankment		-												-					- O																-	-																×C		
Subgrade		Γ		Т			Т		Т	Т	Т	Т	Т	Т	Т	Т	Т		- 8			Г	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Τ	Т	Т		Pipe					Т	Т	Т	Т	Т	Т	Т			B		Т
	┢		Η	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	\vdash			-		+	+	+	+	+	+	+	+	+	+	+	+	+
CTSB WMM	⊢	-	\square	+	+	+	+	+	+	+	+	+	+	┝	+	+	+	┝	┝	┝	+	+	+	+	+	+	+	+	╀	+	+	+	+	┝	+	+	+			_		+	+	+	+	+	+	+	+	+	+	+	+	+
DBM	⊢	-	\square	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	┢	+	+	\vdash			_		-	+	+	+	+	+	+	+	+	+	+	+	+
BC	\vdash		Η	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	\vdash						+	+	+	+	+	+	+	+	+	+	+	+
BC									Ŧ	Ŧ	1	T		F	-				F	-	F		F	F			F						F									1				1	1				Ŧ	Ţ		F
DBM	-	-		+	+	+	+	+	+	+	+	+	-	⊢	+	+	┝	⊢	⊢	-	-	⊢	⊢	⊢	+	+	⊢	⊢	⊢	+	⊢	⊢	⊢	-	-		_	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
CTSB	\vdash	\vdash		+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+		+	+	+	┢	+	+	+	\vdash	+	\vdash	\vdash	+	\vdash					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	\vdash	\vdash		+	+	+	+	+	+	+	+	+		+	+	+	+	┢	+	-		\vdash	┢	+	+	+	+	+	\vdash	+	\vdash		\vdash	\vdash					+		+	+	+	+	+	+	+	+	+	+	+	+	+	+
Subgrade Embankment													-			-			-		-		-			-		-			-		-								-	-	-	-		+	+		-	+	+	+		
									Т	Т	Т	Т	Т	Г	Т	Т	Т	Т	Т	1	1		Г	Г	Т	Т	Г	Т	Г	Г			—										Т	T	Т	-	+	Boy Cubie		+	+	+	+	
OGL		-		+	+	+	+	+	+	+	+	+	+	+	+	┝	+	+	┢	-	-		┝	+	+	+	+	┝	\vdash	┝	+		+						+	-	+	+	+	+	+		+		-		+	+	+	+
CNG				-	-	_	_	-	+	-	-	+	-	-	-	-	-	-	-	-			-	-	-	-		+		-			-						_	_	_	-	+	+	+	+	+		-	-	+	+	-	-
	g	0	0	0	<u>م</u>	o	0							g		0	0	0	0	9	0	0	0	0	0	0	0	0	lo	9	0	0	0	ő	0	0	0	0	0	9	0	0											o o	0
	3+740	3+750	3+760	3+770	3+780	3+790	3+800	3+810	0107010	3+830	01010	09010	3+870	3+880	3+890	3+900	3+910	3+920	3+930	3+940	3+950	3+960	3+970	3+980	3+990	4+000	4+010	4+020	4+030	4+040	4+050	4+060	4+070	4+080	4+090	4+100	4+110	4+120	4+130	4+140	4+150	4+160	4+170		4+TA0	4+200	01244	02271		4+240	090.1	11220	4+280	4+290
	m	m	m	m	m	m	m	mn	0 0	n n	0 0	2 0	n m	m	n m	m	m	m	m	m	m	m	m	m	m	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4 4	t •	4 4	4 4	7 4		•	4 4	7 4	7 1	4	4
CNG					+	-	-		+	-	+	+	+	-	-								-	-			-														-	-			+		+	- 1	-		+	+	+	
OGL																																															+	-						
Embankment				_	_	_	_	_	_	_			-			_	_	_	_	_	_			_		_		_		_	_		_					_	_		_	_	_					Roy Culue			1			
	1																																															1	1					
Subgrade		-	$ \rightarrow $	-	-	-+	-		-	-	-		-	+	+																											-	_	+	-	-	_		-	-	+	-		
Subgrade CTSB																																																			T			
CTSB WMM																							F																															
CTSB																																																						


	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-		
BC																																																					
DBM																																																					
WMM																																																			\Box		
CTSB																																																					
Subgrade										Τ												ť										Τ																		Τ	Τ		\Box
Embankment						4																ulve																															
OGL						VUP	Ī			Τ												e e													Min	or E	Brid	ge										T		T	Τ		
CNG																						ä																															
		_	_				_									_	_			_		_	_	_		_		_	_										_	_				_									
	4+300	310	+320		330	4+340	350	+360	4+370	000010	0002+4	4+400	4+410	4+420	4+430	4+440	4+450	4+460	4+470	4+480	4+490	4+500	4+510	220	4+530	540	4+550	200	4+570	4+580	4+000	4+610		4+620	4+630	4+650	4+660	4+670	4+680	4+690	4+700	4+710	4+720	4+730	4+740	4+750	4+760	4+770	4+780	4+790	4+800		4+830
	4+	+	4		4+	4+	4+	4	4+			44	4	4+	4+	4	4	4	4	4	4	4+	4+	4+	4+	4+	4	4+	4+	+ + +				++	4 4	4+	4	4+	4+	4	4+	4+	4	4+	4+	4+	4+	4+	4+	4+	4 4	4 4	4 4
CNG																						ť																															
OGL						4																ulve													Min	or E	Brid	ge													Τ		
Embankment						VUP																a																															
Subgrade										Τ												ä										Τ																	Τ	Τ	Τ		Π
CTSB										Τ																						T																	Τ	T	T		
WMM										T																						T																+	-	T	T		\square
DBM										T																						T																1	T	T	T		\square
BC																																																			T		

	_	_		_		_			_	_	_	_						_		_	_	_										_	_		_	_				_	_	_	_		_	_	_				_
BC																																																			
DBM																																																			
WMM																																																		T	
CTSB																																																			
Subgrade							ť																													ť															
Embankment							ulve																													ulve															
OGL							pe C																													pec															
CNG							Pil																													ā															
	4+840	4+850	4+860	4+880	000.7	4+890	4+900	4+910	4+920	4+930	4+940	4+950	4+960	4+970	11000	000+3	5+010	5+020	5+030	5+040	5+050	5+060	5+070	5+080	5+090	5+100	5+110	5+120	2+140	0+140	041+5	5+170	5+180	001.1	DAT+C	5+200	5+210	5+220	02675	5+240	5+250	5+260	5+270	5+280	5+290	5+300	5+310	5+320	5+330	5+350	
CNG							ť																													t															
OGL							ulve																													ulve															1
Embankment							pe O																													pe C															Ī
Subgrade							Pig																													ā															
CTSB																																																			
WMM																																																			
DBM																										T																									
BC																Т	Τ		Γ													Τ						Т	Т	Τ										Т	1

		_	_	_	-	-	-	_	_	_	_	_		-	_	_	_	_	_	_	-	-	-	_	_	_	-	_	-	-	_	_	_	_	_	_	-	-	-	-	_	-	_	-	_	-	_	-	_	-	_	-
BC																																																				
DBM				Т	Т								Т	Γ							Т	Т			Т	Т	Т	Т	Γ						Т	Т			Γ													1
WMM																																																				1
CTSB																																																				
Subgrade																																																				
Embankment																																																				
OGL																																																				
CNG																																																				
	5+360	5+370	5+380	0000+5	5+410	5+420	5+430	5+440	5+450	5+460	5+470	5+480	5+500	5+510	5+520	5+530	5+540	5+550	5+560	5+570	5+580	5+590	5+600	5+610	029+6	0102010	01010	5+660	5+670	5+680	5+690	5+700	5+710	5+720	5+/30	5+750	5+760	5+770	5+780	5+790	5+800	5+810	5+820	5+830	5+840	5+850	5+860	5+870	5+880	5+890	5+900	
CNG																																																				
OGL																																																				
Embankment																									Τ																											I
Subgrade																																																				
CTSB																																																				
WMM]
DBM																																																				
BC																																																				1

2.3 From Chainage (6+440 – To – 9+650)


																																								_	_								
BC																																																	
DBM																																																	
WMM																																																	
CTSB																																																	
Subgrade		ť									ť																													t									
Embankment		ulve									Culve									d I VIII	;																												
OGL		pe C									X									~																				Box Culv									
CNG		P									ä																													â									
	066+9	7+000	7+010	7+020	7+030	7+040	7+060	7+070	7+080	060+2	7+100	7+110	00112	7±120	7+140	7+150	7+160	7+170	7+180	7±190	7+200	7+210	7+220	7+230	7+240	7+250	7+260	7+270	7+280	7+290	7+310	7+320	7+330	7+340	7+350	7+360	7+370	7+380	7+390	7+400	7+410	7+420	7+430	7+440	7+450	7+460	7+470	7+480	7+490
CNG		ť									۲																													t									
OGL		alve									Culve									4																				Culvei									
Embankment		De C									Box C									INIP																				Box C									
Subgrade		ē									ň																													ă									
CTSB																																																	
WMM																																																	
DBM																																																	
BC														Τ		Γ	Π			Γ						T			T																				

	_	_	-	-	_	-	-	-	_	_	_	-	-	_	-	-	-	-	_	_	_	_	_	_	_	_	_	-	_	-	-	_	-	_	_	_	_	_	-	-	_	_	-	-	-	_	-	-	-	_	_
BC																																																			
DBM																																																			
WMM																																												Ц							
CTSB																																												Ш							
Subgrade																													ť													ť									
Embankment																													Culve													Culve									
OGL																												1	Box C													Box C									
CNG																												1	×													ġ,									
	7+500	7+510	7+520	7+540	7+550	7+560	7+570	7+580	7+590	7+600	7+610	/+620	7+640	7+650	7+660	7+670	7+680	7+690	7+700	7+710	7+720	7+730	7+740	7+750	7+760	7+770	7+780	000	1+/90	7+800	7+810	7+820	7+830	7+840	7+850	7+860	7+880	7+890	2+900	7+910	7+920	7+930	7+940	7+950	7+960	7+970	7+980	066+2	8+000	01018	8+030
CNG																													ť													ť									
OGL																																										ulve									
Embankment																												'	Box Culvert													Box C									
Subgrade																												1	ő													Ó									
CTSB																																																			
WMM																																																			
DBM																																																			
BC																																																			

	<u> </u>	_	-	-		-	-	_	_	_	-	-		-	-	-	Ť.	-	_		-	-	-	-	-	<u> </u>	_		_	-	-	-	_		_	_	-	-	-	-	-	-	-		-	-	-	-	٦
BC															4						4														_					\perp						_	\perp		
DBM																																																	
WMM																																																	
CTSB																																																	
Subgrade						ť													ť																														
Embankment						Culve													ulve																		4												
OGL						Box C													pe C																		SVUP												1
CNG																			a																														
	8+040	8+050	8+060	8+080	060+8	8+100		8+110	8+120	8+130	8+150	8+160	8+170	8+180	8+190	8+200	017.0	8+220	8+230	8+240		8+250	8+270	8+280	8+290	8+300	8+310	8+320	8+330	8+340	8+360	8+370	8+380	8+390	8+400	8+410	8+420	8+430 8+440	8+450	8+460	8+470	8+480	8+490	8+500	8+510	8+520	8+530	8+550	
CNG						ť													ť																														
OGL						ulve													ulve																		SVUP												
Embankment						Box Culvert													Pipe 0																		S												
Subgrade						â	1												ä																														
CTSB																																																	
WMM																																																	
DBM]
BC]

		_		_	_	_	_	_	_	_	_	_	_		_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	-		_	_	_	_	_	_	_	_	_	_
BC																																								\perp							_		_		\perp		\square
DBM																																																					
WMM																																																					
CTSB																																																					
Subgrade											ť																																										
Embankment											INC																																					Τ	Τ	Τ	Τ		Π
OGL											U XO																																						Τ				
CNG											ă																																										
		_	-	_		-	_	_			_	~	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_					_	_		_	_							
	560	20	8	6		20	30	40	+650		999	+670	80	069	0	5	2	m m	740	5	760	2		6			20	8	4	20	8	2	8	6		3	20					2		2									6
	6+50	8+5	8+580	8+590		8+620	8+630	8+640	8+8		8+660	8+6	8+680	8+690	8+700	+ 8	8+720	+ 8	8+7	8+750	8+7	8+770	8+780	8+790	8+800	8+810	8+8	8+830	8+840	8+850	8+860	8+870	8+880	8+890	n 0 + - 00 0	DT6+8	8+920	056+8	01010	0000-0	ין ת + מ מ	8+970	086+8	066+8	0000+6	9+010	9+020	040+0		+ -	04046		060+6
CNG											ť																																						T	T	T		
OGL											ulvei																																										
Embankment											Ú XO																																										\Box
Subgrade											Ø,																																										
CTSB																																																					
WMM																																																					
DBM																																																		Τ	Τ		
BC																																									Τ							Τ	Τ	Τ	Т		П

					_										-		_		_						_	_			_								_		_	_	_	_	_		_	_					_
BC																																																			
DBM																																																			
WMM																																																			
CTSB																																																			
Subgrade																																							ť											Τ	
Embankment		-																		8																			Culve									Τ		Τ	1
OGL		-																1		ROB		ľ																	č												1
CNG													•	•																									ä												
	9+100	9+110	9+130	9+140	9+150	9+160	9+170	9+190	9+200	9+210	9+220	9+230	01210	01276	9+270	9+280	9+290	9+300	9+310	9+320	9+330	9+340	9+350	01370	9+380	062+6	9+400	9+410	9+420	9+430	9+440	9+450	04470	9+480	9+490	9+500	9+510	9+520	9+530	9+540	9+550	9+560	9+570	9+580	9+590	009+6	9+610	9+620	9+630	9+640	000+0
CNG													1	-																									t												
OGL		-												9						ROB																			Culve												
Embankment			-				Т			Π	Τ				Τ			1		R		Г	Τ	Τ	Т		Γ					Т	Τ	Τ					OX C									Τ	Т	Т	1
Subgrade													•	ŏ																									ň												
CTSB																																																			
WMM																																																			
DBM																																																			
BC																						T		Г		Γ																									

2.4 From Chainage (9+660 - To - 12+880)

		_				_	_				_	_	_		_				_	-				_				_	_		_		_		_	_	_	-		-	_	_	_						_	-				-				
BC																																																										
DBM																																																										
WMM]
CTSB																																																										
Subgrade																					ť																						ť															
Embankment																					ulve																						Culve															
OGL																					0 e d																						D XOR]
CNG																					đ																					6	ž,															
	11+260	11+270	11+280	062+11	002+11	11+310	11+320	11+330	11+340	11+350	11+360	11+370	11+380	11+390	11+400	11+410	11+420	11+430	11+440	11+450	11+460	02771	007.11	005477	11+490	11+500	11+510	11+520	11+530	11+540	11+550	11+560	11+570	11+580	11+590	11+600	11+610	11+620	11+630	11+640	11+650	11+660	11+670	11+680	11+690	11+700	11+710	11+720	11+730	11+740	11+750	11+760	11+770	11+780	i ta	11+800	11+810	
CNG																					ť																						ť															
OGL																					u lve																						Culve]
Embankment																					90		Τ	Τ																			JOX C			Τ				Г				Γ		Γ	Γ	1
Subgrade																					ā																					4	ň															
CTSB																																																										
WMM																							Γ																																			
DBM																																																										
BC																							Γ			T																																

	_	_	_		_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	_		-		_	_	_	_	_	_	_	-	_	_	_	_	_	_		_	_	_	_	_	_
BC																																																		
DBM																																																		
WMM																																																		
CTSB																																																		
Subgrade								ť																																							ť			
Embankment								ulve			LVUP																																				Culve			
OGL								pe C			Z																																				Box C			
CNG								ä																																							â			
	11+820	11+830	11+840	11+860	11+870	11+880	11+890	11+900	11+910	11+920	11+930 11+940	11+950	11+960	11+970	11+980	066+11	12+010	12+020	12+030	12+040	12+050	12+060	12+070	12+080	12+090	12+100	011+21	12+130	12+140	12+150	12+160	12+170	12+180	12+190	12+200	12+220	12+230	12+240	12+250	12+260	12+270	12+280	12+290	12+300	12+310	002701	12+330	12+340	12+350	12+360
CNG								ť																																							۲			
OGL				Τ				ulve			4																																				Iver	Г		
Embankment								be O			LVUP																																				ox Cul			
Subgrade								ä																																							ă			
CTSB																																																		
WMM																																																		
DBM																																																		
BC				Т	T												Т	T								T											Τ											T		

DC.			-	-	-	-	-	-	1	-		-	-	1	T	<u> </u>																							-	T	1	-	T	-	<u> </u>	<u> </u>					-			٦
BC	\vdash	-	+	+	+	+	+	+	+	+	+	+	+	+	+	-		_		_	_	_				_	_				_	_	_	-	+	+	+	+	+	+	+	+	+	-	-	⊢	\vdash	\vdash	\vdash	\vdash	_		-	4
DBM																																																			_			
WMM				1			\perp																													_															_			
CTSB																																																						
Subgrade																			E																		Ľ																	
Embankment																			Culve																																		AUP	
OGL																			Box C																		bed																5	
CNG																			¢,																	č	Z																	
	12+370	12+380	12+390	124410	020121	124420	0000101	12+450	12+460	12+470	080761	121490	12+500	12+510		12+520	12.620	000171	12+540	134550	0001.71	12+560	12+570	12+580	12+590	12+600	12+610	12+620	12+630	12+640	12+650	12+660	12+670	12+680	12+690	001.00	00/471	01/+71	12+730	12+740	12+750	12+760	12+770	12+780	12+790	12+800	12+810	12+820	12+830	12+840	12+850	12+860	12+870	TZTOOO
CNG																			ť																		Ľ																	1
OGL																			Culve																																		VUP	
Embankment																			Box C																		be																2	
Subgrade																			•																	0	2																	
CTSB																																																						
WMM																																																						
DBM																																																						
BC																																																						

BC			T	1	Т	Т	Ť	Г	-			-	Т	Г	П	T	Ť	Т	T	П		-	T	П	-	-	T	Т	—	Ē	П	T	T	Г			Ť	-	Т	Ť	T						-	-
DBM	+		+	+	+	$^{+}$	+	\vdash	\vdash			+	+	+	H	+	+	+	+	\square		+	+		-	+	+	+	+	\vdash	\square	+	+	+	H	+	+	+	+	+	+					+	+	+
WMM																																																
CTSB						Γ																																										
Subgrade			T		T	Γ	۲	Γ					Γ			T											Γ												E									
Embankment						T	Box Culvert																Box Culvert																e la									
OGL						T	U X																Ŭ X	Π								Τ							2									
CNG	1		+	+	+	t	8					+	t	T	Ħ	+	+	1	1				8	H			t	1	T			+		t				-	Ē		t						1	+
	0	0	0	0			0	0	0	0	0	0 0		0	0	0 0			0	0	0	0	0	0	, ,	0 0		0	0	0	0			0	0	0	0		5	0	0	0	0	0	0	0	0	0 0
	12+890	12+900	12+910	12+920	12+940	12+950	12+960	12+970	12+980	12+990	13+000	13+010	13+030	13+040	13+050	13+060	13+0/0	13+090	13+100	13+110	13+120	13+130	13+140	13+150		13+160	13+180	13+190	13+200	13+210	13+220	13+230	13+250	13+260	13+270	13+280	13+290	0000	120	13+310	13+320	13+330	13+340	13+350	13+360	13+370	13+380	13+390
	12	12	12	12	i r	1 1	12.	12	12.	12	13	13	in 1	13	1 m	mi (i i	19 1	13	13	13	13	13.	1		13	in F	13	1 <u>3</u>	13	13	n r	n H	1ÿ.	13	Ϊġ	13	;	ή	13	13	13	13.	13.	13	13	13	13
CNG							ť																ť																e									
OGL							ulve																ulve																nive									
Embankment							Box Culvert																Box Culvert										2	0.577				1	8									
Subgrade							đ								Π								ň															1	2		Γ							
CTSB			1		1	T			\square				T	Γ	Π					Π												T									\top							
WMM																																																
DBM					T	T									Ц	1																							T									
BC																																																
BC			Т	Т	Т	Т	Т	Γ					Т	Γ		Т	Т	Т	Г	Π		Т	Τ	П			Т	Г				Т	Т			Т	Т	Т	Т	Т	Г		Т		Т	Т	Т	—
DBM																											T																					
WMM	-	_	+	+	+	+	+	-			_	_	+	-	\square	+	+	+	-		_	+	+	Н	_	+	+	-				+	+			+	+	+	+	+	-		_	_	+	+	_	+
CTSB	-	_	+	+	+	+	+	-	-		_	_	+	-	\square	+	+	+	-		_	+	+	\square	_	+	+	-				+	+			+	+	+	+	+	-		_	_	-	+	_	+
Subgrade	_			_	+								-			-		+	-																									_	_	_		
Embankment		_	_	+	+	+	+	-				-	+	-	\square	_		+	-		_	_	_		_	_	_	_	_	_		_	_	_	_	_	_	+	+	+	-				_	4		_
OGL		_	_	+	+	+	+					_	+	-		_	Box Culvert	+	-		_	+	+	\square	_	-	+	+				+	+			_	+	+	+	+	-			_	+	+		
CNG																	-		-																										_	_		
	13+410	13+420	13+430	13+440	12+450	13+470	13+480	13+490	13+500	13+510	13+520	13+530	13+550	13+560	13+570	10.100	13+280	13+590	13+600	13+610	13+620	13+630	13+650	13+660	13+670	13+680	13+700	13+710	13+720	13+730	13+740	13+760	13+770	13+780	13+790	13+800	13+810	13+820	13+840	13+850	13+860	13+870	13+880	13+890	13+900	13+910	13+920	13+930 13+940
CNG															T			Ť	1																													
OGL						T							T				Iver	T				T		Π			T						T				1											
Embankment																-	Box Culvert																															
Subgrade			Т	Τ	Τ			Γ					Τ			•	ž					Т	Γ	Π			Т	Γ					Τ			Т												Т
CTSB					Τ								Τ					Τ				Τ		Π			Τ																					
WMM																																																
DBM BC	+	-	+	+	+	+	+	\vdash	-	\square	-	-	+	-	\vdash	+	+	+	+	\square	+	+	+	\vdash	-	+	+	+	\vdash		-	+	+			+	+	+	+	+	\vdash		_	-	+	+	-	+
			_		1	_	-	-	-			_		-			-	_				1	-		_	_	_	1	1			_	-	-				_	_	-	-		_					_
BC				1	1	T	F	F					T	-	\square	Ŧ	-						1	Π			T	F					F				1		T	F						1		T
DBM WMM		-	+	+	+	+	+	+	\vdash		+	+	+	+	\mathbb{H}	+	+	+	+	\vdash	+	-	+	H	+	+	+	+	+		+	+	+	\vdash		+	+	+	+	+	+	\mid		+	+	+	+	+
CTSB																																																
Subgrade						art .							+		Ц	1					_	tart		Ц			+				\square		+			_	4		+	\downarrow		Ц			1	4	1	+
Embankment						- 0	-	\vdash	-		$\left \right $	+	+	+	\vdash	+	+	-	+	\vdash	-	Roy Culve	-	\vdash	+	+	+	+	-		\vdash	+	+	\vdash		+	+	+	+	+	-	\mid		+	+	+	+	+
OGL CNG				+		Ding	-	+	\vdash		+	+	+	+	\mathbb{H}	+	+	+	+	\vdash	\neg	Rov	-	+	+	+	+	+	\vdash		+		+	\vdash		+	+	+	+	+	+			+	+	+	+	+
	0	0	0	0	00	ç	2	2	0	0	9	0 0		0	0		0 0	2 0	9	0	-0	9		^o	0		2 0	0	0	0	0			o	0	0	0	0 0		0	0 0	0	0	0	0	9	9 9	0 0
	13+950	13+960	13+970	13+980	13+990	14+000		14+010	14+020	14+030	14+040	14+050	14+070	14+080	14+090	14+100	14+110	14+130	14+140	14+150	14+160	144170		14+180	14+190	14+200	14+220	14+230	14+240	14+250	14+260	14+280	14+290	14+300	14+310	14+320	14+330	14+340	14+360	14+370	14+380	14+390	14+400	14+410	14+420	14+430	14+440	14+450 14+460
CNG	Ħ	Ħ	Ħ	ä	H	-	-	i 	17	1,	ĥ		14	17	ř,	4	-	14	i ři	H-	н Т			╧	ř,		14	H H	F1	1	ř,		14	1	ĥ	ĥ	-	-	1 -	17	1	4	1	ĥ	ř.	ř.	÷,	44
			+	+		Ivert		t	\vdash		+	+	+	+	\vdash	+	+	+	+	\square		Roy Culvert		H		+	+	+	\vdash		+	+	+	\vdash		+	+	+	+	+	-				+	+	+	+
OGL						- 0		+	+		-	+	-	+	++	+	+	+	1	H	-	C		++	-	-	+	+	+	-	-	-		1	-	-+	-	-	+	-							-	+
OGL Embankment						9	1									_			-			2																										
						Dine						+				+						RAV																										
Embankment Subgrade CTSB						Dine																Rov																										+
Embankment Subgrade						Dine	-														_	ACK INC.																									-	+

2.5 From Chainage (12+890 - To - 14+490)

										5																					_												_	_	_	_	_
BC																																															
DBM																									_																						
WMM																																															
CTSB																																															
Subgrade											~																																				
Embankment											OVER																																				
OGL											FLYO																																				
CNG											-																																				
	14+470	14+480	14+490	14+500	14+510	14+520	14+530	14+540	14+550	14+560	14+570 14+580	14+590	14+600	14+610	14+620	14+630	14+640	14+650	14+660	14+670	14+680	14+690	14+700	14+710	14+720	14+730	14+740	14+750	14+760	14+770	14+780	14+790	14+800	14+810	14+820	14+830	14+840	14+850	14+860	14+870	14+880	14+890	14+900	14+910	14+920	14+930	14+940
CNG											~																																				
OGL											OVER	Γ																																			
Embankment											FLY O																																				
Subgrade																																															_
CTSB																																															
WMM																																															
DBM																																															
BC																																													T		7

CHAPTER 3

STRUCTURAL DRAWINGS AND WORK AT SITE

3.1 VEHICULAR UNDER PASS (VUP)

VUP at chainage 6+112, a vehicular underpass, also known as an underpass, is a type of road or transportation infrastructure that allows vehicular traffic to pass underneath an obstruction, such as a railway line, a busy road, or a river. It is essentially a tunnel that is built under the obstruction, which provides a safe and efficient way for vehicles to move from one side to the other without any interruption to traffic flow.

Vehicular underpasses are typically constructed using reinforced concrete or steel, and are designed to accommodate the size and weight of various types of vehicles, including cars, trucks, and buses. They are usually built with multiple lanes to allow for higher traffic volumes and can also have pedestrian sidewalks for pedestrians.

One of the main advantages of vehicular underpasses is that they help to reduce traffic congestion by allowing vehicles to bypass busy intersections or roads. This helps to improve traffic flow and reduce travel times, which can ultimately lead to improved productivity and economic growth in the surrounding area.

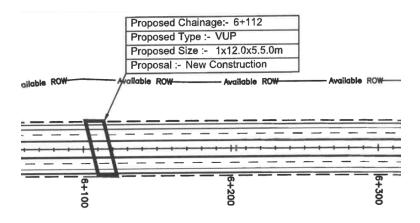


Figure 3.1 – VUP detailing and planning

Figure 3.1.1 Staging of VUP(A)

Figure 3.1.1 Staging of VUP(B)

3.1.1 PLANING OF VUP

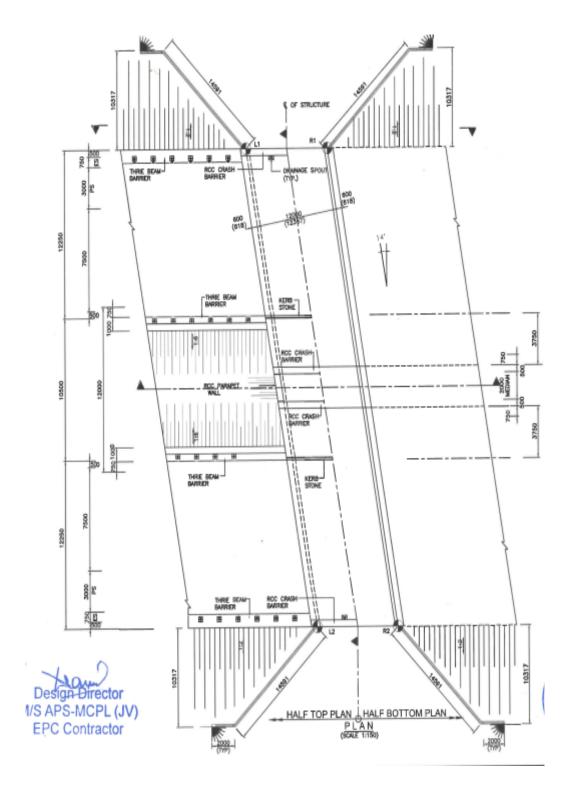


Figure 3.1.2 Plan of VUP (TOP VIEW)

3.1.2 SECTION C-C of VUP

Side view of vehicular under pass, designing and dimensions are followed on site throughout the construction of VUP as shown in given figure.

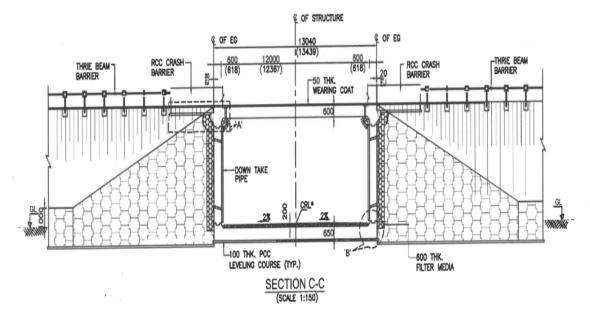


Figure 3.1.3 Section C-C of VUP

FRL	LHS	223.77	223.77	223.77	223.79	223.79
FRL	RHS	223.77	223.77	223.77	223.77	223.77

Table 3.1 Finished road level (FRL) and Ground level(GL)

GL	LHS	217.150	217.170	217.170	217.170	217.170
FOUN.	RHS	213.300	213.300	213.300	213.300	213.300
LEVEL						

3.1.3 CONSTRUCTION OF HAUNCH

Haunch is commonly used to refer to the inclined portion of a concrete beam or slab that connects the top and bottom flanges or slabs. The haunch helps to distribute the load from the concentrated point loads and reactions to the supporting structure. The height of the haunch is usually calculated based on the shear and moment diagram of the beam or slab.

In addition to providing load distribution, haunches can also help to increase the stiffness of a beam or slab, particularly at its ends. This can help to prevent excessive deflection and cracking due to concentrated loads or settlement.

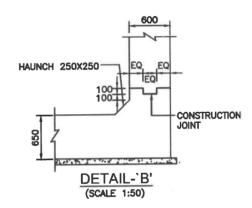


Figure 3.1.4 Detailing of Haunch

Figure 3.1.5 Concreting of Haunch (250X250mm)

3.1.4 SITE DETAILS

Figure 3.1.6 Curing of Slab and wall

Figure 3.1.7 Curing of Slab and wall

Figure 3.1.8 Tran mixer (7 cum²) and Concreting of side wall, using vibrator

3.1.5 NOTES

- 1. All dimensions are in millimetres, levels are in meters unless otherwise mentioned.
- 2. No dimension shall be measured from the drawings. only written dimensions shall be followed.
- 3. The drawing shall be read in conjunction with relevant highway plan and profile drawings. FRL, bed level, camber/superelevation and layout shall also be verified site before execution. discrepancies shall be brought the notice of the engineer for revision in drawings,
- 4. Chainage of the structure is at the centre line of the proposed structure.
- 5. The reinforcement shall be bars of grade designation Fe 500d conforming to is 1786-2008.
- 6. Concrete shall be design mix with a minimum 28 days characteristic cube strength for different elements as follows:
 - a) RCC box structure M35
 - b) RCC crash barrier M40
 - c) RCC approach slab M30
 - d) PCC levelling course M15

- e) U type median wall M35
- 7. Clear cover to outer steel shall be as follows:-

a)	Superstructure	45mm
b)	Vertical face in contact with earth	75mm
c)	Vertical face not in contact with earth	45mm
d)	Foundation	75mm

- Back filling behind walls/abutment shall consists of selected earth conforming to appendix 6 of irc:78-2014 Having properties C= 0, @>=30°, y=2.0t/cu.m.
- 9. 50mm wearing coat shall be adopted in conformity with section 2702 of Morth specifications.
- 10. All solid walls retaining the earth shall be provided with weep holes (100mm dia and slope 1v:20h) starting 150mm above the ground level and spaced 1000mm c/c both horizontally and vertically in staggered manner.
- 11. 600mm thick filter media shall be provided behind box, side wall & u type median wall.
- 12. Drainage spout 100mm dia spaced 5000mm c/c shall be provided in superstructure.
- 13. Condition of exposure is severe.
- 14. This structure les in seismic zone IV.
- 15. The maximum base pressure as per design is 6.901/m° which is less than the SBC as per geotechnical report at founding level.

3.2 LIGHT VEHICLE UNDERPASS (LVUP)

Light Vehicle Underpass, At Chainage 7+193.5

A light vehicle underpass (LVUP) is a type of road underpass that is designed specifically for light vehicles such as cars, pickup trucks, and SUVs. LVUP are typically used to improve traffic flow and reduce congestion at busy intersections by allowing vehicles to pass underneath an intersecting road or railway line without stopping for a traffic signal or crossing gate.

They typically have a clearance height of around 4.5 to 5 meters, which is sufficient for most light vehicles, and a width of around 6 to 7 meters, which is enough to accommodate two lanes of traffic.

Overall, light vehicle underpasses are an effective way to improve traffic flow and reduce congestion at busy intersections. They provide a safe and efficient alternative to traditional at-grade crossings and can help to improve the overall safety and efficiency of the road network.



Figure 3.2 Plan of LVUP, at 7+193.5

3.2.1 CROSS SECTION, FRONT AND SIDE VIEW OF LVUP

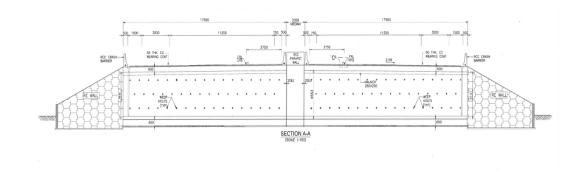


Figure 3.2.1 (A) Cross Section of Underpass

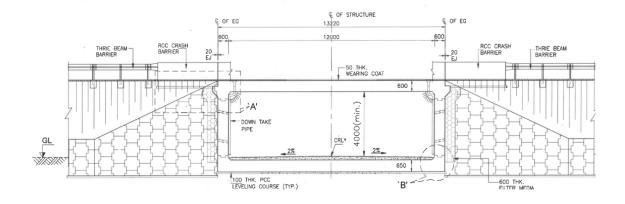


Figure 3.2.1 (B) Front view of LVUP

3.2.2 SITE VIEW (SIDE &FRONT) OF LUVP

Figure 3.2.2 Side view (A)

Figure 3.2.2 Front view (B)

3.2.3 CONCRETING OF RAFT FOUNDATION

A raft foundation, also known as a mat foundation, is a type of foundation used in building construction to spread the weight of a building and its load over a large area. It is a large, solid concrete slab that sits on top of the soil and supports the entire building.

Raft foundations are constructed by excavating the soil to a predetermined depth, and then filling the excavation with concrete. The concrete is typically reinforced with steel bars or mesh to provide additional strength and stability. The surface of the raft foundation is then levelled and finished to provide a smooth surface for building construction. The raft foundation is designed to distribute the weight of the building or structure evenly across the entire area of the foundation.

In order to design a raft foundation, soil testing and analysis is typically carried out to determine the load-bearing capacity of the soil. The design of the raft foundation will depend on factors such as the size and weight of the building or structure, the soil conditions.

Overall, raft foundations provide a strong, stable base for Structure and are a reliable choice for a variety of construction projects.

Figure 3.2.3 Concreting of Rafting (Total concrete used = 33 cum.s)

3.2.4 WEEP HOLES AND HEAD WALL

Weep Holes

A weep hole is a small opening or gap in a building component that allows for the drainage of water that may accumulate or penetrate the component. Weep holes are commonly used in construction to prevent the accumulation of water in masonry walls, retaining walls, and other structures.

Weep holes are typically located near the bottom of the wall, above the flashing layer, and are often placed at regular intervals. These openings allow any water that has penetrated the wall to drain out, preventing it from accumulating and causing damage to the structure. Weep holes can also be used to allow ventilation to pass through the wall cavity, preventing moisture build-up and reducing the risk of mold growth.

In retaining walls, weep holes are used to relieve the water pressure that builds up behind the wall, preventing the wall from becoming destabilized or damaged.

Overall, weep holes are an important part of many construction projects, as they help to prevent moisture build-up, water damage, cracking and structural instability.

Figure 3.2.4 (A) Weep hole at Side wall

Head wall

A head wall is a vertical or slightly sloping retaining wall that is built at the end of a Structure or culvert to provide support and stability to the embankment or roadway. Head walls are commonly used in construction to prevent soil erosion, control drainage, and provide a level foundation for the roadway or bridge.

The head wall typically consists of a concrete structure that extends down into the ground and provides a solid base for the bridge or culvert. It is usually built in a trapezoidal shape, with the wider end facing the roadway or embankment and the narrower end facing the waterway.

The head wall is designed to resist the lateral pressure exerted by the soil and water on the bridge or culvert, and to transfer the loads from the superstructure to the foundation. It also serves as a barrier to prevent erosion of the soil behind the wall, and to control the flow of water and sediment.

Overall, head walls play an important role in ensuring the safety and durability of bridges and culverts, and in preserving the natural environment by preventing erosion and controlling water flow.

Figure 3.2.4 (B) Head wall

3.3 BOX CULVERT AT CHAINAGE (13+600) AND (12+970)

Box Culvert

A box culvert is a structure commonly used in highway engineering for conveying water under a roadway or other transportation infrastructure. It is a rectangular or square-shaped concrete structure with open ends that are designed to fit together to form a longer conduit. Box culverts are generally constructed using reinforced concrete and are known for their durability, strength, and versatility.

Box culverts are typically used in locations where a bridge or a larger structure is not necessary, but where water needs to be conveyed under a roadway. They are also used in locations where there is limited vertical clearance, such as in urban areas or under existing infrastructure. Box culverts can be constructed in a variety of sizes and shapes to accommodate different water flow rates and site conditions. They can be designed to carry pedestrian and bicycle traffic, as well as heavy vehicular traffic. They are also commonly used in storm water management systems to transport and store water during heavy rain events. In summary, box culverts are an essential component of modern highway engineering and are used to convey water under roadways and other transportation infrastructure. They are designed to be durable and strong, and can be constructed in a variety of sizes and shapes to accommodate different site conditions and traffic volumes.

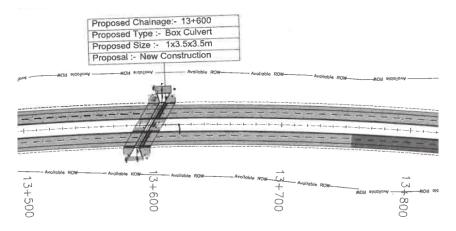


Figure 3.3. Detail and plan of Box Culvert

3.3.1 BOX CULVERT SECTIONAL PLAN (13+600)

Section A-A

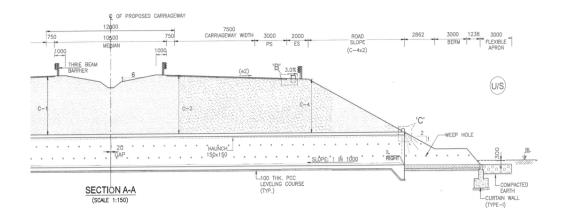


Figure 3.3.1 (A) – Side view provides us length of Raft

Section B-B

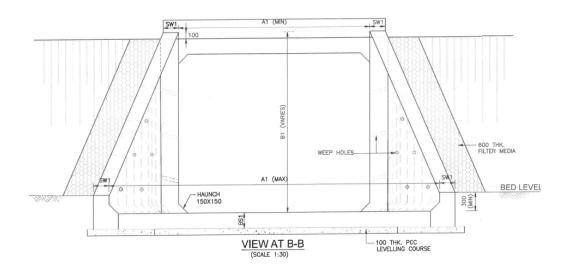


Figure 3.3.1 (B) - Front view providing details of Haunch, Wall and Slab

3.3.2 CONSTRUCTION AT SITE

Box culvert Structure, concreting of raft and wall are needed to be done, horizontal support are provided to structure to avoid running of shuttering plate and for avoiding risk of failure of structure.

Figure 3.3.2 Structure ready for concreting (3.5 x 3.5m) (A)

Figure 3.3.2 Structure completed, removing of staging left (B)

Structure completed, Curing too be done for 28 days

Figure 3.3.2 Box culvert at 13+600 (C)

Figure 3.3.2 Box Culvert at 12+970 (D)

3.3.3 CURING OF STRUCTURE

Structures are often designed to withstand a certain level of load and stresses, but over time they may be subjected to additional loads, environmental factors, or other conditions that can cause damage or deterioration. If left unchecked, this damage can compromise the structural integrity of the building, putting people and property at risk.

Therefore, the curing of structures is important to ensure that any damage or deterioration is repaired before it becomes a safety hazard. This may involve repairing cracks in concrete or masonry, replacing corroded or damaged steel members, or reinforcing weakened or overloaded sections of the structure.

Additionally, curing of structures can also improve their performance and extend their lifespan. Proper maintenance can help prevent future damage, reduce the need for costly repairs, and ensure that the structure remains safe and functional for its intended purpose. Proper curing of structure should be done to gain complete and proper strength.

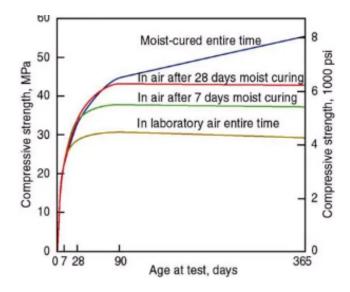


Figure 3.3.3 Concrete Strength Development versus Moist Curing of Concrete

Curing done at Site (Box Culvert)

3.4 PIPE CULVERT

Pipe Culvert at Chainage 13+300

A pipe culvert is a type of drainage structure commonly used in highways and other transportation infrastructure. It is essentially a pipe that is installed under a roadway or embankment to allow water to flow from one side of the roadway to the other.

Pipe culverts are typically made of materials such as concrete, steel, or plastic, and come in a variety of shapes and sizes depending on the specific application and requirements of the roadway. They can be circular, elliptical, or rectangular in shape, and are often designed to withstand heavy loads and resist corrosion.

The installation of a pipe culvert in a highway involves excavating a trench underneath the roadway or embankment, and then laying the pipe in the trench. The pipe is then backfilled with soil and compacted to ensure that it can support the weight of the roadway above it.

Pipe culverts are an important component of highway drainage systems, as they allow water to flow freely under the roadway, reducing the risk of flooding and damage to the roadway itself. They are often used in conjunction with other drainage structures such as catch basins, inlets, and channels to manage stormwater runoff from the roadway and surrounding areas.

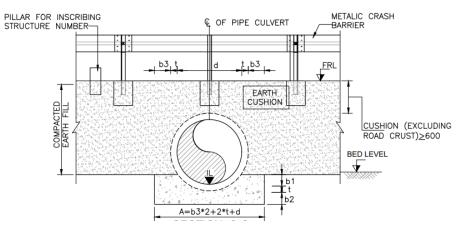


Figure 3.4 Pipe Culvert drawing

3.4.1 PLANING OF PIPE CULVERT LAYOUT

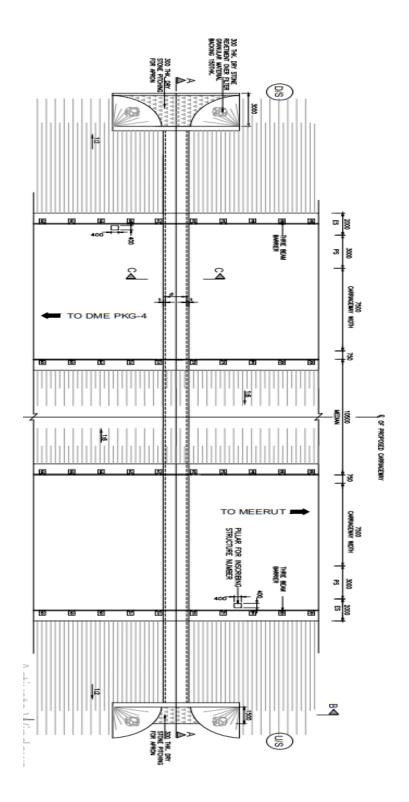


Figure 3.4.1 Planning of Pipe Culvert

3.4.2 CONSTRUCTION OF PIPE CULVERT

Laying of pipe culvert, total 21 pipes are laid under this pipe culvert.

Laying of pipe culvert refers to the process of installing pipes to allow water to flow under a roadway, railway, or other type of infrastructure. Culverts can be made of a variety of materials such as concrete, steel, or plastic, and can come in various shapes and sizes depending on the project requirements.

The process of laying a pipe culvert involves several steps, including:

- 1. Ecavation: First, a trench is dug where the culvert will be installed. The size of the trench will depend on the size of the culvert being installed.
- 2. Bedding: Once the trench is excavated, a layer of bedding material, such as crushed stone, is placed at the bottom of the trench to provide a stable foundation for the culvert.
- Installation: The culvert pipes are then lowered into the trench and properly aligned to ensure a smooth flow of water. Connections between pipes are made using various techniques such as welding or using rubber seals.
- 4. Backfilling: After the pipes are installed, the trench is filled with backfill material such as gravel or soil. The backfill material is then compacted to ensure the culvert is properly supported.
- 5. Finishing: The final step in laying a pipe culvert involves finishing the surface of the roadway or railway to restore it to its original condition.

It is important to ensure that proper safety measures are taken during the installation of a pipe culvert, such as providing traffic control to protect workers and equipment, and ensuring that the excavation is properly shored to prevent collapse. Additionally, proper drainage must be provided to prevent erosion and damage to the culvert.

Figure 3.4.2 Laying of Pipe Culvert

Figure 3.4.2 (A) Head wall of pipe culvert

Figure 3.4.2 (B) Head wall of pipe culvert

CHAPTER 4

RESULT AND SITE WORK PROGRESS

4.1 STRUCTURE PROGRESS

		SCO	Foundation	n	Sub struct	ure	Super structure	
S. No.	Type of Structure	PE (No)	Complete	WIP	Complete	W I P	Complete	WI P
1	ROB	1	-	-	-	-	-	-
2	FLYOVE R	2	-	-	-	-	-	-
3	MINOR BRIDGE	1	-	-	-	-	-	-
5	VUP/LVU P/SUP	18	1/3/5	1/1/1	1/2/3	0/ 1/ 2	1/0.5/1	0/1 .5/ 1

Table 4.1 (A) ROB, FLYOVER, Major Bridge, Minor Bridge, VUP/LVUP

Table 4.1 (B) Box Culverts details

S.	Type of	Scop	Status					
No	Structur	e	Excavatio	PCC	Raft	Wal	Deck	Remark
•	e	(No)	n	ree	Nait	1	Slab	s
1	Box	35	26	26	22	20	16	
1	Culvert	55	20	20		20	10	

Table 4.1 (C) Hume Pipe Culvert (Irrigation Channel)

S.	Type of		Status					
No	Structur e	Scope (No)	Excavatio n	PC C	Pipe Layin g	Concretin g	Backfi ll	Remark s
1	НРС	20	19	19	17	17	-	

4.2 PHYSICAL PROGRESS

Table 4.2 (Percentage of Work done at site)

<u>Component</u>	<u>% Weightage</u>	<u>Physical Progress</u> (Cumulative, Up to Current Month)
Road Works	48.98%	16.00%
MNB, SVUP, LVUP, VUP Works	18.050%	22.00%
ROB	4.410%	0.00%
Box Culvert Works	3.98%	65.00%
Other Works	24.58%	10.00%

4.3 ROAD WORK PROGRESS

Sr. No.	Description	Unit	Total Scope (Km)	Started (Km)	Completed (Km)	% Work completed
1	C&G	Km	13.89	10.9	9.8	70.55%
2	Earthwork	Km	13.89	10.9	6.5	46.8 %
3	Subgrade	Km	13.89	-	-	
4	CTSB (DL/SL)	Km	13.89	-	-	
5	WMM	Km	13.89	-	-	
6	DBM	Km	13.89	-	-	
7	BC	Km	13.89	-	-	

Table 4.3 (A) Road Work Status (Main Carriageway)

Table 4.3 (B) Road Work Status (Reconstruction)

Sr. No.	Description	Unit	Total Scope (Km)	Started (Km)	Completed (Km)
1	C&G	Km	3.40	-	-
2	Earthwork	Km	3.40	-	-
3	Subgrade	Km	3.40	-	-
4	CTSB (DL/SL)	Km	3.40	-	-
5	WMM	Km	3.40	-	-
6	DBM	Km	3.40	-	-
7	BC	Km	3.40	-	-

PLAGIARISM CERTIFICATE

n .		M VERIFICATION R	EPORI	
Date: Type of Document (Tick)		Dissertation/ Report	B.Tech Project Report Pa	per
			Enrolment No	
Name of the Supervisor:				
Title of the Thesis/Disse	rtation/Project Report,	/Paper (In Capital lett	ers):	
		UNDERTAKING		
	vare of the plagiarism r	elated norms/ regulat	ions, if I found guilty of any p	
			egree, the University reserve	
withdraw/revoke my de mentioned above.	gree/report. Kindly all	ow me to avail Plagia	rism verification report for t	he docume
Complete Thesis/Report	t Pages Detail:			
 Total No. of Pages 				
 Total No. of Prelim 				
 Total No. of pages 	accommodate bibliogra	aphy/references =		
		R DEPARTMENT USE		re of Studer
are forwarding the com	plete thesis/report for		ity Index at(%). The plagiarism verification r	
are forwarding the com	plete thesis/report for idate.		• • • •	eport may l
are forwarding the comp handed over to the cand	plete thesis/report for idate.		. The plagiarism verification r	eport may l
are forwarding the comp handed over to the cand (Signature of Guide/Supe	plete thesis/report for lidate. ervisor)	final plagiarism check FOR LRC USE	. The plagiarism verification r	eport may l OD
are forwarding the comp handed over to the cand (Signature of Guide/Supe	plete thesis/report for lidate. ervisor)	final plagiarism check FOR LRC USE	. The plagiarism verification r Signature of He	oD w: port Detail:
are forwarding the com handed over to the cand (Signature of Guide/Sup The above document wa	plete thesis/report for lidate. ervisor) is scanned for plagiarisr Excluded	final plagiarism check FOR LRC USE n check. The outcome Similarity Index	The plagiarism verification r Signature of He of the same is reported below Generated Plagiarism Re	oD w: port Detail:
are forwarding the com handed over to the cand (Signature of Guide/Sup The above document wa	plete thesis/report for lidate. ervisor) as scanned for plagiarisr	final plagiarism check FOR LRC USE n check. The outcome Similarity Index	The plagiarism verification r Signature of He of the same is reported below Generated Plagiarism Re (Title, Abstract & Ch	oD w: port Detail:
are forwarding the com handed over to the cand (Signature of Guide/Supe The above document wa Copy Received on	plete thesis/report for lidate. ervisor) as scanned for plagiarisr Excluded • All Preliminary Pages • Bibliography/Ima ges/Quotes	final plagiarism check FOR LRC USE n check. The outcome Similarity Index	The plagiarism verification r Signature of He of the same is reported below Generated Plagiarism Re (Title, Abstract & Ch Word Counts	oD w: port Detail:
are forwarding the com handed over to the cand (Signature of Guide/Supe The above document wa Copy Received on	plete thesis/report for lidate. ervisor) as scanned for plagiarisr Excluded • All Preliminary Pages • Bibliography/Ima	final plagiarism check <u>FOR LRC USE</u> n check. The outcome Similarity Index (%)	The plagiarism verification r Signature of He of the same is reported below Generated Plagiarism Re (Title, Abstract & Ch Word Counts Character Counts	oD w: port Detail:
are forwarding the com handed over to the cand (Signature of Guide/Supe The above document wa Copy Received on	plete thesis/report for lidate. ervisor) as scanned for plagiarisr Excluded • All Preliminary Pages • Bibliography/Ima ges/Quotes	final plagiarism check <u>FOR LRC USE</u> n check. The outcome Similarity Index (%)	The plagiarism verification r Signature of He of the same is reported below Generated Plagiarism Re (Title, Abstract & Ch Word Counts Character Counts Total Pages Scanned	oD w: port Detail:
are forwarding the com handed over to the cand (Signature of Guide/Supe The above document wa Copy Received on Report Generated on	plete thesis/report for lidate. ervisor) as scanned for plagiarisr Excluded • All Preliminary Pages • Bibliography/Ima ges/Quotes	final plagiarism check <u>FOR LRC USE</u> n check. The outcome Similarity Index (%)	The plagiarism verification r Signature of He of the same is reported below Generated Plagiarism Re (Title, Abstract & Ch Word Counts Character Counts Total Pages Scanned	oD w: port Detail:
are forwarding the com handed over to the cand (Signature of Guide/Supe The above document wa Copy Received on	plete thesis/report for lidate. ervisor) as scanned for plagiarisr Excluded • All Preliminary Pages • Bibliography/Ima ges/Quotes	final plagiarism check <u>FOR LRC USE</u> n check. The outcome Similarity Index (%)	The plagiarism verification r Signature of He of the same is reported below Generated Plagiarism Re (Title, Abstract & Ch Word Counts Character Counts Total Pages Scanned	eport may OD w: apters)