
Conversion of Microservice from PHP to Golang

Project report submitted in partial fulfillment of the requirement for
the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By
Aryaman Sinha (191330)

Under the supervision of
Dr.Vipul Sharma and Dr.Nishant Jain

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

Candidate’s Declaration

I hereby declare that this project has been done by me under the supervision of Dr.Nishant

Jain, Department of Electronics and Communication and Dr.Vipul Sharma,

Department of Computer Science & Engineering, Jaypee University of Information

Technology. I also declare that neither this project nor any part of this project has been

submitted elsewhere for the award of any degree or diploma.

Aryaman Sinha 191330

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

Dr.Vipul Sharma Dr.Nishant Jain

2

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)

through the supervisor at plagcheck.juit@gmail.com

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

PLAGIARISM VERIFICATION REPORT

Date: ………………………….

Type of Document (Tick): PhD Thesis M.Tech Dissertation/ Report B.Tech Project Report Paper

Name: ___________________________ __Department: _________________ Enrolment No _________

Contact No. ______________________________E-mail. ______________________________________

Name of the Supervisor: __

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): ________________________

__

__

UNDERTAKING

I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:

 Total No. of Pages =

 Total No. of Preliminary pages =

 Total No. of pages accommodate bibliography/references =
 (Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at ………………..(%). Therefore, we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

 (Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index
(%)

Generated Plagiarism Report Details
(Title, Abstract & Chapters)

 All Preliminary
Pages

 Bibliography/Ima
ges/Quotes

 14 Words String

Word Counts

Character Counts

Report Generated on

 Submission ID Total Pages Scanned

 File Size

Checked by
Name & Signature Librarian

 ………

ACKNOWLEDGEMENT

First and foremost, I want to give Almighty God my sincere gratitude and appreciation for
His heavenly grace, which made it possible to finish the project work successfully.

Supervisor Dr.Vipul Sharma, Department of CSE, Jaypee University of Information
Technology, and Supervisor Dr.Nishant Jain, Department of ECE, Jaypee University of
Information Technology, both deserve my sincere gratitude and obligation of gratitude. To
complete this research, my supervisor's deep knowledge and genuine interest in the topic of
"Product Optimisation" were key factors. This project was made possible by their unending
kindness, expert direction, ongoing encouragement, persistent and vigorous supervision,
constructive criticism, insightful suggestions, and reviewing several subpar draughts and
rectifying them at all levels.

I would like to sincerely thank my bosses for their wonderful assistance

Aryaman Sinha
(191330)

3

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION………………………….Page no 7-9

CHAPTER 2 : LITERATURE SURVEY…………………..Page no 10-34

CHAPTER 3 : IMPLEMENTATION………………………Page no 35-45

CHAPTER 4 : CONCLUSION...……………………………Page no 46

4

List of FIgures

Sno. Figure Page No.

1 PHP 34

2 Main 35

3 Structs 36

4 Handler 37-39

5 Repository 40-42

6 Unit test handler layer 43-44

7 Docker Compose File 45

List of Tables

Sno. Table Page No.

1 Hardware Configuration 8-9

2 Software Configuration 9

5

ABSTRACT

A web application may be made rather easily, but testing, structuring, cleaning, and
maintaining the code is a barrier which is highly required at a company where the code base
is used by hundreds of developers.

Also, once other barrier that we need to address is upgradation of the code base with
advancement is languages and multithreaded. Fo example, our current backend codebase
comprises of PHP, but it is almost 10 times slower than Go language

To address the structuring issue, we use the Go language and work with the Three Layered
Architecture. The three layers that are used are handlers, usecase, and repository. After
receiving the request body, the handler layer parses it for any necessary information. The
response is then sent to the usecase layer which is where we implement the business logic of
the code. Incase we require any data, the data is collected from the repository layer which is
where we request data from the database.

6

CHAPTER 1 : INTRODUCTION

Bobble AI is india’s first and the biggest The Conversation Media Platform which enables
seamless conversations. Because what friends say to one another is the most genuine and
convincing kind of communication, it is a strong platform that enhances regular discussions.

1.2 Introduction

It is mostly based on CRUD but also includes complex business logics and uses the clean
architecture. All the layers also have their own unit tests so that each step of the code can be
tested.

1.3 Objectives

To convert, the existing codebase which is in PHP to Golang which is faster, and better
performing

1.4 Motivation

To apply industrial practices and create an impenetrable, and seamless web application.

1.5 Libraries/Frameworks Used

Used libraries and frameworks A simple, dependable, and effective programming language
called GO was created by Google developers to create code for apps. GO offers a number of
the packages used in this project, including:

1. net/http: This package offers implementations for http client/server.
2. json: This package implements JSON encoding and decoding.
3. errors: This method implements the manipulation of errors.
4. database/sql: This package offers a database that resembles SQL.

7

And for unit testing: mockery library is used

Information Regarding PHP

All the backend framework such as implementing http request, sending response to server,
writing program logic etc was written in PHP 1.5 Technical Requirements

● VSCode is an IDE to work on the code
● Postman is used for testing the api’s built locally
● A database management system's querying and networking capabilities are provided

by MySQL server.

1.5.1 Hardware Configuration

Information Regarding GOlang

The whole backend framework, including creating programme logic, delivering responses to
servers, implementing http requests, etc., has been transformed to Go.
1.5 Requirements for Technology.

● An IDE for writing clean code is called GOLand.
● Postman, an API development and use platform.
● Mysql server offers connection and querying capabilities for database administration

systems.

8

1.5.1 Hardware Configuration

1.5.2 Software Configuration

9

CHAPTER 2 : LITERATURE SURVEY

1) GO Documentation

R Griesemer, R Pike, and K Thompson developed the statically typed, open source, and
compiled programming language known as Go when they were employed at Google.

2) MySQL Documentation

MySQL is an open-source relational database management system that enables us to store
data, retrieve data, remove an item, and more. MySQL is short for My Structured Query
Language.

3) Mockery

Mockery is a mocking framework that works nicely with the built-in testing package in the
GO programming language.

4) Github and Git

An official platform that introduces you to the principles of Git, a version control system, and
how GitHub integrates with it.

4.3 Study Material

LINUX

The study material discusses LINUX, which is a Unix-based operating system that supports
both command line interface and graphical user interface. The default shell in Linux is
BASH (Bourne Again Shell), and it has a package manager for installing, upgrading and
cleaning packages.

The default package manager of Ubuntu is APT (Advanced Packaging Tool), and SUDO
(superuser do or substitute user do) is used for running commands as a superuser. There are
various processes and environment variables set in the system environment that affect the
processes using them. We can set environment variables in hidden files called ~/.bashrc or
/.bash_profile present in the home directory().

10

The PATH specifies the locations to be searched to find a command. The study material also
covers various LINUX commands such as ls, cd, touch, pwd, mkdir, rmdir/rm, mv, cat,
chmod, and vi.

LINUX Commands:

1. ls: lists the files in a folder.
2. cd: change directory
3. touch: used to create an empty file.
4. pwd: print path to the folder we are currently working
5. mkdir: creates a folder or multiple folders
To create nested folder -p mkdir folder/new
6. rmdir/rm: to delete an empty folder/ rm -rf folder(if another files/folder inside)
7. mv: move/ rename files cat: concatenate -> lists the contents of file
8. chmod: It sets the file permissions flags(define who can read, write to or execute the file)
on
a file or folder.
9. vi: visual editor

Packages GO

Every single Go programme is composed of packages. Every programme in the Go
environment begins to run in the primary math/Rand package:- When running the rand
package, the environment is deterministic.If we desire different results each time we use
rand, it will return the same number.

Seed:

Use " " with packages and ()-for clarity[Factored statement] with import.
Use capital letters with their package when exporting names, such as Pi(math.Pi).
To format everything, we may use the fmt: formatted i/o package.

Functions:func()

A function in GO may accept 0 or more arguments. After a variable name, a function's type
is listed.

● func add(int a, int b) return int a+b
● Add(9, 2) to invoke a function: func main()
● Add(a, b int): ex- add(int a, int b)

Import: All the libraries and packages are imported into Go in alphabetical order.

11

Third-party packages are written after all the built-in packages.

File Watcher:

It is a tool that is used to import all packages, format the code by making it standard and tidy,
and more.

To declare a variable or collection of variables, we use the var keyword. The variables may
be declared at the package or function level: var i int, defaults to 0 and false for bool. One
initializer can be used for each variable. For instance, var i, j int=4,2 var k, j=false, "no!".The
short assignment statement:= can be used inside of a function in place of a var declaration
with an implicit type, but outside of a function, we must use var, func, etc.

Using the syntax: func main() var m, n int=3,2 k,n:= true,"no!"
Global variables should never be used when generating variables.
The first values of variables declared without an explicit starting value are 0 (numerical),
false (boolean), and "" (string).

GO Packages

Each and every go program is made of packages. All the program in go enviroment start
running in
the main package

math/rand:- In package rand, environment is deterministic i.e. when run rand.In return same
number, and if we want different results each time we use, rand.Seed

● With import use ()-for clarity[Factored statement] and " " with packages
● When exporting names use Capital letter with its package- ex: Pi(math.Pi)
● We can use fmt: formatted i/o package to format all this.

Functions:func()

In GO a function can take 0 or more agrs. The type of a function comes after variable name
func add(a int, b int) int{ return a+b}
To call a function- func main(){ add(9,2)}
ex- add(int a, int b): add(a, b int)

A function can return any number of results
ex- func swapString(str1, str 2string) (string, string)
{ return str2,str1}
func main(){ str1,str2:=swap(“A”,”B”) } [:= assignment operator]

Import:

12

In go we import all the paxkges and libraries in alphabetic order.
First all the inbuilt packages are written followed by third party packages.

File Watchers:

It is a tool that is used to Imports all packages, formatting: Correct all the indentation, makes
code standard and clean, etc.

Variables

We use var to declare a variable or a list of variables. The variables can be at package or
function
level
declaration: var i int; default int=0, bool=false
We can include an initializer one per var.

Ex: var i, j int=4,2
var k, j= false, “no!”

Inside a function, we use := for convenience, assignment statements can be used in place of
implicitly typed var declarations outside of functions, we can’t use :=; we have to use var,
func,etc.

Ex:func main(){
var m, n int=3,2
k,n:= true,”no!”
}

White creating variables we should always avoid global variables Variable declared without
anaexplicitainitialavaluea are 0, numeric; false for boolean and “” for string

Type Conversion:

Type Converts say integer to float or vice-versa i.e convers obe var type to other.
eg: var j int=32
f:= float64(j)

Type Interface

If we have a declaration on rhs, the new var takes the same type.
Ex- var i int

13

j:= i
But when not specified, say v:=42; then the type depends on precision.

Constants

We define constants using const. constants can be char(character), string, boolean, or numeric
values.They cannot be declared using := Numeric const have high precision values

FOR

In go we have only for; no while or do while loop

1. for loop:

for i:= 0; i<20; i++

2. for loop behaving like a while loop:

for ; j<20; —> j>=1
for i<10→i>=1

3. for loop behaving like do while loop
for v=0;v<10; here v is local to for

IF

In if statements of fo we do not need to use () but {} is required. If with short statements
meaning if can start with a short statement before excution but it should end with a
semicolon.Any of the else blocks can access variables that are defined inside an if short
statement.

SWITCH

Switch of go works a little differently. Go runs only selected cases, not all cases that follows
In go, break statements are not required after every case.

Switch cases need not be constant. In switch values can be anything, not specifically an
integer. In go, switch evaluates from top to bottom

Switch without a condition is same as true- if,if-else.We cannot have two cases with same
condition ie. no duplicate case or it gives us type mismatch error or compile time error.

14

POINTERS

Pointers holds the memory address of any value that is provided to it.
*K, a pointer to K value, *pointer value
To dereferencing/ indirecting, *k=28 ()

Pointer’s zero value is nil.
declaration: var k* float, for example
& operator generates a pointer to its operand: k=&i→ k=*p
STRUCTS

Structs are collection of fields

ex: type V struct{
X int
Y int }
Func main(){
print(V{1,2})
} - basically prints 1,2
Struct fields are accessed using v= V{11,12}.

To access an struct field we use a struct pointer.

var (
v1 = Vtx{11,1 2} // has type Vertex
v2 = Vtx{X: 11} // Y:0 is implicit
p = &Vtx{11, 12} // has type *Vertex
)

ARRAYS

Arrays are where we can store a collection of elements. Since array length is a property of its
type, it cannot be changed. to declare and array :
Arr[] int
Arr=[] int {1,2}

SLICES

In go we use slices as dynamically sized array declaration S [low:high]; incl. low. Slices are
like references to array.It doesn’t store any data, we just describe a section of an array.A

15

slice's underlying array and any other slices that have similar elements are affected when an
element of a slice is changed..Eg: a:= names[1:2]; names-array

An array literal without the length is known as a slice literal.
A slice structure, internally contains a pointer, length and a capacity field.

● len(s): length of slice or we can say number of elements in slice.
● cap(s): capacity of slice or we can say number of elements in underlying array
● Zero value of slice is nil. and thus length and capacity is nil i.e len=cap=0
● Slice can be made with build-in func make that is how we create dynamic sized array.

Make creates zeroed array and returns slice that refers to the array.
Ex: a:=make([]int , len)
a:=make([]int, len, cap)
Slice can contain any type including other slices. We can also append elements in a slice
using append(slice, element1,element2…).

If the capacity of the slice is less than the no. of elements to be appended, it automatically
doubles
the capacity. : cap(s)+1)*2: and creates a new slice, new memory is allocated and changes are
not
reflected on underlying array.

RANGE

A Range is an iterative variant of a for loop that traverses a slice or map.
It returns an index and a duplicate of the value at that index for each iteration.
By assigning, we may also omit the index or value.

Syntax:
for j, _ := range power
for _, value := range power

If we only want index we can omit the second variable

for j:=range power
<< : times 2
>>: divide 2
For instance, 1 5 equals 32 or "1 times 2, 5 times". Additionally, 32 >> 5 is equivalent to "32
divided by 2, 5 times" or 1.

MAPS

16

A map links values to keys.
Value 0 map is zero. A keyless map lacks keys.
You can exclude the top-level type from the literal components if it is only a type name.

Ex: var m map[string]Vertex
func main() {
map = make(map[string]Vertex)
map["B Labs"] = Vertex{
40.68423, -74.39867,
} ; Or we can omit vertex

Mutating maps

To insert/update: m[key]=elem
To retrieve : elem=m[key]
To delete: delete(m,key) : to delete a key
To test if key is present: elem, ok=m[key] ; ok=true if key present else false

If we can’t find key in the map, then elem is the zero value for the map's element type.
A key in any given map cannot be slice.

PANIC: run-time error

Variadic Fuctions

fmt.Println: It is an empty interface Variadic PARAMETER: …: can pass 0 or more values
and can be of any type .In an argument list, variadic is last variable

Function Values

Like other values, functions are also values that may be transferred from one place to
another.Both function parameters and return values can be made up of function values. It
could be closure when it comes to Go functions.
A function value that makes references to variables outside of its body is known as a closure.
The referenced variables are accessible by the function, and in this sense, the function is
"bound" to the variables.

Receiver Arguments:

● Value receiver argument can only reference methods with value receiver whereas pointer
receiver argument references methods with both value and pointer receiver: METHOD

17

SETS

● We use value receivers when we don’t want changes to be reflected in the original value,
while using slices, maps, etc

● We can use a pointer receiver when we want the changes to be reflected or when we want
to
access methods either way or when the struct is quite large to avoid duplicate copies.

INTERFACES
Interface type is defined as method signature of a particular underlying base.
Zero value of interface is nil.
Abstract type underlying which is our concrete type (struct, float, etc): can be thought of as a
tuple
of a value and a concrete type: (value, type)
In case of pointer receiver: (&{Hello}, *main.T)

Type SWITCH

switch s := i.(type) {
case T:
// here s has type A
case S:
// here s has type B
default:
// no match; here s has the same type as i
}

The declaration in a type switch has the same syntax as a type assertion i.(T), but the specific
type T
is replaced with the keyword type.

STRINGERS

It is an ubiquitous interfaces defined by the format(fmt) package.
typebStringerbinterfaceb{
String()bstring
}

Readers

func (T) Read(b []byte) (n int, err error)

18

Type Image:

The actual struct that implements the Image interface is the RGBA type.

REST- Represntation State Transfer

An application programming interface (API or web API) that complies with the constraints
of the REST architectural style is referred to as a REST API (also known as a RESTful API).
Computer scientist Roy Fielding developed the representational state transfer protocol, or
REST.

Principles of RESTful Design

Decoupling of client and server - Client and server programmes must be totally independent
of one another in a REST API architecture. Only the URI of the requested resource should be
known by the client software; it cannot connect to the server application in any other way. A
server application should not change the client software except to provide it with the
necessary data over HTTP.

Due to the statelessness of REST APIs, each request must include all of the data required to
process it. REST APIs, in other words, do not require any server-side connectivity. Any data
relating to a client request cannot be saved by server programmes.

Cacheability - Resources should, wherever possible, be cacheable on both the client and
server sides. Server responses must also indicate if the requested resource can be cached. The
goal is to boost server-side scalability while improving client-side performance. REST API
calls and responses pass through multiple layers in a layered system architecture. In
most circumstances, client and server programmes will communicate indirectly. In the
communication loop, there could be several different middlemen. REST APIs must be built
in such a way that neither the client nor the server can access them.

Response Status Codes

1. 200:OK, Success

2. 201: Success+Created

3. 202: Accepted, request received but not completed

19

4. 204: No content

5. 400: Bad Request, incorrect syntax

6. 404: Not found

7. 405: Method Not Allowed

8. 500: Internal Server Error

HTTP package

A client and a server are provided by the http package. Handlers make up the server. The
handler receives a request, processes it, and then responds.

1. HTTP protocols

Create : Post-> new data

Read : Get-> retrieve data

Update: Put-> update data

Delete: Delete-> delete data

2. ServeMux(Multiplexer)

● ServeMux is an HTTP request multiplexer.

● Responsible for matching URLs in request to an appropriate handler and executing it.
http.NewServerMux.[url handler using Handle and HandleFun methods]
Handle Method:

● It accepts a String and an http.Handler

● Func (mux *ServeMux) Handle(pattern string, handler Handler)

● http.Handler is an interface (second parameter in the Handle method) with the

ServeHTTP method

type Handler interface {
ServeHTTP(ResponseWriter, *Request)

20

}

Eg: func (h home) ServeHTTP(rw http.ResponseWriter, r *http.Request) {
rw.Write([]byte("Welcome to the Just Enough Go! blog series!"))
}

mux := http.NewServeMux()
mux.Handle("/", home{})

● HandleFunc accepts the handler implementation in the form of a function (along
with the path for which it is to be invoked).

func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request))
Server (HTTP server)
server := http.Server{Addr: ":8080", Handler: mux} -> Addr is the address on which the
server listens e.g. http://localhost:8080 and Handler is actually an http.Handler instance.

● If you just had a route or path which you wanted to handle, you can pass an instance
of an http.Handler (e.g. home{} in this case) and skip the ServeMux altogether.

● You can/should pass an instance of a ServeMux so that you can handle multiple
routes/paths (e.g. /home, /items etc.) Internally, it works by dispatching or routing to
the appropriate handler based on the path (URL) in http.Request.
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Reques

● DefaultServeMux: We don’t need to use an explicit ServeMux. The Handle and
Handle Func methods available in a ServeMux are also exposed as global functions in the
net/http package.

● To start the HTTP server, you can use the http.ListenAndServe function, just as you would
with a Server instance.
func ListenAndServe(addr string, handler Handler) error

● The handler parameter can be nil if you have used http.Handle and/or http.HandleFunc to
specify the handler implementations for the respective routes.
Functions as handlers type HandlerFunc func(ResponseWriter, *Request)
HandlerFunc allows you to use ordinary functions as HTTP handlers. For example:
func welcome
(rw http.ResponseWriter, req *http.Request) {
rw.Write([]byte("Welcome to Just Enough Go"))
}
Or http.ListenAndServe(":8080", http.HandlerFunc(welcome)) Note: HandlerFunc(f) is a
Handler that calls the function f

HTTP Test Package

21

1. httpRequest: The httptest.NewRequest function provides a brand-new incoming server
request that may be tested by feeding it to a http.Handler.

2. httpResponseWriter: w=httptest.NewRecorder type returns httptest.ResponseRecorder.
ResponseRecorder is an implementation of http.ResponseWriter that records its mutations for
later inspection in tests. It can be used to pass into our server handler, record all the data that
the handler will write to the response, and then return the data written after.

3. w.Result(): func (rw *ResponseRecorder) Result returns the response produced by the
handler.At a minimum, the StatusCode, Header, Body, and optional Trailer fields in the
returned Response will be filled up.
Layered architecture: Layers are autonomous from one another and interact via interfaces.

Basically this helps us make our application modular, readable and maintainable.

This has 3 layers - HTTP layer, Service layer, Store layer.

1. HTTP layer : validates query/path parameters, request body, header checks.

2. Service layer : Implements business logic and communicates with datastore layer

3. Store layer : Implements database level queries.

● Each layer communicates with its previous/next layer using an interface(methods
● with input parameters and output types are defined).
● Testing of each layer is done by mocking its interface/DB/Server based on necessity.
● Dependency Injection:

It is a style of writing code such that at the time the object is initialization the dependencies
of a particular object/struct are provided.

We can explicitly choose when to create new instances of our dependencies and when to
reuse the same instance.

Our structs no longer have the responsibility for building their dependencies thus making our
structs less tightly coupled to their dependencies.

Factory method
The issue of constructing product objects without identifying their concrete classes is
resolved by this design approach. Instead of directly invoking the new operator, it offers a
method that may be used to build objects.

1. Simple factory

2. Interface factories.

22

MICRO SERVICES

Small, autonomous services that interact through well defined APIs make up the architectural
and organizational framework of microservices used in software development. These
services are owned and run by compact, small teams.

Applications may be expanded and developed more easily thanks to microservices
architectures, which can speed up the time it takes to sell new features.
Micro services' advantages

Adaptable Scaling
The demand for each microservice's underlying app feature may be expanded independently
of the others. This helps teams to maintain service uptime during moments of high demand,
precisely scale infrastructure, and accurately estimate the cost of a feature.

Simple Deployment
Continuous integration and delivery are made possible by microservices, making it simple to
test new concepts and roll them back if they don't work. The cheap cost of failure makes it
feasible for more experimentation, quicker code revisions, and speedier time-to-market for
new features.

Reusable Code
By segmenting software into distinct, well-defined modules, teams may employ functions for
a variety of reasons. A service developed for one purpose may serve as the basis for another
feature. An application can self-bootstrap as a result of developers' ability to

Database Migration

Developers are responsible for building, maintaining, and improving applications- this could
need you to change or update the database structures. Migration gives you the ability to
handle these changes easily and consistently in an active development environment. The
more you know about shaping your database, the better equipped you’ll be to create an
effective and concise database for your application.Some popular frameworks such as
Django, Rails and even some standalone libraries such as Flyway and Liquidbase provide
this feature too.

Migrations act as a version control system for your database, allowing your team to define
and share the database schema definition for the application.

There are two methods in a migration class: up and down. The up method of your migration
should specify the schema modification you want to do, and the down method should reverse
the alterations made by the up method. In other words, if you conduct an up followed by a
down, the database schema should remain identical. If you make a table in the up method, for
example, you should dump it in the down method.

23

When migrating up the database – forward in time – the up method is used, whereas when
migrating down the database – back in time – the down approach is used. Thus, can go back
and forth to older and newer versions of our database.

PROMETHEUS

Prometheus is an open-source monitoring and alerting tool created to monitor a highly
dynamic container enviroment in real-time. It can also be used for a traditional
(non-container) bare server in which applications are directly deployed.

ARCHITECTURE

PROMETHEUS SERVER: It does the actual monitoring work.
● Time Series Database: stores metrics data (storage)

● Data Retrieval Worker: Pulls data from metrics, applications, servers, etc. (retrieval)

● Accepts PromQL queries: consumed by external systems via the HTTP api.

PROMETHEUS MONITORS: It monitors single application, apache server, linux/windows
server
etc called targets.

TARGET: The target units such CPU status, memory/disk storage space, exceptions counts,
request
count/duration, etc are monitored.

MATRICS: Unit that is monitored for a specific target. It is defined as human-readable, text
based
and have two entities:
● Help: Description of what metrics is.

● Type: 4-types

1. Counter

2. Summary

3. Gauge

4. Histogram

24

EXPORTER: Some servers already expose prometheus endpoints therefore don’t need extra
service to gather metrics but many services need another component called exporter.
It’s a script or service that fetches metrics from target and converts it to correct format that
prometheus understands and exposes it to its own/matric endpoint where prometheus can
scrape
them

Frameworks we use for microservices

● Base Framework: echo
● Config Management: viper
● Database Migration: golang-migrate
● Database ORM: GORM

Clean Architecture

The basic premise is to pan out your code into layers so each layer can be tested
independently and the driver being a layer can be swapped out for another one without the
inner layer being affected.

Branch Naming Convention

Branch
Name

What is it used for

master
Deploying to production. Only reviewed and tested code should be merged in
this

staging Used for deployment to staging server where the code can be test. Can be
deleted and remade if required (if 2 development branches have to be tested
which contain conflicting code)

feature/* Any feature which is being worked on. Should be hypen-separated. Eg.
feature/user-logs. In case of starting/overhauling a project, naming like
feature/keyboard-theme-v2 is also accepted.

bugfix/* Bug fixes for code

hotfix/* Bug fixes for code which need to be deployed immediately

25

https://github.com/labstack/echo
https://github.com/spf13/viper
https://github.com/golang-migrate/migrate
https://gorm.io/index.html

MR Best Practices

● Title should be short
● Description should highlighted all the changes done in bullet points
● Add a WIP: Title Name before your name if your branch is under development

and is not ready for its final code review.

Ignored Files (Golang)

Certain files should not be uploaded to the git repo or the docker container. Examples
include:

● .git/*
● <binary_name>
● config.yml
● go.sum (if you want to upload then follow the proper steps)
● .idea
● .vscode
● .DS_store

Naming Conventions
The following naming conventions should be followed for files, variables, function names,
custom datatypes etc.

Files

● snake_case for filename

● continuouslowercase for folder name

Variables

● Variables should be in camelCase or PascalCase (if they need to be accessed by

other packages)

● The variable name should give an idea of what kind of data it contains, for example

Bad

n = []string{"Ajit", "Akansha", "Pal"}

for i, v := range n {

// Some process here

}

26

Better

names = []string{"Ajit", "Akansha", "Pal"}

for i, n := range names {

// Some process here

}

Best

customerNames = []string{"Ajit", "Akansha", "Pal"}

for index, customerName := range customerNames {

// Some process here

}

● Structures should follow the same format

Bad

type Cust struct {

Name string

Add string

}

Overkill

type Customer struct {

CustomerName string

CustomerHomeAddress string

}

Ideal

type Customer struct {

Name string

HomeAddress string

27

}

● Any field names in plural like Customers or Themes is expected to contain an array

of Customer or Themes. For example,

type Users struct {

GroupID int

Customers []Customer

}

● While fetching a value using different params, use the By word in the name. For

example, if we need to fetch a customer based on email or id, then we can use:

func (c *Customer) GetCustomerByID(id int) (customer Customer, err

error){}

Here we avoided calling our function GetByID since when this function is called, it is not
necessary that the calling object will be called customer. customer.GetByID() makes
sense, c.GetByID() does not.

● delivery, domain and repository can have their own structs which dictate the

request/response they will receive. However, in most cases there will only be 2. One

will be used to get data from the repository and the other will be used to send data

to our endpoint. Use Customers and CustomersResponse for them respectively.

Variable parsing

If there is some un-processed variable which is being fetched then the name similar names
should not be used. Eg.

Bad since keys and private keys can refer that they are the
same data type or can be used in place of each other

keys = viper.GetString("ENCRYPTION_KEYS") # string

privateKeys, err := loadEncryptionKeys(keys) # object

Good

28

keyString = viper.GetString("ENCRYPTION_KEYS") # string

privateKeys, err := loadEncryptionKeys(keyString) # object

Application Structure:

/app

main.go

/config

database_config.go

application_config.go

/domain

/database

/migrations

/keyboardthemes

/delivery

/http

/helpers

keyboard_theme_helper.go

keyboard_theme_category_helper.go

keyboard_theme_handler.go

keyboard_theme_handler_test.go

/usecase

29

keyboard_theme_usecase.go

keyboard_theme_usecase_test.go

/repository

/helpers

keyboard_theme_repository_helpers.go

/mysql

keyboard_theme_mysql.go

keyboard_theme_mysql_test.go

go.mod

config.yml.example

Makefile

.gitignore

.dockerignore

Dockerfile

.gitlab-ci.yml

Readme.md

Do not upload config.yml to the repo. It might contain sensitive data. Copy it, rename it as
config.yml.example, change env values to sample values and then add to repo. Uploading
go.sum is optional, however, if it is being done, then please ensure all the proper steps are
taken

All files under helpers should ideally belong to the same package helpers. However if need
arises there can be different packages if there are too many common functions. This should
be avoided since it generally implies that the function name is not descriptive enough.

Configuration Management

30

Use Viper for configuration management.

In a traditional setup there would be a .env file along with another config file which would be
used for application wide config params like keyboard_theme_default_results etc.

We combine this into one by using Viper. It can automatically pick up env variables by using
viper.AutomaticEnv() which ensures that we only need one configuration file.

Environment variables should be loaded in a structure, ensuring that we can move away from
viper if required for the storage of the same. For example, the database host should not be
accessed as viper.GetString("DATABASE_HOST") but should be accessed as
config.DatabaseConfig.DATABASE_HOST or config.DatabaseConfig.Host

Loading Configuration file

Loading the configuration file should be carried out once. If there are multiple configuration
structures (database, application, cache), they should not be loading the same file again. Load
the file in an init() function or have a loader function which is called by main at the start.

Golang Error Handling

Standard Error Response

Assume the following GET request is sent for an ID
corresponding to which a keyboard theme does not exist

/v1/keyboardTheme/7

{

"errorCode": "keyboardThemeNotFound",

"errorDescription": "No keyboard theme was found with the
ID 7"

}

● errorCode has to be in camelCase and should contain a generic response about

the error which no specifics pertaining to the request.

● errorDescription should not contain the value of err if the response is being

sent to an external client. Always use a custom response.

31

Error Code Naming Convention

Name Type When to use

missingStickerID When a an input parameter is missing

invalidStickerID When the input parameter does not match the format.

Eg, expected an int but received a string

stickerNotFound When a valid input parameter does not yield the

expected result

inactiveBufferedReade

r

When you try to read from an inactive buffered reader

Error Handling

● In most cases, only the parent function should be responsible for handling the error.

This will avoid situations where the err code has to be checked

Assume main is called by an API which has to return a
response to a user

func main() {

sum, err := getSum()

if err != nil {

Log the exact error to the logger so we can debug
later

log.Error(err)

32

Return a generic error to the user

makeResponse("unableToGetSum", 400)

}

makeResponse(sum, 200)

}

Application startup errors

Since these errors have to be returned to an internal source, i.e. during deployment, application

details can be passed here

Env variable missing

While returning an error for an env variable, ensure that the env variable name is added in the
error message so it can be easily debugged. Eg. If DATABASE_HOST was not set, then the error
message should be DATABASE_HOST was not set in the environment.

A centralised logger should be used so as to prevent using multiple loggers. While using
echo framework, the default logger requires the a echo.Echo type variable (which is
initialised at the start during app startup).

To prevent passing a pointer to this variable to whichever package that requires logging,
simply create a new package called logger which will accept a *echo.Echo during app startup
and will have wrapper functions which will use the default echo logger. This way all other
functions which need to call echo logger will now call this package instead.

This way, we can switch loggers at one place without having to change the code elsewhere.

33

Clean Architecture

PHP

Hypertext Pre-processor, or PHP. It may be incorporated in HTML and is mostly used as a
general-purpose scripting language to create dynamic online content. Using PHP

be utilised as a replacement for the JSP/Java System, ASP.NET/C#/VB.NET, and
Macromedia ColdFusion. PHP is simple to use and has many similarities to Perl and other
structured programming languages. PHP is a more complex language than merely coding.

It is a complete programming language that can create Graphical User Interface Applications
as well as be used from a command line. Numerous popular operating systems, including
Linux and Windows, are compatible with PHP, which also supports a wide range of database
systems, including MySQL. The fact that PHP is dynamically typed is one characteristic that
contributes to its popularity.

Variables may hold any kind of object and do not need to be defined. PHP arrays may store
several sorts of objects, including other arrays. Numerous open-source libraries are included
into PHP, along with modules for FTP and database server access.

34

CHAPTER 3: IMPLEMENTATION

Main

Main is the file which is saved under the app file folder and is the entrypoint for the
application to start. It consists of all the main details like

● DB Connection
● URL endpoint routing
● Handler Functions

35

Structs

Structs basically save all the structure that is to be used in the application. It is denoted by
domains.

It also contains function description of all the layers:

● Handler layer
● Usecase layer
● Repository layer

A good practice here is to use table name which is when the structs are defined for the
repository layer, the table name can be defined so that when the query is called from the
repository layer, the table name does not need to be explicitly mentioned.

The function descriptions are of the format interface and are exported to all the layer’s
individual files.

36

Handler

37

A handler layer has the main functions which the url end point points to and is used call the
usecase layer which in return calls the repository layer.

Our handler layer also has the ability to check all the query parameters, formdata etc with the
help of helpers’ function
Usecase

38

A usecase layer is the one which handles all the business logic

39

Repository

40

Repository layer is the one which handles fetching data from the database.

Unit Tests Repository Layer

41

Unit Test Usecase layer

Unit test handler layer

42

Middlewares

Dockerfile

43

Configuration File

Docker Compose File

44

45

CHAPTER 4: CONCLUSION

5.1 Results Achieved

The main aim of the training was to be able to understand and implement the concepts of
GoLang,
MySQL, Unit Testing, being able to create a web application successfully convert the code
from php to golang and can be tested using postman using the three layered architecture.

5.2 Applications Contributions

GoLang have been part of a variety of real world/ open source applications, some of the
which are
listed below:

1. The Kubernetes container management system and a suite of tools for deploying Linux
containers called Docker

2. Dropbox switched several of its crucial Python components to Go.

3. Ethereum, a blockchain for the cryptocurrency Ether that uses the go-ethereum version of
the Ethereum Virtual Machine.

4. Gitlab, a web-based platform for the DevOps lifecycle that offers a Git repository, a wiki,
functionality for recording issues, continuous integration, deployment pipelines, etc.

5.3 Limitations

The application implements only the backend part but front end can be done for the same to
make
the application more attractive and user friendly.

5.4 Future Work / Scope

1. Front-end for application

2. Make the program more extensive

46

References

[1] https://go.dev/doc/
[2] https://echo.labstack.com/guide/
[3] https://gorm.io/docs/

47

https://go.dev/doc/
https://gorm.io/docs/

9%
SIMILARITY INDEX

9%
INTERNET SOURCES

3%
PUBLICATIONS

%
STUDENT PAPERS

1 2%

2 1%

3 1%

4 1%

5 1%

6 <1%

7 <1%

8 <1%

9 <1%

wertt
ORIGINALITY REPORT

PRIMARY SOURCES

www.fedrianto.com
Internet Source

github.com
Internet Source

www.coursehero.com
Internet Source

ir.juit.ac.in:8080
Internet Source

golang.cafe
Internet Source

Shiju Varghese. "Go Recipes", Springer
Science and Business Media LLC, 2016
Publication

it.3hdeng.me
Internet Source

867380699.github.io
Internet Source

code84.com
Internet Source

	ed99e5709b4a44aaf31f67020eea613883d84aeb9b225829c0a9d62ecd6fd197.pdf
	ed99e5709b4a44aaf31f67020eea613883d84aeb9b225829c0a9d62ecd6fd197.pdf
	ed99e5709b4a44aaf31f67020eea613883d84aeb9b225829c0a9d62ecd6fd197.pdf

