
CRUD API IN GO LANG USING THREE LAYERED
ARCHITECTURE

Project report submitted in partial fulfillment of the requirement for
the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

ABHISHEK KUMAR 191367

Under the supervision of

PROF. SHRUTI JAIN

to

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

1

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)

through the supervisor at plagcheck.juit@gmail.com

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

PLAGIARISM VERIFICATION REPORT

Date: ………………………….

Type of Document (Tick): PhD Thesis M.Tech Dissertation/ Report B.Tech Project Report Paper

Name: ___________________________ __Department: _________________ Enrolment No _________

Contact No. ______________________________E-mail. ______________________________________

Name of the Supervisor: __

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): ________________________

__

__

UNDERTAKING

I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:

 Total No. of Pages =

 Total No. of Preliminary pages =

 Total No. of pages accommodate bibliography/references =
 (Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at ………………..(%). Therefore, we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

 (Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index
(%)

Generated Plagiarism Report Details
(Title, Abstract & Chapters)

 All Preliminary
Pages

 Bibliography/Ima
ges/Quotes

 14 Words String

Word Counts

Character Counts

Report Generated on

 Submission ID Total Pages Scanned

 File Size

Checked by
Name & Signature Librarian

 ………

ACKNOWLEDGMENT

First of all, I would like to express my heartiest gratitude and gratefulness to almighty

god for his divine blessings helped me to complete the project work successfully in

the given period of time.

I extend my heartiest thanks to my project Supervisor DR. HARI SINGH, Assistant

Professor (SG), Department of Computer Science & Engineering, Jaypee University

of Information Technology, Waknaghat. Vast knowledge and keen interest of our

supervisor in the field of Machine Learning helped me a lot to execute this project.

His endless patience, scholarly guidance, continual encouragement, constant,

energetic supervision, constructive criticism, valuable advice, reading many inferior

drafts and correcting them at all the stages have made it possible to complete this

project.

I would also generously thank each one of those individuals who have helped me

directly or indirectly in successfully carrying out the execution of this project. In this

situation, I also want to thank the various staff individuals, both educated and non-

instructed, who have developed their convenient help and facilitated my undertaking.

Last but not the least, I must acknowledge with due respect the constant support and

faith of my parents.

ABHISHEK KUMAR

191367

2

TABLE OF CONTENTS

TITLE PAGE NO.

LIST OF ABBREVIATIONS 4

LIST OF FIGURES 5

LIST OF TABLES 6

ABSTRACT 7

CHAPTER 1 - INTRODUCTION 8-17

CHAPTER 2 - LITERATURE SURVEY 18-22

CHAPTER – 3 SYSTEM DESIGN &

DEVELOPMENT

23-43

CHAPTER 4 - EXPERIMENTS AND

RESULT ANALYSIS 44-54

3

TITLE PAGE NO.

LIST OF ABBREVIATIONS 4

LIST OF FIGURES 5

LIST OF TABLES 6

ABSTRACT 7

CHAPTER 5 - CONCLUSIONS 55-58

REFERENCES 59

LIST OF ABBREVIATIONS

● TDD : Test Driven Development

● SQL : Structured Query Language

● CRUD: Create, Read, Update, delete

● HTTP: Hypertext Transfer Protocol

● API: Application Programming Interface

● REST: Representational State Transfer

● IoT: Internet of Things

● SOAP: Simple Object Access protocol

4

● URL: Uniform Resource Locator

● DB: Database

● DBMS: Database Management System

● IDE: Integrated Development Environment

LIST OF FIGURES

1. Chapter- 1

● (FIGURE - 1.1) Fetching a page

● (FIGURE -1.2) Three Layered Architecture

● (FIGURE -1.3) Goland IDE by JetBrains

● (FIGURE -1.4) Creating a New Project in Goland

2. Chapter- 3

● (FIGURE-3.1 - FIGURE 3.36) Code snippets and DB schemas

3. Chapter- 4

● (FIGURE 4.1) Postman

● (FIGURE 4.2) SWAGGER

● (FIGURE 4.3) SWAGGER

● (FIGURE 4.4) POSTMAN ENDPOINTS

● (FIGURE 4.5) POSTMAN ENDPOINTS

LIST OF TABLES
● Table 1 (literature review) Chapter -2

● Table 2 (literature review) Chapter - 2

5

ABSTRACT

The goal of the project "CRUD API in Golang using three-layered architecture" is to

provide a modular and scalable API that executes CRUD (provide, Read, Update,

Delete) actions on a database. Golang is the most popular programming language

because of its efficiency and ease of use.

The three-layered architecture used in the design of the API ensures improved

maintainability and scalability by separating the presentation layer, business logic

layer, and data access layer. When interacting with API endpoints, the display layer

transmits requests to the business logic layer, which processes them and generates

responses. The CRUD activities and database communication are handled by the data

access layer.

The project implements a RESTful API that adheres to the fundamentals of HTTP

methods and industry best practices. In addition to supporting query parameters to

filter, sort, and paginate data, the API offers endpoints for adding, getting, updating,

and deleting data from the database.

The project is being built according to test-driven development (TDD) standards, with

unit tests and integration tests covering each essential API component. For scalability

and availability, the API is deployed on a cloud platform and containerized using

Docker.

Overall, this project offers a strong foundation for developing Go-lang-based,

three-layered API that is scalable and maintainable.

6

CHAPTER - 1

INTRODUCTION

1.1 INTRODUCTION OF THE COMPANY

ZopSmart Technology is a software solution firm that offers you all the resources you need to

launch an online store. With the support of its product line, ZopSmart can help you create

and manage the ideal company. It offers a variety of goods, including Smart Store Eazy and

Smart Payment Gateway, among others. Zopsmart develops cutting-edge technology for the

retail industry. Their clients range from independent furniture stores to large multinational

chains, and their solutions include e-commerce platforms, digital marketing, mobile

commerce, automated logistics systems, management platforms, order management

platforms, and internet of things (IoT) devices. It has its own framework to work on and

offers software solutions to some of the best companies.

Zopsmart Technology offers the tools and guidance needed to set up an online store, assisting

offline businesses who want to expand online. Their objective is to provide mature,

end-to-end products that add value to digitally savvy customers. They demonstrate to

businesses how they may more effectively engage their customers, develop within set

budgets, and launch their products online as soon as possible. They assist customers in

reimaging their businesses, consumer interactions, and tested analytics through

human-centered design methodologies with a shortened time-to-market.

1.2 INTRODUCTION OF THE PROJECT

The need for creating online apps that provide seamless user experiences has expanded

significantly in recent years. Designing a well-structured API that interacts with the database

and executes CRUD (Create, Read, Update, Delete) actions is necessary for creating a robust

7

and scalable application. The performance and simplicity of the popular programming

language Golang have attracted a lot of interest from the software development world.

The goal of this project is to provide a CRUD API in Golang utilizing a three-layered design

that adheres to best practices. A design pattern known as three-layered architecture separates

the handler layer from the service and store layer, improving the API's maintainability and

scalability. When interacting with API endpoints, the handler layer transmits requests to the

service layer, which processes them and generates responses. The CRUD activities and

database communication are handled by the store layer.

We will follow test-driven development (TDD) principles to ensure code quality, with unit

tests and integration tests covering all critical components of the API. The API will be

developed to be RESTful, adhering to the principles of HTTP methods, and will provide

endpoints for creating, retrieving, updating, and deleting data from the database.

1.2.1 WHAT IS API?

"Application Programming Interface" is what API stands for. It is a collection of rules,

procedures, and resources that enables information sharing and communication between

various software programs.

To put it simply, an API serves as a link between several software programs, enabling

communication and data sharing. REST API, SOAP API, and GraphQL API are just a few

examples of the many ways that API can be implemented. Modern software development is

impossible without API, which let programmers create sophisticated, complicated programs

that connect with other software services and systems.

Rest API with Go

Representational State Transfer, sometimes known as REST, is an architectural design for

distributed hypermedia systems.

8

We can streamline the overall system architecture and enhance interaction visibility by

applying the generality principle to the component interface.

Several architectural restrictions aid in achieving a unified interface and regulating

component behavior.

A uniform REST interface can be achieved by the following four restrictions:

1. Each resource used in the interaction between the client and the server must be

uniquely identified by the interface.

2. Resources should be represented consistently in the server response to prevent

resource manipulation. These representations should be used by API consumers to

alter the server's state of the resources.

3. Each resource representation should have enough details to explain how to interpret

the message. It should also detail any extra operations the client may carry out on the

resource.

4. The client should only have the application's starting URL when using hypermedia as

the application state engine. All other resources and interactions should be

dynamically driven by the client application using hyperlinks

What is HTTP ?

The HTTP protocol is used to retrieve resources like HTML documents. It is a client-server

protocol, meaning requests are made by the recipient, which is often the Web browser, and it

serves as the basis for all data communication on the Internet. The various sub-documents

that are retrieved, such as text, layout descriptions, photos, videos, scripts, and more, are

combined to form a complete document.

9

(FIGURE - 1.1)

Fetching a page

Clients and servers communicate by exchanging individual messages (as opposed to a stream

of data). The messages sent by the client, usually a Web browser, are called requests and the

messages sent by the server as an answer are called responses.

Status Codes

There are common status codes that are defined by HTTP and can be used to communicate a

client's request's outcome. Five categories make up the status codes.

● 1xx: Informative - Transfers information at the protocol level.

● 2xx: Success - Represents a successful acceptance of the client's request.

● 3xx: Redirection - Denotes that the client needs to take further action to fulfill their

request.

● 4xx: Client Error - Clients are blamed in this group of error status numbers.

● 5xx: Server Error - Server’s fault.

10

Some important status codes are :

S. NO. STATUS CODE DESCRIPTION

1 200 OK REQUEST SUCCEEDED

2 201 CREATED NEW RESOURCES
CREATED

3 400 BAD REQUEST INCORRECT SYNTAX

4 401 UNAUTHORIZED AUTHENTICATION
INFORMATION
REQUIRED

5 403 FORBIDDEN CLIENT DOES NOT HAVE
ACCESS

6 404 NOT FOUND REQUESTED RESOURCE
NOT FOUND

7 500 INTERNAL SERVER
ERROR

SERVER ENCOUNTERED
UNEXPECTED
CONDITION

(TABLE-1.1)

HTTP Status Codes

CRUD OPERATIONS

Create, Read, Update, and Delete, or CRUD, are the fundamental data management activities

used in databases and APIs. By performing these actions, database engineers can modify data

in a database by adding new records, retrieving old ones, updating old ones, and deleting old

ones.

1. Create: Adding a new record to the database is done using this operation. For

instance, the information from the form is saved as a new record in the database when

you submit one to create a new account.

2. Read: Data from the database is retrieved using this procedure. For instance, the

product information is pulled from the database and shown when you view a product

page on an e-commerce website.

11

3. Update: This operation modifies the database's current data. For instance, the

database is updated when you make changes to your profile information on a social

media website.

4. Delete: The database can be cleaned up by using this action. For instance, a message

gets destroyed from the database when you delete it from your inbox.

In order to create API and database-driven apps, CRUD procedures are essential since they

let programmers manage data effectively and efficiently.

GOLANG

Programming in Go is procedural. Robert Griesemer, Rob Pike, and Ken Thompson at

Google started working on it in 2007, but it wasn't released as an open-source programming

language until 2009. Packages are used in the assembly of programs to manage dependencies

effectively. Like dynamic languages, this language also supports environment adoption

patterns.

Go was developed at Google in 2009 and is a statically typed, concurrent, and

garbage-collected programming language. It is a well-liked option for developing scalable

network services, online applications, and command-line utilities since it is made to be

straightforward, effective, and quick to understand.

Concurrency, or the capacity to carry out several activities at once, is supported by Go. Go's

use of Go routines and Channels, which enable you to create code that can execute many

actions concurrently, allows for concurrency. Because of this, Go is a great choice for

creating high-performance, scalable network services as well as for resolving challenging

computational issues.

Key Features of Golang:

● Go is simple to learn and use because of this. Its clear syntax makes it a viable option

for both inexperienced and seasoned programmers.

● Go features built-in concurrency support, enabling programmers to create scalable

and effective code for multi core and distributed applications.

12

● Go uses automatic memory management, developers are relieved of the responsibility

of managing memory allocation and deallocation.

● Rapid iteration during development is made possible by Go's short compilation times.

● Go can be built to work on a wide range of operating systems, including Windows,

Linux, and Mac OS.

● Go is a statically typed language, therefore errors are caught at compile time rather

than during runtime.

GO Basics

1. Packages: There are packages in every Go program. In the package main, programs

begin to run. A package is a container that has different functions to carry out

particular tasks. For instance, the math package offers the Sqrt() function to calculate

a number's square root.

2. Imports: The import keyword imports the specified package from the provided

directory or, if no path is specified, from the directory of $GOPATH. Importing

merely entails moving the designated package from its source directory to the

destination code, which is the main program. In Go, import is crucial since it brings

the packages that are absolutely needed to run programs.

3. Functions: Functions are typically the set of instructions or statements in a program

that permit the user to reuse previously written code in order to save memory usage,

speed up processing, and—most importantly—improve readability. In essence, a

function is a group of statements that work together to complete a particular task and

return the outcome to the caller. A function may also carry out a particular activity

without producing a result.

4. Named Return Values: The return values of Go may have names. If so, they are

handled as variables set out at the function's top. The definition of the return values

should be documented using these names. The named return values are returned by a

return statement without arguments. It's referred to as a "naked" return. Naked return

statements should only be used in brief functions, like the one in this example. They

may make lengthier functions harder to read.

13

5. Shorthand variable declarations: The := short assignment statement may be used

inside of a function in place of a var declaration with implicit type. The := construct

is not available outside of a function because every sentence starts with a keyword

(var, function, and so forth).

6. Zero Values: Variables that are declared without a clear starting value are assigned

zero. For numeric types, the zero value is 0; for boolean types, false; and for string

types, "" (the empty string).

7. Type Inference: A variable's type is inferred from the value on the right side when it

is declared without an explicit type being specified (either by using the := syntax or

the var = expression syntax).

8. For is Go’s “While”: In Go, we use the while loop to execute a block of code until a

certain condition is met. Unlike other programming languages, Go doesn't have a

dedicated keyword for a while loop. However, we can use the for loop to perform the

functionality of a while loop.

9. Defer: With a defer statement, a function's execution is postponed until the

surrounding function completes its run. The inputs of the postponed call are assessed

right away, but the function call is not carried out until the surrounding function has

finished. Function calls that are deferred are pushed into a stack. Deferred calls are

processed in last-in, first-out order when a function returns.

10. Slices: An array's size is fixed. On the other hand, a slice is a flexible, dynamic look

into an array's components. Slices are far more prevalent than arrays in actual use. A

slice with elements of type T is a type []T.

There are various ways to make a slice in Go:

● Create a slice from an array using the []data type values format.

● The make() method is utilized

11. Slice as reference to an array: A slice only depicts a portion of the underlying array;

it does not actually contain any data. A slice's underlying array's associated elements

are changed when the elements of the slice are changed. These modifications will be

visible to other slices that use the same underlying array.

12. Length and Capacity: A slice has a capacity as well as a length. A slice's length is

determined by how many elements it has. Counting from the first element in the slice,

14

the capacity of a slice is the total number of elements in the underlying array. The

expressions len(s) and cap(s) can be used to determine the length and capacity of a

slice s.

THREE LAYERED ARCHITECTURE

The three main layers are

● Handler layer

● Service layer

● Store layer

(FIGURE -1.2)

Three Layered Architecture

HANDLER LAYER

The handler layer is also known as the delivery layer. The request will be received by the

delivery layer, which will then parse it for any necessary information. The response is then

written to the response writer after calling the use case layer to check that it is in the correct

format.

15

SERVICE LAYER

It is also known as the Use-Case Layer. The application's business logic is handled by the use

case layer. This layer and the data store layer will communicate. It calls the data store layer

after taking what it requires from the delivery layer. It applies the necessary business logic

both before and after calling the data store layer.

STORE LAYER

It is also known as the Data-store layer. The data is kept in the data store. Any data storage

device can be used. The only layer that interacts with the data store is the use case layer. In

this manner, each layer can be checked independently from the others.

Since each layer operates independently from the others, only the delivery layer will change

if the application develops to support gRPC. The data store and use case layer won't change.

The complete application need not change even if the data store changes. It will only change

at the data store layer. This makes it simple to maintain the code, find and fix errors, and

expand the program.

In our project the store layer will be using MySQL to store and retrieve the data.

MySQL

MySQL is simply a database management system.

A database is a planned collection of data. Anything might be it, from a simple grocery list to

a photo gallery to the vast amount of information in a company network. Data included in a

computer database must be added to, accessed, and processed using a database management

system, such as MySQL Server. Because computers are so good at processing massive

amounts of data, database management systems—whether used as standalone programmes or

as a component of other programs—are crucial to computing.

16

A relational database stores the data in separate tables rather than consolidating it into one

enormous warehouse. The database structures are stored in physical files that are

speed-optimized. A flexible programming environment is offered by the logical model,

which includes objects like databases, tables, views, rows, and columns. You could create

rules to govern the relationships between different data fields, such as one-to-one,

one-to-many, unique, compulsory or optional, and "pointers" between different tables. Since

a well-designed database upholds these constraints, your application won't ever run into

inconsistent, duplicate, orphan, out-of-date, or missing data.

The SQL part of "MySQL" stands for "Structured Query Language". SQL is the most widely

used standard language for database access. You might explicitly enter SQL (for instance, to

generate reports), embed SQL statements into other languages' code, or use a

language-specific API that hides the SQL syntax depending on your programming

environment.

1.2 PROBLEM STATEMENT

To Create a CRUD API using three layered architecture in golang. Use MySQL connection
to access the tables. The name of the database should be zopstore. There should be two tables
Customers and Vehicles. For Customers tables the id should be uuid, age should be between
zero to 100, gender should be enum, phone number should begin with code 91, and length
should not be greater than 12.- For vehicle table the is should be uuid, type should be enum,
and fuel_type should be enum too.

For both the tables there are endpoints that need to be executed.

Customer
● GETByID
● POST
● UPDATE
● DELETE
● GETALL [it has two functionalities, one is to get all customer details, and next is

getByFilters]

17

Filters are given as follows:
a. if is vehicle true get all vehicle details for that particular customer
b. Get vehicles based on fuel_type
c. Get vehicles based on brand

Vehicle
● POST
● UPDATE

Naming conventions should be snake_case only for DB naming convention and camelCase
in the code.

1.3 OBJECTIVES

● To create testable, structured, clean and maintainable CRUD API by using industrial

best practices.

● To understand Golang basic and advanced concepts.

1.4 METHODOLOGY

● Learn go basics

● Learn basic of MySQL connection to Golang

● Create tables in database

● Create the layers in Goland IDE.

● Write the test cases for all the layers using the Test Driven Development

● Write the function implementation in all the layers.

● Perform Dependency Injection

About Goland IDE

It is a Golang IDE provided by JetBrains. com. It provides support to create a go program on

our local system, run it, debug it and many other functionalities. We can create go projects

using Goland IDE.

18

(FIGURE -1.3)

Goland IDE by JetBrains

(FIGURE -1.4)

Creating a New Project in Goland

Test Driven Development(TDD)

19

In the method known as "test driven development," test cases rather than the code that

verifies them are written first. It relies on repeating a quick development cycle. A method

known as test driven development uses automated unit tests to direct design and unrestricted

decoupling of dependencies.

The followings steps are involved in TDD approach:

● Add a test by creating a test case that fully explains the method. The developer must

comprehend the features and requirements utilizing user stories and use cases in order

to create the test cases.

● Make sure the new test case fails by running all the test cases.

● Make sure your code satisfies the test case.

● Execute the test scenarios.

● Code duplication is eliminated by refactoring the code.

● Repetition of the steps described above

Advantages of TDD

1. Continuous feedback about the functions is provided through unit tests.

2. Design quality improves, which also aids in good maintenance.

3. The use of test-driven development provides a safeguard against bugs.

4. TDD ensures that your application satisfies the requirements that have been set down

for it.

5. The development life cycle of TDD is quite brief.

DEPENDENCY INJECTION

Dependency injection, sometimes known as DI, is a technique that takes use of code

decoupling by utilizing some of the greatest programming practices. Code segments that

don't make sense together should either reside independently or be separated. To create this

dependence, code injection is required. This is a very basic explanation of dependency

injection.

20

(FIGURE -1.5)

Dependency injection

A design pattern called dependency injection can help you separate your implementation's

external logic from it. An external API, database, etc., are frequently required for an

implementation. The implementation should receive its dependencies and use them as

necessary; it is not the implementation's job to be aware of these details. Consider the case

when you have an implementation with the requirements listed below.

Avoiding injecting implementations (structure), and instead injecting abstractions

(interfaces), is a crucial aspect of injecting dependencies. It enables you to change the

implementation of specific dependencies quickly and to transition from the true

implementation to a mock one. Unit testing depends on it fundamentally.

1.5 ORGANIZATION

The report is organized in five chapters. All the chapters constitute important information

regarding the project. First chapter consists of the basic introduction of the project, which is

CRUD OPERATIONS, GOLANG & THREE LAYERED ARCHITECTURE. Second

21

chapter has the literature survey of all the research papers we have used, we studied in the

making of this project. Third chapter has the information about System development and the

usage of the different softwares, database, feasibility study of the project, limitations, etc.

The fourth chapter has the performance analysis. Chapter five has the conclusions of the API

project and future work in the project .

22

CHAPTER - 2

LITERATURE SURVEY

1. GO Documentation Designed at Google by R Griesemer, R Pike, and K

Thompson, go is a statically typed, open source, compiled programming

language. Go documentation has information about each and every topic listed

or being used in golang

2. MySQL Documentation MySQL i.e My Structured Query Language is an

open-source relational database management system that helps us to store data,

fetch details, delete an entry etc.

3. GoMock gomock is a mocking framework for the GO programming language

and is used to integrate well with Go's built-in testing package.

4. Git and Github Official documentation that familiarizes you with the

concepts of a version control system i.e Git and how it works with GitHub.

5. Three Layered Architecture Industrial Documentation on three layered

architecture used in ZopSmart Technology by Milthali R. Shetty

6. HTTP Documentation about using status codes, client server architecture,

requests , responses etc.

7. SQL Mocks Documentation inside the go documentation.

8. Dedicated Training and upskilling platform provided by the company.

23

CHAPTER - 3

SYSTEM DESIGN & DEVELOPMENT

3.1 ANALYSIS

Feasibility Study

With Create, Read, Update, and Delete operations made possible using an HTTP-based API,

this project seeks to offer a straightforward yet effective method for managing data. The

three-layered architecture concept will simplify future maintenance and growth while

allowing for a distinct separation of issues.

In this feasibility study, the following project components will be examined:

Technological feasibility

Operational feasibility

Financial feasibility

Technological feasibility: The project entails creating a CRUD API in the programming

language Golang, which is well-suited for creating scalable and effective applications.

Golang is a mature and widely-used programming language. Golang is a strong standard

library that features built-in support for HTTP servers and clients, making it perfect for

developing online applications. With the suggested three-layered design, it will be simpler to

manage the codebase and maintain the application over time because there would be a clear

separation of concerns.

Operational feasibility: The RESTful architecture of the CRUD API, which adheres to

well-established norms and standards, makes it simple to use and integrate with other

systems. Users will be able to quickly generate HTTP requests for the API to create, read,

update, and delete data using standard libraries or API clients. The suggested architecture

will also make future maintenance and expansion easier because it makes it simple to replace

specific parts or add new levels.

24

Financial feasibility: The financial viability of the project will be influenced by a number of

variables, including development costs, hosting costs, and income potential. The complexity

of the application and the team's level of expertise will determine the development costs.

3.2 REQUIREMENTS

The capability of the system to fulfill the conditions sought by the users is known as a system

requirement.

By dividing the needs into functional and nonfunctional requirements, system requirement

analysis is accomplished.

Functional requirements

1. Authentication

● User authentication and authorization should be supported via the API.

● Users ought to be able to make accounts and sign in with them.

● User roles and permissions ought to be established and upheld.

2. Data Management

● The Create, Read, Update, and Delete operations of the API should be able to

manage data.

● In a database or file system, data ought to be kept.

● Data inputs should be verified and consistency monitored by the API.

3. Data Filtering & Sorting

● The API should support sorting and filtering of data according to various

criteria.

● Users should have the option to query data using particular criteria.

4. Error Handling

● The errors should be handled hasslefree and the status codes returned should

be correct for all the edge cases.

● Error messages should be accurate

5. Testing

● API functions should pass all the test cases with 100 percent coverage.

25

● Mocks should be used properly and dependency injection should be done for

unit testing for all the layers.

6. Documentation

● Documentation should be correct and sorted for all the functions including the

correct naming conventions.

Non-Functional Requirements

1. Scalability

2. Performance

3. Readability

4. Reliability

5. Usable API

6. Maintainability

Technical Requirements

1. An IDE for writing clean code is called GOLand.

2. Postman, an API development and usage platform.

3. Mysql server offers connectivity and querying capabilities for database administration

systems.

4. Swagger for API documentation

5. Git version control

Hardware Configurations

HP HP EliteBook 840 G7 Notebook PC

Memory 16.0 GiB

Disk Capacity 512 GB

26

Monitor 13’’

Mouse

Keyboard

(TABLE-3.1)
Hardware Configurations

Software Configurations

Operating System Ubuntu

Language GO

Runtime environment GO runtime

Package Manager GO

(TABLE -3.2)

Software Configurations

3.3 IMPLEMENTATION

Project structure

1. Project Folder Name : VehicleStore

2. SubFolders

● api: Contains the swagger API documentation

● driver:MySql connection file.

● entities: go files having structures

● handler: Handler layer files.

● service: Service layer files

● store: Store layer files

● postmanCollection: Postman Collection for the API

27

3. main.go

4. go.mod: contains the dependencies

(FIGURE -3.1)

Project Structure

DB SCHEMAS

(FIGURE -3.2)

DB SCHEMA

28

(FIGURE -3.3)

MySQL docker image

(FIGURE -3.4)

Tables in the Database

29

(FIGURE -3.5)

Customer Description

(FIGURE -3.6)

Vehicle Description

(FIGURE -3.7)

Customer table

30

(FIGURE -3.8)

Vehicle table

The "Customers" table in this graphic includes details about the customers, including their ID

(as a UUID), name, age, gender, phone number, city, and the foreign key for the car they

own. The "Vehicles" table includes details about the vehicles, such as their ID (as a UUID),

type (2, 4, or 6 wheelers), fuel type (petrol, diesel, cng, or electric), brand, model, and color.

The "Customer_Vehicle" table, which is a many-to-many relationship, represents the

relationship between the "Customers" and "Vehicles" databases. The customer ID and the

vehicle ID, which connects them, are both contained in this table.

The tables might be utilized using the following API endpoints:

API for users

● Get a customer by ID with the help of the GET /customers/id> command.

● Add a brand-new client.

● Update an existing customer by ID using PUT.

● Delete a customer by ID using DELETE.

● Retrieve customers using GET. Get every client.

● GET /customer?Get all clients' car details if vehicle=true is set.

● GET /customer?Get all clients with vehicles that use a certain fuel type by using the

fuel_type= fuel_type parameter.

● GET /customer?Get all clients with automobiles of the given brand using the query

brand="brand"

API for Vehicles

31

● Make a new car using POST /vehicles.

● Update a current vehicle by ID with PUT /vehicles/

● Delete a car using its ID by typing DELETE /vehicles/.

SYSTEM DESIGN

The implementation of each layer is done separately. First of all the entities i.e structs which

are to be used in the project are created in a separate folder named entities. The entities folder

has three go files, Customers.go, Vehicles.go, CustomerVehicle.go. Each of them contains

different structs named as Customers, Vehicles, and CustomerVehicle respectively.

Next part is making the SQL connection, i.e database to go.

Similar tables have to be made in MySQL DB , i.e Customer and Vehicles, keeping in mind

the schema.

Next was to create the first layer , i.e the handler layer. Inside the handler layer there is a file

named interface.go, it contains an interface which has all the methods of the next layer. These

methods are called inside the handler.

The handler layer has the following structure:

🡺 handler

customer

customer.go

customer_test.go

vehicles

vehicles.go

vehicles_test.go

interface.go

mock_interface.go

32

(FIGURE - 3.9)

Structure of handler layer

The mock_interface.go file is created to create mocks for testing purposes using mock gen.

WHAT ARE MOCKS?

Mock testing involves isolating the code from others while testing it without the distraction

of dependencies and other factors, such as network issues and traffic swings. Mock objects,

which mimic the behavior of real things and display true attributes, are used to substitute the

dependent items. Mock testing's guiding principle is to prioritize testing over prioritizing

dependencies. Here, we'll talk about the following subjects:

USES OF MOCKS

● When conducting unit testing, it is more beneficial.

● when you desire to stay away from outside dependence.

● Even though you wish to use dummy objects to speed up the testing process.

● Even while it's important to understand how the test will look in advance

HOW DOES MOCK TEST WORK?

It's a kind of unit testing that makes it possible to make claims about how the code driving

the test interacts with other system modules.

33

1. When performing mock testing, dependencies are swapped out for objects that mimic

the behavior of the crucial ones. It is founded on verification using behavior.

2. The mock object builds a fake interface to represent the real object's interface. Thus,

it is known as mock.

3. Instead of concentrating on the entire code, it highlights the specific section that will

be tested.

4. The mock object only reads test data from a local disc and responds with it.

5. No changes to the codebase are necessary for mocking.

6. During testing, fake objects are used in place of the inherited class when there are

dependencies in the case of constructors and other methods.

7. In contrast to conventional unit testing, assertion is carried out by fake objects that

have been initialized beforehand with respect to the type of method calls that should

be made and the expected behavior.

8. Mocking is used for protocol testing, which examines how APIs should be used and

how they will respond when implemented properly.

Mock Gen auto generates the mock functions for the given methods in the interface.

Then the next layer is the service layer, which checks the logics in the methods and

functions.

The structure of the service layer is :

🡺 service

customer

customer.go

customer_test.go

vehicles

vehicle.go

vehicle_test.go

interface.go

mock_interface.go

34

(FIGURE -3.10)

Structure of service layer

The service layer has the interface of the methods of the store layer, and those methods are

called in the service layer.

Another reason to create mocks is that since we are calling service in handler , store in

service and when the testing is performed this testing will also be calling the similar

functions in a similar way, so there will be an integrated testing for all these layers but we

won't be able to do the unit testing so, in order to do that we create the mocks of these

functions.

Next is the store layer where db queries are used and the database connection is established.

The structure of store layer is given as follows:

🡺 store

customer

customer.go

customer_test.go

vehicle

vehicle.go

vehicle_test.go

35

(FIGURE -3.11)

Structure of store layer

The store layer does not implement go mock, it uses SQL mocks to mock the DB, so that the

changes are not made to the really existing database.

SOL MOCKS

A mock library that uses the sql/driver is called sqlmock. With which any sql driver behavior

can be simulated in testing without the need for a genuine database connection. It assists in

maintaining the proper TDD process.

This library enables numerous connections and concurrency. It also enables mocking and

named sql parameters for go1.8 context-related features. It does not call for changing your

source code in any way. Any sql driver method behavior can be mocked using the driver.It

has rigorous expectation order matching by default. It has no reliance on outside parties.

We mock the sql connection in this layer and then write the test cases using these mocks.

DOCKER

An open platform for creating, distributing, and running programs is Docker. You may divide

your apps from your infrastructure with the help of Docker, allowing for rapid software

delivery. You can manage your infrastructure using Docker in the same manner that you

manage your applications. You may drastically shorten the time between writing code and

executing it in production by utilizing Docker's methodology for shipping, testing, and

deploying code quickly.

36

We installed docker image of MySQL and performed the operations on the image not the

actual MySQL table.

CODE

(FIGURE-3.12)

Sql Driver Connection

37

(FIGURE-3.13)

Entities - customers.go (having Customers struct)

(FIGURE -3.14)

Entities - Vehicles.go(having struct vehicles)

38

(FIGURE -3.15)

Entities - CustomerVehicle.go(having CustomerVehicle struct)

(FIGURE - 3.16)

Handler Layer customer_test.go file(test function for creating a customer)

39

(FIGURE -3.17)

Handler test function for get by Id

(FIGURE -3.18)

Handler Layer customer.go for create customer method

40

(FIGURE -3.19)

Get BY ID method in handler layer

(FIGURE -3.20)

Create vehicle in vehicle.go

41

(FIGURE -3.21)

Update Vehicle in vehicle.go for handler layer

(FIGURE -3.22)

Test function for create vehicle in vehicle_test.go

42

(FIGURE- 3.23)

Interface.go in handler layer

(FIGURE- 3.24)

Create customer method in service layer

43

(FIGURE - 3.25)

GetById and get All method in service layer

(FIGURE - 3.26)

Test cases for Create customer in service layer

44

(FIGURE -3.27)

Test function for GetByID in service layer

(FIGURE -3.28)

Method create vehicle in service layer

45

(FIGURE-3.29)

Update Vehicle Method in service layer

(FIGURE - 3.30)

Test function for create vehicle in service layer

46

(FIGURE -3.31)

Create Customer and GetByIdStore in store layer

(FIGURE -3.32)

Update customer and Delete customer in store layer

47

(FIGURE - 3.33)

Test Function for create customer in store layer

(FIGURE -3.34)

Test Function for GET customer in store layer

48

(FIGURE -3.35)

Create vehicle in store layer

(FIGURE -3.36)

Test function for create vehicle in store layer

49

CHAPTER - 4

EXPERIMENTS AND RESULT ANALYSIS

RESULTS

1. All the test functions in every layer passed with coverage 100%

2. All the end points are working as expected

3. All the status codes are correct

The end point testing is done on Postman.

POSTMAN

An API platform for creating and utilizing APIs is called Postman. To help you design better

APIs faster, Postman improves collaboration and simplifies every stage of the API lifecycle.

(FIGURE- 4.1)

Postman

Everything connected to APIs, including API specifications, documentation, workflow

recipes, test cases and results, metrics, and more, may be stored and managed by Postman.

50

The API documentation is made using swagger API tool.

SWAGGER

You can define your APIs' internal structure in Swagger so that computers can understand it.

The core of all goodness in Swagger is the ability of APIs to describe their own structures.

Why is it so fantastic? We can, however, automatically create stunning and interactive API

documentation by reading the structure of your API. We can also examine other options, such

automated testing, and automatically produce client libraries for your API in a variety of

languages. Swagger accomplishes this by requesting a YAML or JSON response from your

API that offers a thorough description of your whole API.

(FIGURE- 4.2)

Swagger -API documentation for customer

51

(FIGURE- 4.3)

Swagger -API documentation for vehicle

ENDPOINTS RESULT FROM POSTMAN

(FIGURE- 4.4)

Add vehicle Endpoint

52

(FIGURE- 4.5)

Update vehicle endpoint

53

(FIGURE- 4.6)

Add Customer endpoint

54

(FIGURE- 4.7)

GetAll endpoint

55

CHAPTER - 5

5.1 CONCLUSIONS

All in all, best practices and methods were considered during the creation of the ZopStore

Programming interface. The handler, service, and storage layers were clearly separated from

one another in a three-layer engineering process. The use of test-driven development

throughout the development process ensured good code quality and reduced the risk of bugs.

While middleware was used to provide overarching concerns like confirmation and logging

to the Programming interface, data set movements were used to monitor changes to the data

set blueprint. The store layer's unit testing was made possible via SQL deriding, while the

handler layer's unit testing was made possible with mockgen and mux.

Metrics were used to carefully monitor and analyze execution, and steps were taken to

simplify the programming interface and ensure excellent performance even under heavy load.

Additionally, the programming interface was completely documented using Swagger and

Postman, with clear and comprehensive documentation available for all endpoints.

Finally, GitHub Activities for automated testing, code inclusion, and linter tests improved the

connection between development teams. Generally speaking, the ZopStore Programming

interface was built using a range of best practices and methodologies, resulting in a

top-notch, dependable, and performant Programming interface that solved the challenges of

its clients.

5.2 OBJECTIVES ACHIEVED

1. Versatile Program

2. Easily executable

3. Secure

56

4. Practically usable

5. Enhanced Quality

5.3 FUTUREWORK

This API can be created using frameworks. Frameworks increase the quality of the code and

help build a better API. Here at ZopSmart technologies we have our inhouse go Framework

named gofr. This API can be reconciled with the gofr framework.

For quicker reaction times and increased variety, the programming interface can be

improved. This can be achieved using techniques like load testing, execution profiling, and

code improvement.

The programming interface can be communicated on cloud platforms like AWS, Sky Blue, or

Google Cloud, offering additional benefits like adaptability, unchanging quality, and

cost-effectiveness.

In general, the ZopStore Programming interface has a few exciting open doors for future turn

of events and development, and it will be fascinating to see how it grows over time.

References

All the references are taken from go documentation present online and inhouse learning

platform offered by Zopsmart technologies.

[1] https://go.dev/doc/

[2] https://github.com/golang/mock

57

[3] https://github.com/DATA-DOG/go-sqlmock

[4] https://github.com/gorilla/mux

[5] https://dev.mysql.com/doc/

[6] https://www.linux.org/

[7] https://docs.docker.com/

[8] https://kubernetes.io/docs/home/

[9] https://ngdocs.harness.io/

[10] https://prometheus.io/docs/introduction/overview/

58

19%
SIMILARITY INDEX

11%
INTERNET SOURCES

1%
PUBLICATIONS

17%
STUDENT PAPERS

1 4%

2 3%

3 2%

4 2%

5 1%

6 1%

7 1%

8 1%

jh
ORIGINALITY REPORT

PRIMARY SOURCES

Submitted to Jaypee University of Information
Technology
Student Paper

www.coursehero.com
Internet Source

Submitted to Higher Education Commission
Pakistan
Student Paper

Submitted to National College of Ireland
Student Paper

Submitted to CSU, Fullerton
Student Paper

Submitted to United Colleges Group - UCG
Student Paper

Submitted to St. Ignatius High School
Student Paper

Submitted to University of Wales Institute,
Cardiff
Student Paper

	2e29738407a22003feece8d3850a91842643eedd268d6fea3d4e2e69b3b9d1d5.pdf
	2e29738407a22003feece8d3850a91842643eedd268d6fea3d4e2e69b3b9d1d5.pdf
	2e29738407a22003feece8d3850a91842643eedd268d6fea3d4e2e69b3b9d1d5.pdf

