
DATA PIPELINING FOR INCOMING ASYNCHRONOUS STREAM

Project report submitted in partial fulfillment of the requirement for the degree
of Bachelor of Technology

in

Computer Science and Engineering

By

Aishani Pachauri (191393)

Under the supervision of

Dr. Rajni Mohana

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

Certificate
I hereby declare that the work presented in this report entitled “Data Pipelining for Incoming
Synchronous Stream” in partial fulfillment of the requirements for the award of the degree of
Bachelor of Technology in Computer Science and Engineering submitted in the department of
Computer Science & Engineering and Information Technology, Jaypee University of Information
Technology Waknaghat is an authentic record of my own work carried out over a period from
January 2023 to May 2023 under the supervision of Mr.Aishwarya Agrawal, Software lead
@Electorq Tech. The matter embodied in the report has not been submitted for the award of any
other degree or diploma.

Aishani Pachauri,

191393

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

Dr. Rajni Mohana

Associate Professor
Department of Computer Science & Engineering
and Information Technology
Dated:

I

Plagiarism Certificate

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

PLAGIARISM VERIFICATION REPORT

Date:………………………….
Type of Document (Tick): PhD Thesis M.Tech Dissertation/ Report B.Tech Project Report Paper

Name: ___________________________ __Department: _________________ Enrolment No _________

Contact No. ______________________________E-mail. ______________________________________

Name of the Supervisor: __

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): ________________________

__

__

UNDERTAKING

I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any
plagiarism and copyright violations in the above thesis/report even after award of degree, the
University reserves the rights to withdraw/revoke my degree/report. Kindly allow me to avail
Plagiarism verification report for the document mentioned above.
Complete Thesis/Report Pages Detail:

Total No. of Pages =

Total No. of Preliminary pages =

Total No. of pages accommodate bibliography/references =

(Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at………………..(%). Therefore, we

are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification
report may be handed over to the candidate.

(Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index Generated Plagiarism Report
Details

(%) (Title, Abstract & Chapters)

All Preliminary Word Counts

Pages Character Counts
Report Generated
on

Bibliography/Ima

ges/Quotes
Submission ID Total Pages Scanned

14 Words String

File Size

Checked by

Name & Signature Librarian
………
………………………………

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)

through the supervisor at plagcheck.juit@gmail.com

II

ACKNOWLEDGEMENT

First, I express my heartiest thanks and gratefulness to Lord Shiva for His divine blessing

to make it possible to complete the project work successfully.

I am really grateful and wish my profound indebtedness to Dr. Rajni Mohana, Associate

Professor, Department of CSE & IT, Jaypee University of Information Technology,

Waknaghat. Deep Knowledge & keen interest of my supervisor in the field of “Cloud

Computing” to carry out this project. Her endless patience, scholarly guidance, continual

encouragement, constant and energetic supervision, constructive criticism, valuable advice,

and reading many inferior drafts and correcting them at all stages have made it possible to

complete this project.

I would also generously welcome my friend Achyut Tiwari and each one of those

individuals who have supported me straightforwardly or in a roundabout way throughout

the project timeline. I would also like to thank various staff individuals, both educating

and non-instructing, which have extended their help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patients of my

parents.

Project Group No. 95

Name: Aishani Pachauri
Roll No: 191393

III

Table of Content

Chapter 1: Introduction 1
1.1 Introduction 1

1.2 Problem Statement 4

1.3 Objectives 6

1.4 Methodology 6

1.5 Organization 12

Chapter 2: Literature Survey 13

Chapter 3: System Design & Development 23

3.1Application Scenario 25

3.2Dataset 26

3.3System Description 29

3.4Proposed Methodology 33

3.5Proposed Algorithm 37

Chapter 4: Experiments & Results Analysis 40

4.1Software Practices 40

4.2Utilization(in terms of global cost) 46

Chapter 5: Conclusion 57

5.1Conclusion 58

5.2Future Scope 59

5.3Applications Contributions 60

References 62

Appendices 68

IV

List of Abbreviations

1. NoSQL: No Structured QueryLanguage

2. Dynamo Db: Dynamo Database

3. SQS: Simple Queue Service

4. KPI: Key Performance Index

5. IoT: Internet of things

6. QoS: Quality of Service

V

List of Figures

Fig 1. AWS Lambda architecture and underlying environment. 8

Fig 2. Column-Oriented Databases Work Better in the OLAP Scenario 10

Fig 3. MicroVm containerization 15

Fig 4: User interaction with IoT device flow 23

Fig 5: Data acknowledgement mechanism 27

Fig 6: Critical cases of data received 29

Fig 7: Polling to fulfill request from client 37

Fig 8: Vertical scaling in AWS microVM container 41

Fig 9: Polling to fulfill request from client 42

VI

List of Graphs

Graph 1: Mean value for duplicates polled in 10 executions 44

Graph 2: Mean value of duplicates polled in new algorithm 44

Graph 3: Comparative analysis of two methodologies. 48

Graph 4: Incoming data points to be processed in an hour 53

Graph 5: Worst Case Vs Best Case scenario for the implementation 55

VII

List of Tables

Table 1: IT Sprint problem schema 05

Table 2: Symbols Used in the Study 25

Table 3: Cron expressions available by AWS 35

Table 4: Features of the proposed function schema 39

Table 5: Mean Time and Memory utilization 43

Table 6: Solution Details 52

Table 7: Time Taken for one trigger 54

VIII

Abstract
In the digital age, data has become one of the most valuable resources. With the proliferation

of technology and the internet, we generate and store vast amounts of data every day. This

data can come from a variety of sources, including social media, e-commerce transactions,

and sensors in devices. By analyzing this data, businesses and organizations can gain

valuable insights into customer behavior, market trends, and more. This information can then

be used to make informed decisions and drive innovation. Data also plays a crucial role in

areas such as scientific research and public policy. However, with the importance of data

comes the responsibility to ensure that it is collected, stored, and used in an ethical and secure

manner. To address this, ensuring a secure, well constructed data pipeline must be set up in

order to take maximum benefits out of the data generated, which can be used in this specific

business case. This data is further used to extract sufficient KPIs to project various indexes

like ARR, Recurring Revenue, Monthly retention and Churn rate. For accurate estimation

and projections, data must be accurately transmitted and handled to further carry out the

analysis.

IX

Chapter-1

INTRODUCTION

1.1 Introduction

In traditional server-based architecture, developers would need to provision and

manage servers, handle load balancing, and ensure the availability and scalability

of the infrastructure. However, with serverless computing, developers can focus

on writing code and leave the infrastructure management to the cloud provider.

[1]. Serverless backend services typically include services such as databases,

storage, and message queues. These services are designed to scale automatically

based on demand and are charged based on usage. For example, AWS offers

serverless backend services such as Amazon S3 for storage, Amazon DynamoDB

for NoSQL databases, and Amazon Simple Queue Service (SQS) for message

queues.

Serverless compute services are services that allow developers to run code

without provisioning or managing servers. These services include functions as a

service (FaaS) platforms such as AWS Lambda, Azure Functions, and Google

Cloud Functions. With serverless compute services, developers can upload their

code, specify triggers or events that will invoke the code, and let the cloud

provider handle the rest. These services scale automatically based on demand, and

users are charged based on the number of invocations and the amount of time their

code runs.

Serverless backend and compute services offer several advantages over traditional

server-based architecture. They allow developers to focus on writing code and

developing applications rather than managing infrastructure. They are also highly

scalable, and users only pay for what they use, making them a cost-effective

solution for many types of applications.

[2,3]. Serverless backend and compute services are a type of cloud computing

service where the cloud provider manages the infrastructure and automatically

scales resources up or down based on demand. In recent years, serverless

computing has emerged as a popular paradigm for building and deploying

applications in the cloud. Amazon Web Services (AWS) has been at the forefront

of this trend with its Lambda service, which allows developers to run code

without provisioning or managing servers. However, running serverless functions

in a virtualized environment can be resource-intensive and slow to start up. This is

where AWS Firecracker comes in.[4]

1

AWS Lambda is a serverless compute service that allows developers to run code

in response to events or triggers, such as HTTP requests, database updates, or file

uploads. Lambda handles all the underlying infrastructure, automatically scaling

resources up or down to match demand, and charging only for the compute time

used. Lambda functions can be written in several programming languages,

including Node.js, Python, Java, and C#. With the integration of Firecracker,

Lambda can now run in a secure and lightweight microVM environment,

providing fast and efficient execution of serverless functions.

Together, Firecracker and Lambda provide a powerful and efficient platform for

building serverless applications in the cloud. Developers can write code in their

preferred language, upload it to Lambda, and let the service handle the rest. With

the integration of Firecracker, Lambda can now start up serverless functions in

just a few milliseconds, allowing for near-instantaneous response times to events

and triggers. This makes Lambda an ideal choice for building event-driven

applications, microservices, and API backends that require fast and efficient

execution.

A serverless architecture is a cloud computing model in which the cloud provider

manages the infrastructure required to run applications, and the user only pays for

the computing resources used, rather than for a fixed amount of server capacity. In

a serverless architecture, the user does not need to provision or maintain servers,

and instead, the cloud provider handles the allocation of resources and scaling of

the application as needed. The name "serverless" is somewhat misleading, as

servers are still used, but the user is shielded from the underlying infrastructure,

allowing them to focus solely on the application logic. Serverless architectures

often utilize Functions-as-a-Service (FaaS) and Backend-as-a-Service (BaaS) to

handle the application logic and data storage, respectively.

Bytebeam is an IoT (Internet of Things) provider that works with end-to-end

solutions for connecting and managing devices, data, and applications. The

company focuses on delivering IoT solutions across a range of industries,

including agriculture, healthcare, logistics, and smart cities.

2

Bytebeam offers a range of services that include hardware design, software

development, cloud-based platforms, and analytics. The company has expertise in

developing custom hardware solutions, such as sensors, gateways, and control

systems, to connect and manage IoT devices. They also offer software

development services to build custom applications that can interact with these

devices and collect data.

Bytebeam's cloud-based platforms provide secure and scalable solutions for

managing and analyzing data from IoT devices. The platforms offer features such

as device management, data analytics, and real-time monitoring, which allow

customers to make informed decisions based on the data collected from their IoT

devices. Overall, Bytebeam's services enable businesses to leverage the power of

IoT to improve operational efficiency, reduce costs, and enhance customer

experiences. Embedded code in IoT refers to the software code that runs on the

microcontrollers or microprocessors embedded in IoT devices. These devices

typically have limited computing resources and memory compared to

general-purpose computers, so the code used for them needs to be highly

optimized and efficient.

Embedded code is responsible for controlling and managing the hardware

components of an IoT device, such as sensors, actuators, and communication

modules. It interacts directly with the hardware through low-level interfaces and

protocols to read and write data, perform computations, and make decisions based

on the sensor readings. The embedded code in an IoT device can be developed

using a variety of programming languages, such as C, C++, or Assembly

language, depending on the specific hardware platform and the requirements of

the application.

Embedded code plays a crucial role in IoT systems, as it is responsible for

collecting, processing, and transmitting data from IoT devices to the cloud or

other connected devices. Effective embedded code can help ensure that an IoT

device operates efficiently, reliably, and securely.

3

To accomplish efficient horizontal scaling in case of interactive data handling,

Lambda@Edge is a service provided by AWS (Amazon Web Services) that

enables running serverless Lambda functions on the edge locations of the AWS

global content delivery network (CDN), Amazon CloudFront.

These edge locations are distributed around the world, closer to end-users,

enabling faster content delivery and reducing latency. Lambda@Edge allows

developers to run code directly on these edge locations, which can be used to

enhance the user experience by improving the performance of websites and web

applications.This can be used for a variety of use cases, such as modifying HTTP

responses, generating dynamic web content, and customizing authentication and

authorization logic. The service is fully managed by AWS, so developers do not

need to worry about infrastructure provisioning or scaling. These functions are

triggered by CloudFront events such as viewer request, origin request, origin

response, and viewer response, and they can be written in various programming

languages such as Node.js, Python, Java, and C#.

1.2 Problem Statement

IoT applications such as those used for smart homes, smart cities, and smart

healthcare must be able to adapt to changing user behavior, as users' actions may

vary based on different factors. Additionally, many of these applications require

timely responses. Consider a city that uses IoT sensors to monitor and manage its

transportation system, including traffic flow, parking availability, and public

transportation routes.

Internet of Things (IoT) is transforming many industries by enabling them to

collect, process and analyze real-time data. One of the industries that IoT is

having a significant impact on is the transportation industry. However, providing

high-quality service to the citizens requires the IoT sensors to ensure a high level

of quality of service (QoS).

QoS is a measure of the overall performance of a system, including its ability to

deliver data reliably, quickly, and with low latency. In the context of IoT

applications, QoS is critical because many applications require real-time data to

be delivered in a timely manner. For instance, in a smart city transportation

system, real-time data on traffic flow, parking availability, and public

4

transportation routes must be delivered quickly to enable efficient transportation

systems.

To achieve high QoS, IoT sensors must use QoS-aware protocols and algorithms

that prioritize the delivery of critical data over less critical data. Prioritizing the

delivery of critical data ensures that real-time information is delivered to the

transportation management system in a timely and reliable manner. For example,

in a smart parking system, information on parking availability is critical, and it

needs to be delivered in real-time. If the information is delayed or unreliable, it

can cause congestion and increase pollution levels.

Table 1: IT sprint problem schema

Define the problem statement

What is the problem? The battery swap data is not handled
properly and is missing or repeated

What are the possible solutions? Tracking data from IoT’s server and
applying appropriate filters to post
clean data to our database

What teams and systems will be
impacted?

Electrical team working with IoT
embedded code and tracking overall
Kms traveled in one cycle of a
battery

Moreover, IoT sensors must be able to adapt to changes in network conditions and

traffic load to ensure optimal performance and QoS. For instance, in a smart

transportation system, the amount of data that needs to be delivered varies

depending on the time of day and the day of the week. During peak hours, there

may be a higher demand for real-time data, and the network may be congested. In

this case, the IoT sensors must be able to adapt to the changing network

conditions and traffic load to ensure optimal performance and QoS.

Cost is another important parameter that needs to be considered when managing

resources and allocating resources in IoT applications. In many cases, the cost of

deploying and maintaining an IoT system can be significant. Therefore, it is

essential to use cost-effective solutions that can deliver high QoS.

5

One approach to reducing the cost of IoT systems is to use edge computing. Edge

computing enables data to be processed and analysed at the edge of the network,

closer to the data source. By processing and analysing data at the edge of the

network, the amount of data that needs to be transmitted over the network can be

reduced, which can reduce the cost of the system. Moreover, edge computing can

improve QoS by reducing latency and increasing reliability.

These IoT protocols must adapt to changes in network conditions and traffic load

to ensure optimal performance and QoS. They must take into account the inflow

of data and have sufficient mechanism for fault tolerance to avoid data loss.

Moreover, critical error handling with both data at rest and data in transit is crucial

in this particular use case.

In conclusion, IoT has a huge impact on the automotive industry and if handled

through technically sound pipelines, IoT data extracted can serve as a gold mine

of projections for a growing business.

Given the above application scenario, it is very vital to manage resources and

efficiently collect data from third party server, decipher and store it.

In consideration of two vital parameters which are Cost and Quality of service.

1.3 Objectives

a) To propose a solution to handle asynchronous data coming from SQL

based Bytebeam data center.

b) To produce a usable data format and storage pipeline while taking account of
AWS Serverless constraints .

1.4 Proposed Methodology

In the rapidly evolving landscape of serverless architecture, the deployment of

lambda based architecture combines performance, and security of complex and

demanding IoT applications. With the exponential growth of data and the

increasing complexity of applications, traditional centralized systems have

become inadequate in handling large workloads and providing efficient

processing. Distributed agents, on the other hand, can be deployed across the

cloud-fog environment to improve the overall efficiency of the system.

6

The scalability of the system can be improved by deploying distributed agents that

can handle large workloads effectively. The distribution of agents across the

cloud-fog environment ensures that the load is distributed evenly, preventing any

single agent from becoming overloaded. This, in turn, enables the system to

process a large number of requests simultaneously, improving its scalability.

Furthermore, the deployment of distributed agents enables the system to continue

operating even if one agent fails, enhancing reliability and reducing the risk of

downtime. This approach also provides flexibility, as distributed agents can be

designed to be highly adaptable to changes in workload or environmental

conditions, enabling more efficient resource allocation and task delegation.

In addition to scalability and reliability, distributed agents can also enhance the

performance of the system. By enabling faster and more efficient processing,

distributed agents can improve the overall responsiveness of the system. The

redundancy provided by the deployment of agents in multiple locations also

improves the resilience of the system, ensuring that critical services remain

available even if one part of the cloud-fog environment experiences a failure. This

approach also enables the system to handle dynamic workloads more effectively,

as this can be designed to adjust their processing capabilities in response to

changing workload conditions.

Moreover, this deployment enhances the security of the system by internal

security measures for the microVM environment for lambdas preventing

unauthorized access and protecting sensitive data. By decentralizing the system,

the risk of a single point of failure is reduced, making it more difficult for

malicious actors to disrupt the system.

AWS Firecracker is an open-source virtualization technology that provides

lightweight, secure, and fast microVMs (micro virtual machines) for running

serverless functions. Firecracker is designed to be used as a building block for

container and serverless platforms, providing secure and isolated execution

environments for workloads. Firecracker has a minimal footprint, starting VMs in

less than 125ms and consuming only a few MBs of memory, making it an ideal

solution for running serverless functions.

7

Figure 1: AWS Lambda architecture and underlying environment.

Hence we leverage lambda runtime execution and push it’s limits to maximum

threshold through vertical scaling via memory provision (epiphermal & runtime).

We configure the lambda in such a way that it utilizes each runtime execution that

it creates which lives for 15 minutes and carries multiple invocations to avoid cold

start. This helps us reduce the time of environment creation, MicroVM production

to environment setup by container, significantly by 32.883% approximately.

Decreasing the INIT Duration in lambda creation paves a way to significantly

reduce and process triggers to the particular function and reduce overall runtime

duration and memory utilization. In this architecture, as in Fig. 1, the AWS

Lambda function is executed in a container environment that includes the Lambda

runtime API and a microVM layer.

8

The microVM layer is responsible for setting up and managing a lightweight

virtual machine that isolates the Lambda function from other processes and

provides a secure execution environment.

Within the microVM, a guest operating system or image is loaded, which provides

a runtime environment for the Lambda function's application code. The

application code is loaded and executed within the guest OS or image, and any

output or results are returned to the Lambda runtime API for further processing

and communication with other AWS services.

In summary, this particular deployment required data in such a format where it

can be mapped to key-value stores that we use in our architecture which offers

numerous benefits, including scalability, reliability, performance, and security.

These benefits make distributed agents well-suited for complex and demanding

applications, as they can enhance the efficiency and adaptability of the system. By

leveraging the advantages of distributed agents, organizations can build more

robust and scalable cloud-fog environments that can adapt to changing workloads

and environmental conditions, while maintaining high levels of performance and

security.

The overall approach can be analyzed through three different perspectives:

1. Data management and storage: Understanding various endpoints sending

the data, the format in which we receive the data and cleaning the data to

keep the relevant records in the form of key-value pairs in NoSQL based

storage of AWS DynamoDB.

2. Cloud - IoT communication: Establishing a stable connection while

securing the data in transit is quite essential here as the window of

receiving the data is time based. One unit of data lost cannot be recovered

until noticed through manual digging.

3. Lambda function internal optimization: Defining the optimal filters to get

the desired data in return and understanding the bridge that the function is

between the external data store to the organization's database.

9

Selection of IoT server was determined while considering multiple factors and

understanding of IoT platform, including:

1. The specific service requirements of those devices and applications.

2. The scalability and capacity requirements of the platform.

3. The security and privacy requirements of the platform.

4. The cost of the platform.

5. The types of devices and applications that will be connected.

Service providers must understand required credentials and configure the platform

to expose the required services. Service providers also need to consider how they

will manage the IoT platform over time. This includes managing updates and

patches, as well as monitoring platform performance and capacity.

ClickHouse is a high-performance columnar database management system

(DBMS) developed by Yandex, which is designed for real-time analytics and

processing of large volumes of data. It is open-source software and is widely used

for data warehousing, business intelligence, and big data processing.

Figure 2: Column-Oriented Databases Work Better in the OLAP Scenario

10

Unlike traditional row-based databases, ClickHouse is a columnar database,

which means that data is stored in columns rather than rows. This makes it highly

optimized for analytical queries and data aggregation, as it can quickly scan and

retrieve only the columns that are relevant to a particular query.

To filter and collect data as quickly as possible, ClickHouse was initially created

as a prototype. A basic GROUP BY query does what is required to construct a

typical analytical report. The ClickHouse team made a number of important

choices that, when combined, allowed for the completion of this task:

Column-oriented storage: Although a report may only employ a handful of the

hundreds or thousands of columns that make up source data, this is a common

situation. To save money on costly disc read operations, the system must refrain

from reading irrelevant columns.

Indexes: Resident memory Only the necessary columns and necessary row ranges

of those columns may be read from ClickHouse data structures.

Execution of queries using vectorization: ClickHouse not only stores but also

processes data in columns. This improves CPU cache utilisation and enables the

use of SIMD CPU instructions.

Scalability: ClickHouse can employ every CPU core and disc that is available to

process even a single query. not just on a single server but also across the entire

cluster's CPUs and discs.

In real data, a column frequently contains the same, or not that many different,

values for neighboring rows, hence grouping various values of the same column

together typically results in superior compression ratios (compared to

row-oriented systems). ClickHouse offers specialized codecs that can further

compress data in addition to standard compression. OLAP stands for Online

Analytical Processing, which is a technique used for performing complex

multidimensional analysis of data in real-time.Furthermore, this report discusses

the finalized delivered feature while presenting the methodology, corner cases and

results of the testing phases. Consisting of dummy battery swaps and internal

testing.

11

1.5 Organization

The report is organized as follows:

• Chapter-02 outlines the existing related work in the field of system design

considering IoT service placement and server management connected to

cloud infrastructure. It further presents the outputs which we eventually

compare and discuss in this report.

• Chapter-03 puts forward the system that is formulated to cater the IoT

-Data-Cloud connectivity pipeline and is designed to work so as to reduce

latency and reduce data miss. This is where we cover the software

requirement and optimization module that are considered.

• Chapter-04 puts forward the analysis of the results and data presentation to

cater the definite business case in depth and also with content to existing

solution.

• Finally, Chapter-05 presents the conclusion of this particular feature release with

the application contribution and discussed future scope

Overall application of this solution will not only help in automating asset

ownership transfer but also help in scaling and designing the IoT - Software

interdependency through best practical system design paradigms realized from

various use cases in existing organizations.

It is a category of software tools that allows users to analyze data from multiple

perspectives and dimensions, providing a comprehensive view of business data.

12

Chapter-2

LITERATURE SURVEY

In this section the authors have covered various studies related to edge user

allocation problems [8] and solutions pertaining to the same. One of the key

challenges in fog computing is how to efficiently allocate resources to edge users

accessing the execution environment. This is especially challenging when the

number of data points fetched per second is large and dynamic. This depends on

the number of interactions with IoT, which increases per month by an amplitude

of 17x each month in this particular context.

Various resource allocation schemes have been proposed, but there is no clear

consensus on which is the best approach. The edge user allocation problem is a

problem that arises in the context of allocating users to edges in a network. The

problem is to find a mapping of users to edges such that the sum of the weights of

the edges allocated to each user is minimized. The problem is NP-hard [9].

IoT devices are becoming increasingly common, with many organizations using

them to monitor and manage their operations. However, due to the large number

of devices and the variety of services they offer, load-balancing IoT service

placement is becoming a challenge. One approach to solving this problem is to

use a software-defined network (SDN) controller to dynamically adjust the

placement of IoT services based on the current load. This would allow the system

to automatically adjust the placement of services as the number and type of

devices change, and as the load on the system changes. Another approach is to use

a central database that keeps track of the number and location of devices, as well

as the load on each device. This database could then be used to determine the best

placement of services based on the current load. Whichever approach is used, it is

important to consider the trade-offs between flexibility and performance. For

example, if the system is too flexible, it may take longer to find an optimal

solution. On the other hand, if the system is not flexible enough, it may not be

able to adapt to changes in the environment.

13

In [11], authors present a two-step resource management approach with the goal

of using the fewest possible edge nodes while reducing the amount of time needed

to deliver services. For each device, a pool of backup edge nodes and a home edge

are first chosen. Finding the edge nodes that have the lowest latency between

them and that device is their goal. The specified edge nodes are then used to host

the necessary IoT services, ensuring the desired response time. A different project

with the same objective as the ones listed in [11] and [10] has been proposed by

researchers in

[12]. According to a backtrack search algorithm and related heuristics that serve

the goal, the recommended mechanism selects locations. The authors of [13] have

offered a conceptual framework for service placement for the edge-to-cloud

system. Their objective is to increase edge node use while taking user constraints

into account by using a genetic algorithm for optimization. In order to take

advantage of Internet of Things nodes for IoT service execution, the authors

introduce the concept of a fog cell, which is software that runs on IoT nodes. An

edge-to-cloud control middleware that oversees the fog cells has also been

introduced. Any associated fog cells or other control nodes are under the

supervision of a fog orchestration control node. The latter enables IoT services to

be managed separately from cloud nodes.

In the rapidly evolving field of fog computing, resource allocation is a major

challenge that researchers have been addressing. One of the main issues in fog

computing is to allocate resources to edge users efficiently. The edge user

allocation problem arises in the context of mapping users to edges in a network.

The objective is to minimize the sum of the weights of the edges allocated to each

user. This problem is NP-hard and becomes increasingly challenging as the

number of edge users is large and dynamic.

To address this problem, various resource allocation schemes have been proposed.

However, there is no clear consensus on which approach is the most effective. For

instance, one approach involves the use of a software-defined network (SDN)

controller to dynamically adjust the placement of IoT services based on the

current load. The SDN controller would allow the system to

13

automatically adjust the placement of services as the number and type of devices

change, and as the load on the system changes. Another approach involves the use

of a central database to keep track of the number and location of devices, as well

as the load on each device. This database could then be used to determine the best

placement of services based on the current load.

Regardless of the approach used, it is important to consider the trade-offs between

flexibility and performance. For example, a system that is too flexible may take

longer to find an optimal solution, while a system that is not flexible enough may

not be able to adapt to changes in the environment. Therefore, researchers have

been exploring different solutions to this problem, such as QoS-aware service

allocation, multi-dimensional knapsack problem, two-step resource management,

and genetic algorithms.

In computing networks, there may be instances where certain nodes experience

low levels of activity while others are overwhelmed with the entire network load.

This load imbalance can lead to various issues such as system and network

failures, increased energy consumption, and longer execution times. To prevent

such problems, load balancing is essential to distribute the load evenly across all

resources based on their capacity. This ensures that no resources are underutilized

or overburdened in a fog environment. Load balancing is also necessary for cloud

data centres to ensure efficient workload distribution, optimal functioning, and

prevention of overload and deadlock issues.

14

In one study, researchers introduced a QoS-aware service allocation for fog

environments that aimed to minimize overall service execution delay and the load

on the edge nodes. They used a multi-dimensional knapsack problem to describe

this goal. In another study, a two-step resource management approach was

proposed with the goal of using the fewest possible edge nodes while reducing the

amount of time needed to deliver services. A pool of backup edge nodes and a

home edge were first chosen for each device, and then the edge nodes with the

lowest latency between them and that device were selected. These nodes were

used to host the necessary IoT services to ensure the desired response time.

Another project with similar objectives proposed a backtrack search algorithm and

related heuristics to select locations.

Researchers also proposed a conceptual framework for service placement in the

edge-to-cloud system, with the aim of increasing edge node usage while taking

user constraints into account.

Figure 3. MicroVM containerization

15

which helped to manage IoT services separately from cloud nodes. Additionally,

the concept of a fog cell, which is software that runs on IoT nodes, was introduced

to take advantage of IoT nodes for IoT service execution. An edge-to-cloud

control middleware that oversees the fog cells was also proposed, along with a fog

orchestration control node that supervised any associated fog cells or other control

nodes.

Author in [14]'s main goal is to increase the number of edge node-served services

while maintaining QoS standards such as response time. They employ an algorithm to

overcome the issue that makes use of validation, rounding, and relaxation. Authors in

[15] offer a service placement strategy that maximises the amount of services

assigned to edge nodes, similar to the earlier efforts [16],

[17]. The suggested method uses context data from the edge nodes, such as

location, response time, and resource consumption, to distribute services.

Workload distribution is defined by [18] as an interaction between edge-to-cloud

nodes. Investigated and roughly resolved is the trade-off between power usage

and transmission delay in the interaction. A relevant framework for understanding

the cooperation between edge-to-cloud nodes is provided by simulation and

numerical results. For a three-layer fog-cloud architecture made up of the fog

device, fog server, and cloud layers, authors in [19] present for resource

allocation. The processing time, bandwidth, and reaction time of the available

resources are ranked according to three factors in order to address the time

constraints imposed by dynamic user behaviour in resource provisioning. These

resources are then distributed in a hierarchical and hybrid way according to the

requests that were received. DRAM is a different load-balancing resource

allocation mechanism that authors have [20] offered. DRAM uses service

migration after allocating network resources statically to create a dynamically

balanced workload across edge nodes.

In order to supply IoT services, authors in [21] create an Integer Linear

Programming (ILP) problem that balances two goals: minimising deployment cost

(which includes the costs of computation, memory, and data transfer) and raising

service acceptance rate. Greedy Randomised Adaptive Search techniques [22],

which iteratively minimise the provisioning cost while load-

16

balancing networked nodes, are used in the suggested solution. In order to reduce

the processing time of compute tasks in fiber-wireless enhanced vehicle edge

computing networks, authors in [23] suggest a task offloading architecture. Two

strategies based on software-defined networking and game theory are given to

achieve the load-balancing of the computation resources at the edge servers. For

each vehicle to successfully complete its computation task, these schemes, namely

a nearest offloading algorithm and a predictive offloading algorithm, optimise the

offloading decisions for local execution, offloading to a Multi-access Edge

Computing (MEC) server connected to roadside units, and offloading to a remote

cloud server. In the table 1, the authors have made a drawn a comparison to

distinguish existing work in different categories including QoS, Load Balancing,

Techniques employed and whether the Distributed Network as used or not.

The emergence of the Internet of Things (IoT) and the ubiquitous adoption of

smart devices have transformed virtually every industry, making it imperative to

provide advanced services that are scalable, reliable, and high-performing. The

integration of IoT and Cloud Computing (CC) has given rise to cloud IoT, a new

paradigm that aggregates, stores, and processes IoT-generated data. While cloud

IoT brings immense opportunities, it is also constrained by bandwidth, latency,

and connectivity issues. This has led to the development of Edge and Fog

Computing (FC), where computing and storage resources are located at the edges,

closer to the source of data. The hierarchical and collaborative edge-fog-cloud

architecture brings significant benefits, as it enables the distribution of

computation and intelligence, including AI, ML, and big data analytics, to achieve

optimal solutions while satisfying constraints such as the delay-energy trade-off.

Despite the advantages of edge-fog-cloud computing, its implementation poses

several challenges, including design, deployment, and evaluation. To provide a

comprehensive understanding of this paradigm, this paper presents an in-depth

tutorial and discusses the main requirements, state-of-the-art reference

architectures, building blocks, components, protocols, applications, and other

similar computing paradigms. The paper also presents a holistic reference

17

architecture for edge-fog-cloud IoT, discussing the major corresponding design

and deployment considerations, including service models, infrastructure design,

provisioning, resource allocation, offloading, service migration, performance

evaluation, and security concerns.

In addition to these considerations, the paper also explores the role of

privacy-preserving, distributed, and collaborative analytics, as well as the

interaction between edge, fog, and cloud computing. Finally, the paper reviews

the main challenges in the field of edge-fog-cloud computing that need to be

tackled to realize the full potential of IoT.

Several studies have investigated the integration of IoT and CC, resulting in the

development of cloud IoT. However, cloud IoT faces challenges such as latency,

connectivity, and bandwidth. To overcome these challenges, edge and fog

computing have emerged, offering distributed computing and storage resources

closer to the data source. This hierarchical architecture enables the distribution of

computation and intelligence, leading to optimal solutions while satisfying

constraints such as the delay-energy trade-off.

Despite the benefits of edge-fog-cloud computing, several challenges remain,

including design, deployment, and evaluation. This paper provides a

comprehensive insight into the paradigm by presenting a tutorial and discussing

various aspects, including reference architectures, building blocks, components,

and protocols. Additionally, it explores the role of privacy-preserving, distributed,

and collaborative analytics, as well as the interaction between edge, fog, and

cloud computing. Finally, the paper reviews the main challenges in the field of

edge-fog-cloud computing that need to be addressed to fully realize the potential

of IoT.

In conclusion, this paper [24] presents a thorough literature review of

edge-fog-cloud computing, highlighting the benefits and challenges of this

paradigm. It offers a comprehensive understanding of the underlying technologies

and presents a holistic reference architecture for edge-fog-cloud IoT. By

discussing the major design and deployment considerations and exploring the role

of privacy-preserving, distributed, and collaborative analytics, this paper provides

opportunities for more holistic studies and accelerates knowledge acquisition in

the field.

18

The paper identifies the dynamic service placement problem, which addresses the

adaptive configuration of application services at edge servers to facilitate

end-users and those devices that need to offload computation tasks. The paper

presents a systematic literature review of existing dynamic service placement

methods for MEC environments from networking, middleware, applications, and

evaluation perspectives. The review reveals research gaps in the big picture and

identifies eight research directions that researchers follow.

With the advent of cloud-based applications such as mixed reality, online gaming,

and healthcare, there is a need for efficient infrastructure management to provide a

cloud-like environment for end-users. MEC extends the cloud computing

paradigm and leverages servers near end-users at the network edge to provide a

cloud-like environment, but the optimum placement of services on edge servers

plays a crucial role in the performance of such service-based applications.

The review [25] then investigates dynamic service placement methods from a

middleware viewpoint, which includes different service packaging technologies

and their trade-offs. The review categorizes the research objectives into six main

classes, proposing a taxonomy of design objectives for the dynamic service

placement problem. The paper also introduces the applications that can take

advantage of dynamic service placement and investigates the evaluation

environments used to validate the solutions, including simulators and testbeds.

Finally, the paper compiles a list of open issues and challenges categorized by

various viewpoints. Overall, this literature review provides a comprehensive

insight into the dynamic service placement problem in MEC environments and

identifies future research directions.

QoS is the primary concern in dynamic service placement methods from an

application viewpoint, including QoS levels and factors. Application QoS can

typically be categorised into three levels . The first level is guaranteed services

(hard QoS) that have strict hard real-time QoS guarantees. This level is suitable

for safety-critical applications such as remote surgery. The second level is soft

QoS that does not require hard real-time guarantees but needs to reconfigure

19

and replace failed services. Finally, the last level is the best effort, where there are

no guarantees when a service fails. According to the surveyed papers, time-related

QoS factors receive much attention compared to others. Some of these factors,

such as application response time and user-perceived latency, are applied to both

soft QoS and hard QoS. Other factors such as the worst application completion

time and the number of applications in outage focus on hard QoS. The next group

of QoS factors concentrates on throughput and resource utilisation, namely

processing, network, and energy resources. It shows how effectively the edge

nodes are being used and that the load is being spread evenly across them, and no

one edge node is overloaded. Modern applications, such as augmented reality and

autonomous vehicles, have massive network throughput. Energy efficiency is a

concern to both users and edge infrastructure providers. Security is another QoS

factor that is addressed in a few work. With the new legislation, such as GDPR,

privacy concerns are becoming as essential as other security factors when

developing a service placement method. MEC enables the processing of exabytes

of data near where it is required and generated. Such proximity benefits

applications from different domains as they can address challenges regarding data

volume, interoperability, and latency. In the following, we review these

application domains that can benefit from dynamic service placement mechanisms

to address these challenges effectively and efficiently use the available resources

in MEC architectures.

The agent-based approach is a real-time strategy that involves assigning tasks to

servers based on their current load, as determined by their respective agents.

[45] proposed an agent-based automated service composition (A2SC)

technique for resource provisioning in cloud computing, with a focus on reducing

virtual machine costs and ensuring equal resource distribution across four data

centres with different platforms. They employed Java to obtain experimental

results and aimed to provide efficient service allocation in the data centres.

[26] proposed a multi-agent-based offloading technique for mobile fog

computing, which uses reinforcement learning to minimize service delivery

latency to mobile users. The mobile codes are deployed on geographically

distributed mobile fogs, with agents serving as entities that have prior

In [1,2, 3, 4, 5, 12, 13,43,44], the authors note that Both QoS and load balancing

are not considered except in one case of [44], Meanwhile the technique and

simulations are very diverse.

20

knowledge of the environment and learn from it. The goal is to reduce execution

time and improve mobile user access to services, with simulation results obtained

using OmNet++.

[27] developed an agent-based task assignment approach for load balancing in

cloud computing, incorporating principles of fair competition and dynamic

adjustment for task allocation to improve resource allocation and utilization. They

used CloudSim to obtain simulation results, which showed an increase in

processing time with this technique.

Time aware system is based on containers, and it helps to reduce the service

access time from sender to receiver by equally distributing the load. Javaid et al.

[33] proposed a cuckoo search load balancing algorithm, which uses a

combination of Levy walk distribution and flower pollination to optimize the

response time and processing time of fog and cloud environments. Cost is also

considered, and efforts are made to reduce the cost of data transfer, microgrids,

VMs, and the total cost. Khattak et al. [34] proposed a fog-cloud server-based

architecture to achieve proper utilization of all resources in E-healthcare. They

aimed to distribute equal load among all servers by shifting the load from

overloaded servers to the ones having less load. Parameters like latency, load

balancing, QoS, and bandwidth were considered, and simulation results were

obtained using iFogSim.

In 2020, Talaat et al. [35] proposed a resource allocation-based load balancing

approach that uses reinforcement learning to handle incoming requests by

measuring server loads. The workload is distributed among all available resources

for their appropriate utilization, and a three-layer fog-cloud-based architecture is

proposed for health care. Kaur et al. [36] proposed a load balancing approach

based on the equal distribution of workload in a three-tier architecture of

fog-cloud to reduce energy consumption, cost, and processing time in the

fog-cloud environment. The proposed approaches are implemented and compared

with existing round-robin and throttled algorithms using a cloud analyst

simulation tool. Bhatia et al. [37] proposed a quantumized approach to task

scheduling in the fog environment, which distributes the workload among all fog

nodes to improve system performance and reduce execution delay. iFogSim is

used to show simulation results.

21

The review of literature on dynamic service placement methods shows that only a

few of these methods adopt specific service packaging techniques. Moreover, only

a small fraction of these methods consider the costs associated with transferring

service instances, such as the time required to download instances, the necessary

bandwidth, and launch time. This lack of attention to these critical factors raises

concerns about the practicality of these methods. The survey also indicates that

most methods assume heterogeneity in both edge servers and services, but they do

not give enough attention to privacy and security issues and service

inter-operation. These research directions are crucial, especially in light of the

increasing use of micro-service architecture and growing concerns over GDPR.

The analysis of design objectives indicates that the most popular objective is

improving service-level QoS, with most researchers proposing additional

objectives alongside QoS improvement. However, it is also essential to investigate

the method's overheads on various resources, such as processing, bandwidth, and

energy and minimize them as secondary objectives. From a resource management

perspective, the processing resource is the most critical, while energy and memory

are the least focused. With the growing trend towards reducing the carbon

footprint by cloud infrastructure and edge servers, it is vital to investigate the

energy efficiency of dynamic service placement methods.

22

Chapter-3

SYSTEM DESIGN & DEVELOPMENT

In this section, we discuss the flow of associated products and services regarding

and regardless of the inflow of asynchronous data being fetched for each battery

swap. The model is to record whenever a customer comes, gives back the asset

rented once it gets exhausted and takes away new asset till its subscribe date is not

expired.

Figure 4. User interaction with IoT device flow

Figure 4 demonstrates the data collection by the station IoT device. The IoT

devices send data to the integrated ByteBeam server once- swap case 1. When the

user gives back the discharged asset, and once- swap case2. When the user takes a

recharged asset. This data stream is divided into chunks of data and is received in

packets.

These packets have unique can_id per swap, which includes various information

like kmsTravelled, assetReturnedId, assetTakenId, stationId, State of charge of

incoming asset, state of charge of given battery. A swap is between a station and a

user, both of which are mentioned above as swap case 1 and swap case 2.

IoT (Internet of Things) devices send data to a server in a variety of ways,

depending on the device and the application. However, the most common methods

for sending data from IoT devices to a server are:

● MQTT (Message Queuing Telemetry Transport): MQTT is a lightweight

messaging protocol that is commonly used for IoT applications. It uses a

publish-subscribe model, where devices publish data to a central server or

broker, and other devices or applications can subscribe to receive the data.

23

● HTTP (Hypertext Transfer Protocol): HTTP is the standard protocol used

for communication on the web, and it is commonly used for IoT

applications as well. Devices can send data to a server using HTTP

requests, such as POST or PUT requests, and the server can respond with

status codes or other data.

● CoAP (Constrained Application Protocol): CoAP is a lightweight protocol

designed for use in resource-constrained environments, such as IoT

devices. It uses a request-response model, similar to HTTP, and supports

data transfer over UDP (User Datagram Protocol) or DTLS (Datagram

Transport Layer Security).

● WebSocket: WebSocket is a protocol that allows for real-time, two-way

communication between a client and a server. It can be used for IoT

applications to send data from devices to a server, and also to receive

commands or instructions from the server back to the device.

Overall, the method used for sending data from IoT devices to a server depends

on various factors, such as the device capabilities, network constraints, and the

application requirements. However, the protocols mentioned above are some of

the most commonly used methods for IoT data transfer.

To make sure that the data sent is complete, we post multiple requests to the

server until we receive a go ahead that full data has been processed by the server

and posted to the server.

The data is sent over the network through an Acknowledgement- handshake

mechanism which can be expressed as:

Wi + Φ < t’ ,where Wi∈ R
𝑖=1

𝑛−1

∑

Wi is waiting time per ri request.

24

Table 2: Symbols Used in the Study.

Symbols used Meaning

W Waiting time for the data between sending
data & receiving acknowledgement

t’ Timeout for requesting server and expecting
acknowledgement

Φ Minimal time taken for a request

rn Number of requests to server from IoT

R Real numbers

3.1 Application Scenario

In this section step wise implementation and comparative study procedure is

explained:

a) Ensure recording sufficient data from station IoT to account complete data

for one swap.

b) Querying the Bytebeam server to get raw data

c) Filterdata copies to get one composite data chunk to be processed.

d) Implement the proposed filtering functionality after converting data from

bytes to objects.

e) Isolate data and post it in the NoSQL database.

f) Keep track of outcomes for analysis (for various business purposes and

generating relative KPIs).

3.2 Dataset

The current scenario is operating on 20, 000-30,000 swaps per month. The data

being considered is:

• This communication consists of at least 4 copies for each swap.

25

• Data fetched from external server at a rate of 5 minutes (time

reserved to get polling rate of 10 swaps/cycle)

• Time difference of 80ms between each can of data, (where data is

packaged 5 bytes per can_id)

A swap consists of 6 can_ids each of which is assigned a can, which means a

packet of data. This “can” consists of 5 bytes each. Once we query data from the

OLAP based database, we get IoT Id with which we get the Station Id. Once that

is identified, we proceed to parse the array of objects received after the SQL based

query ran for this particular 5 minute window.

Clickhouse SDK for Node.js environment lets us get the data from the server

directly by querying the attributes all of which can be taken account of from the

online dashboard.

ClickHouse can also manage intricate data structures like nested arrays and nested

dictionaries and supports a wide range of data types, including JSON, CSV, and

Apache Avro. Additionally, it has a scalable architecture that enables it to manage

massive amounts of data and distribute that data across a number of nodes and

clusters for high availability and fault tolerance.

For organisations dealing with massive volumes of data that must be processed

and analysed in real-time, ClickHouse is an effective and potent database

management solution.

But for us to get an aggregate swap. It needs to be validated and put into account

with all the values against various metrics. For this we have to fetch data.

Moreover, polling our own data from a third party server is important to 1. Take

account of data and keep a copy 2. Unreliability of their data server.

For our own sake, let’s call the IoT received data on the external server

‘swapped’, and the aggregate swap which we push to our NoSQL database,

‘swap’.

26

Figure 5: Data acknowledgement mechanism

The mechanism described works as a gatekeeper to make sure that all the can_ids

for a requisite swap to get completed. Considering all the can_ids are present in

the end, the acknowledgement mechanism sends consecutive asynchronous

requests to the server to send data until the server accepts it as one bundle with all

the packets present.

Once the acknowledgement is received back by the IoT device it stops sending the

data. In such a case, a corner case may arise where the data is not being sent

properly ever, causing the IoT request handler to go into an infinite loop for that

particular swapped. To overcome this a certain timeout is introduced. The request

has a time to live, which once exhausted causes the swap to be sent in such a

format that it gets sent to the wrong data database of our AWS Cloud.

Only thing to be made sure is that can_id 3x5 gets sent as we poll the data from

external servers by getting hold of this can_id and then getting data around it. This

data is pulled at every trigger of the function. So, the external server acts like an

intermediate data storage unit isolated only for the IoT devices’ data received on a

daily basis, both asynchronous data (swaps) or synchronous data.

This created multiple cases of the data that is being received on the endpoint after

querying and filtering.

27

3.3 System Description

Here we carefully considered that the trigger to the serverless functionality must

be such that the number of incoming swapped are optimal. They must be parsed,

filtered, converted and posted to the database before the next batch is processed.

This impacts on multiple cases like 1. If the trigger’s swap is not posted, incoming

swapped cannot be checked if duplicate, this can cause overwriting of data. We

eliminate the case of multiple copies by internally assigning a unique_id to each

swap and using it as the primary key in our database.

This primary key is:

no._of_days_passed_since_1jan1970 + unique_id

Avoidance of overloaded or under loaded function results in better outcomes and

utilization of each lambda execution environment completely.

We are required to establish the connection between our AWS Client and

Bytebeam server for which clickhouse comes handy.

const clickhouse = new ClickHouse({

url: 'http://localhost',

port: 8123,

debug: false,

basicAuth: null,

isUseGzip: false,

trimQuery: false,

usePost: false,

format: "json", // "json" || "csv" || "tsv"

raw: false,

config: {

session_id : 'session_id if neeed',

session_timeout : 60,

output_format_json_quote_64bit_integers : 0,

enable_http_compression : 0,

database : 'my_database_name',

},

});

28

Figure 6: Aws Serverless function flow

This serverless function architecture presents monolithic function calling and

overall environment interaction that is setup to handle incoming data. In a

monolithic architecture, the application is built as a single, cohesive unit, where

all the components of the application are tightly coupled and run in the same

process or thread. Monolithic function calling refers to the process of calling a

function or method within the same monolithic application.

In a monolithic architecture, functions and methods within the application can be

called directly, without any need for external APIs or network communication.

This is because all the components of the application are tightly integrated and

share the same memory space and resources.

29

Monolithic function calling can be a simple and efficient way to develop and

deploy applications, especially for smaller projects with limited complexity.

However, as applications become larger and more complex, monolithic

architectures can become difficult to maintain and scale, as any changes or

updates to one component of the application can impact the entire system.

To address these issues, many organizations are moving towards microservices

architectures, where applications are broken down into smaller, independent

services that can communicate with each other over APIs. This allows for greater

flexibility, scalability, and resilience, as each service can be developed, tested, and

deployed independently, without affecting the rest of the system.

WebSockets are a communication protocol that allows for real-time, bi-directional

communication between a client (such as a web browser) and a server. WebSocket

connections are initiated with a handshake, and once established, allow for

continuous, low-latency data transfer between the client and server.

To establish a WebSocket connection to an external server, the client (such as a

web browser) sends an HTTP request to the server, requesting an upgrade to the

WebSocket protocol. The request includes a special header called "Upgrade" with

the value "websocket", as well as a "Connection" header with the value

"Upgrade".If the server supports WebSockets and the upgrade request is accepted,

the server responds with an HTTP response, also including an "Upgrade" header

with the value "websocket", as well as a "Connection" header with the value

"Upgrade". The response also includes a special "Sec-WebSocket-Accept" header,

which contains a hash of the "Sec-WebSocket-Key" header value from the client

request.

30

Once the handshake is complete, the connection is established, and data can be

sent between the client and server in real-time using the WebSocket protocol. Data

is sent in binary or text frames, which are similar to packets, and can be sent in

either direction at any time.

WebSocket connections are particularly useful for real-time applications, such as

chat applications, online gaming, and real-time data feeds, as they allow for

low-latency, bi-directional communication between the client and server. They can

also be used to reduce network overhead, as they allow for continuous, long-lived

connections, rather than multiple short-lived connections.

We handle the incoming data in the function as follows:

● Converting each object in array to a swap with complete information.

● Transforming the data into an object.

● Checking if any internal duplicate bytes

● Checking if the swap is already registered.

In an OLAP system, data is organized into a multidimensional structure, with

dimensions representing various attributes of the data, such as time, geography,

product, customer, and so on. Users can then slice and dice the data based on

different combinations of dimensions to create different views of the data, which

can be used for in-depth analysis and reporting.

OLAP systems are designed to provide fast, interactive access to large volumes of

data, allowing users to quickly explore and analyze data in real-time. They

typically support a wide range of analytical functions, including drill-down,

roll-up, pivot, and slice-and-dice, as well as various data visualization techniques,

such as charts, graphs, and pivot tables.

Overall, OLAP is a powerful tool for analyzing and reporting on large volumes of

data in real-time, providing users with a deeper understanding of their business

data and enabling better decision-making.

31

The 5-minute recording intervals are taken as periods and divided into small sets

for our own purposes.

3.4 Methodology

Lambda controls the asynchronous event queue for the function and makes an

effort to retry on failures. Lambda makes two additional attempts to execute the

function if it returns an error, with a one-minute delay between the first two

attempts and a two-minute delay between the second and third attempts. Both

faults provided by the function's code and runtime, such as timeouts, are

considered function errors.

Additional requests are throttled if the function doesn't have enough concurrency

to handle all of the events. Lambda returns the event to the queue and tries to run

the function again for up to 6 hours in the case of throttling problems (429) and

system issues (500-series). After the initial attempt, the retry interval increases

exponentially up to a maximum of 5 minutes.

New events could age out if the queue is very large before Lambda can transmit

them to your function. Lambda discards an event if it has expired or if all attempts

at processing it have failed. You can set up a function's error handling so that

fewer retries are made by Lambda or that unprocessed events are discarded more

rapidly.

Lambda can also be set up to transmit an invocation record to an additional

service. The following destinations are supported for asynchronous invocation via

Lambda. You should be aware that SNS FIFO topics and SQS FIFO queues are

not supported.A common SQS queue is Amazon SQS.

● A common SNS topic is Amazon SNS.

32

● A Lambda function from AWS.

● An event bus powered by Amazon EventBridge.

The invocation record includes information in JSON format about the request and

response.

One of the major benefits of the edge-cloud system is improved performance. By

processing data at the edge, organizations can reduce the amount of data that

needs to be sent to the cloud, thereby reducing the latency and bandwidth

requirements. This results in faster response times and improved overall system

performance.

Another advantage of the edge-cloud system is increased security. By processing

and storing data at the edge, organizations can reduce the risk of data breaches and

other security incidents. This is because the data is stored and processed locally,

rather than being sent to a centralized cloud, which is a more attractive target for

hackers.

Furthermore, the edge-cloud system is also beneficial for reducing energy

consumption. By processing data at the edge, organizations can reduce the amount

of data that needs to be sent to the cloud, which reduces the energy consumption

required for transmitting the data.

In conclusion, the edge-cloud system is a new computing paradigm that combines

the benefits of both edge computing and cloud computing. It enables

organizations to process and analyse data at the edge of their networks, closer to

where it is generated, and then store and analyse it in the cloud. This system

provides a number of advantages over traditional cloud computing systems,

including improved performance, reduced latency, increased security, and reduced

energy consumption. As the amount of data generated from connected devices

continues to grow, the edge-cloud system will become increasingly important for

organizations looking to improve their computing infrastructure.

33

As shown in Figure 6, we swapped data from various placed IOT devices in

multiple geographical locations. These requests sent by the client server are

primarily processed by the function at the periphery of the cloud environment.

These requests are taken as input parameters in the process of creating an

optimized swap for our database.

Standard rate and cron expressions are supported by AWS Lambda for frequencies

up to once per minute. Although rate expressions are easier to define, they lack

the cron triggers' support for fine-grained schedule control.

A cron expression is a string that specifies a set of times or intervals at which a

job or task should be executed. It is commonly used in scheduling software, such

as cron (a time-based job scheduler in Unix-like operating systems), to automate

recurring tasks.

A typical cron expression consists of six fields, separated by spaces, which define

the following values:

● Minutes (0-59)

● Hours (0-23)

● Day of the month (1-31)

● Month (1-12 or Jan-Dec)

● Day of the week (0-6 or Sun-Sat)

● Year (optional)

Each field can contain a single value, a comma-separated list of values, a range of

values (specified using a hyphen), or a wildcard character ("*") to indicate all

possible values. For example, the cron expression "0 0 1 * *" would execute a task

at midnight on the first day of every month, while the expression "0 12 * * 1-5"

would execute a task every weekday at noon.

Cron expressions can also include additional syntax, such as the forward-slash

character ("/"), which can be used to specify intervals. For example, the

expression "*/5 * * * *" would execute a task every 5 minutes.

34

Overall, cron expressions provide a flexible and powerful way to schedule

recurring tasks, allowing users to define a wide range of schedules based on

specific dates, times, and intervals.

The following syntax applies to rate expressions for EventBridge (CloudWatch

Events).

rate(Value Unit)

Where Value is a positive integer and Unit can be minute(s), hour(s), or day(s). A

rate expression starts when you create the scheduled event rule. For a singular

value the unit must be singular (for example, rate(1 day)), otherwise plural (for

example, rate(5 days)).

Table 3: Cron expressions available by AWS.

Frequency Expression

Every 5 minutes rate(5 minutes)

Every hour rate(1 hour)

Every seven days rate(7 days)

AWS EventBridge is a fully managed event bus service that makes it easy to build

event-driven applications at scale. You can use EventBridge to route events

between AWS services, third-party SaaS applications, and your own applications,

and also to trigger serverless functions such as AWS Lambda functions.

To integrate EventBridge with a Lambda function trigger, you can follow these

steps:

1. Create a new rule in EventBridge: Start by creating a new rule in EventBridge

that defines the event pattern that will trigger the Lambda function. This can be

done via the AWS Management Console, AWS CLI, or AWS SDKs.

35

2. Specify the Lambda function as the target: In the same rule, specify the Lambda

function as the target of the event. This can be done by specifying the Lambda

function's Amazon Resource Name (ARN) as the target of the rule.

3. Configure permissions: Ensure that the Lambda function has permission to be

triggered by the EventBridge rule. You can do this by configuring the function's

IAM role to include the necessary permissions for receiving events from

EventBridge.

4. Test the integration: Once the rule is created and permissions are configured,

you can test the integration by publishing an event that matches the pattern

defined in the rule. This can be done using the EventBridge console or API.

5. Monitor and troubleshoot: Finally, monitor and troubleshoot the integration by

viewing the CloudWatch Logs for the Lambda function and the EventBridge rule.

This can help you identify any issues or errors that may occur during the

integration process.

Overall, integrating EventBridge with a Lambda function trigger is a

straightforward process that can help you build event-driven applications with

ease.

3.5 Proposed Algorithm

In this section, we go through the visualized function flow, discuss corner cases of

the data processing that we have considered and the related constraints in our case

to eliminate any data anomaly in final database reserved for transformed form of

swapped, that is a swap.

AWS Lambda is a serverless compute service that allows you to run your code

without having to provision or manage servers. Lambda functions can be written

in a variety of programming languages, including Node.js.

36

AWS Lambda supports Node.js 16.x runtime environment, which means you can

write and run your Node.js 16.x code directly in Lambda. Once you are satisfied

with your function, deploy it by clicking the "Deploy" button in the Lambda

console. Your function is now ready to be triggered by various AWS services,

such as API Gateway or EventBridge.

Figure 7: Critical cases on data received.

37

Overall, setting up a Node.js 16.x environment in AWS Lambda is a simple

process that can be completed quickly and easily. It allows you to run your

Node.js 16.x code in a serverless environment without having to manage servers

or infrastructure.

The algorithm presented above in Figure 8, talks about various forms of event that

can be received by the function. This data is received after we update the start

time and end time for the SQL query being sent to the external server by fetching

Cloudwatch current time and setting it to start time for the next cycle.

Once that is set in an external table, we move on to setup a connection between

AWS lambda containers for this particular execution to the SQL server through

clickhouse SDK for Nodejs 16x and keeping the connection alive for a given

session.

Figure 8 outline cases for the specific data streams:

• Case A1: Outlines a new data- swapped which consists of

sequential can_ids and length 6. It comes together to contribute a threshold

amount of bytes.

• Case A2: The data is correct both ID wise and length wise but is a

duplicate of previously received swapped data, which will fall in the

category of discarded duplicate of previously polled execution swapped

data.

• Case B1: Erroneous data received with incomplete data Ids,

particularly doesn’t consists a specific can_id which is required to poll

result from the server using SQL query.This data cannot be processed and

is sent to wrong data table.

• Case B2: Erroneous data received length smaller than 6, which

indicates towards both missing Ids or duplicate Ids. This data cannot be

processed and is sent to wrong data table.

38

• Case B3: One trigger polls around 7-10 swapped packets, these

might have duplicates within them, which aligns with the fact that one

triggered function may get data of the same swapped twice in one polling

via SQL query.

Overall, this algorithm is designed to optimize the placement of data in the

internal database which can be further used in sheet via automated sheets script

to showcase data which can be fetched by an internal REST API with GET

method to display regular data.

Table 4: Features of given function schema.

Features

Filterswaps Sending 2-3 copies of data via IoT device,
in can_id format with each can_id holding 5
bytes

Checkinternalswaps Once a full set data is extracted from
multiple copies, checked for any internal
data anomaly

Checkexternalswaps This data set is unique for currently
received data sets and is then checked with
previously received swap data

Unique Id We create a unique Id which consists of
Number of days passed since Thursday,
January 1, 1970 12:00:00 AM +
uniqueIdReceived

39

Chapter-4

EXPERMENTS & RESULT ANALYSIS

Vertical scaling, also known as scaling up, refers to the process of increasing the

resources available to a single instance of a software application. This is usually

done by adding more processing power, memory, or storage capacity to a single

server or virtual machine.

4.1 Software Practices

1. Vertical Scaling: In software development, vertical scaling is often used

to improve the performance and scalability of an application, especially in

cases where the application is running on a single machine and is

experiencing performance bottlenecks due to limited resources. Vertical

scaling is achieved by upgrading the hardware components of the server or

virtual machine running the application. For example, adding more RAM

or upgrading to a faster processor can increase the amount of work the

application can handle in a given amount of time. While vertical scaling

can be an effective way to improve performance, it has some limitations.

Eventually, the hardware resources of the server or virtual machine will

reach their maximum limits, at which point vertical scaling is no longer a

viable solution. At that point, horizontal scaling, which involves adding

more instances of the application across multiple servers, may be

necessary. Overall, vertical scaling can be an important tool in improving

the performance and scalability of a software application, especially in

cases where the application is running on a single machine and is

experiencing resource limitations. However, it's important to recognize its

limitations and consider other scaling options as needed.

40

Figure 8: Vertical scaling in AWS microVM container

2. Polling: In network requests, polling refers to a technique where a client

repeatedly sends requests to a server to check for updates or changes in

data. The client sends a request at a fixed interval, and the server responds

with the current data or an indication that no changes have occurred since

the last request. Polling can be done using various HTTP methods such as

GET, POST, or AJAX. The frequency of polling can be controlled by

adjusting the interval between requests. Shorter intervals can provide more

real-time updates but can also increase the load on the server and consume

more bandwidth. Longer intervals can reduce the load on the server but

may lead to delayed updates. There are two main types of polling: long

polling and short polling. With short polling, the client sends a request at a

fixed interval and receives an immediate response from the server, even if

there are no updates. With long polling, the client sends a request to the

server and waits for the server to respond with new data or a timeout

message if no changes occur within a certain time frame. Polling can be an

effective technique for keeping data up-to-date and providing real-time

updates to users. However, it can also consume significant resources on

the client and server sides, especially if the polling interval is short or if

41

many clients are polling the same server simultaneously. Other techniques

such as websockets and server-sent events can provide more efficient and

scalable solutions for real-time updates.

Figure 9: Polling to fulfill request from client

In figure 9, the client sends a polling request to the server at fixed intervals

(steps 1, 3, and 5). The server responds with the current data (steps 2, 6,

and 8) or an indication that no changes have occurred since the last request

(step 4).

The polling interval can be adjusted depending on the desired frequency of

updates. Shorter intervals provide more real-time updates but consume

more resources on the client and server sides, while longer intervals reduce

the load but may result in delayed updates.

Polling can be an effective technique for keeping data up-to-date and

providing real-time updates to users, but it can also consume significant

resources and may not be suitable for all use cases. Other techniques such

as websockets and server-sent events may be more efficient and scalable

solutions for real-time updates.

42

Table 5. Mean Time and Memory utilization

timestamp message

1682061118212

INIT_START Runtime Version: nodejs:16.v12 Runtime

Version

1682061118819

START RequestId:

892e431f-71a3-4446-a3d5-e48789baa05a Version:

$LATEST

1682061118868

INFO start time and end time 2023-04-21 07:06:58

2023-04-21 07:11:58

1682061119035 INFO Can data executed 1682061119034

1682061119129 INFO filter Data function executed 1682061119129

1682061119182 INFO at convertdata-uniqueid-- 168206085701160

1682061119198 INFO at convertdata-uniqueid-- 168206093900323

1682061119212 INFO at convertdata-uniqueid-- 168206097501673

1682061119212 INFO Convert Data Executed 1682061119212

1682061119262 INFO Data checked & posted 1682061119262

1682061119262

INFO Once Can data over 1682061119262

1682061118867

1682061119268 END

1682061119268

REPORT Duration: 449.00 ms Billed Duration: 450

ms Memory Size: 10240 MB Max Memory Used: 99

MB Init Duration: 603.83 ms

In AWS CloudWatch Logs, the time taken and billed duration for a Lambda

function invocation are two different metrics that can provide valuable insights

into the performance and cost of your function.

Time taken: This metric represents the total amount of time that a function took to

complete its execution, including any time spent waiting for external resources

such as network I/O, database queries, or API calls. The time taken metric is

useful for identifying performance bottlenecks and optimizing the overall

execution time of your function.

43

Billed duration: This metric represents the amount of time for which your function

was billed by AWS. It is calculated by rounding up the time taken to the nearest

100ms and billing you for that amount of time. For example, if your function took

550ms to execute, you would be billed for 600ms of execution time. The billed

duration metric is important for tracking your Lambda usage and optimizing your

function's cost. Both of these metrics are available in the CloudWatch Logs for

your Lambda function, and can be viewed in the function's monitoring tab or

queried using CloudWatch Metrics. By analyzing these metrics, you can gain

insights into the performance and cost of your Lambda function, and optimize it

accordingly.

Graph 1. Mean value of duplicates polled

Graph 2. Mean value of duplicates polled in new algorithm

44

Here in Table 5, we account for the execution environment of lambda, which

exists for approx 15 minutes, hence reducing the time for cold start and container

build and deployment.

3ϖ > Γ

𝑊ℎ𝑒𝑟𝑒 ϖ 𝑖𝑠 𝑊𝑖𝑛𝑑𝑜𝑤 𝑓𝑜𝑟 𝑝𝑜𝑙𝑙𝑖𝑛𝑔 𝑑𝑎𝑡𝑎: 5𝑚𝑖𝑛
is the time for which the execution environment exists.Γ

Cold start in AWS Lambda refers to the initial time it takes to spin up a new

execution environment for a function that has not been recently executed. When a

Lambda function is triggered, AWS creates a new container or "execution

environment" to run the code in a serverless environment.

If the function has not been called in a while, or if the function has never been

called before, then a new execution environment needs to be created, which can

result in a delay before the function code can begin executing. This delay is

known as a "cold start".

During a cold start, AWS initializes the execution environment, including loading

the function code and any dependencies, setting up connections to databases or

other resources, and performing any necessary setup tasks. The amount of time it

takes to complete these tasks can vary depending on the size and complexity of

the function code, the number of dependencies, and the resources required by the

function.

Cold starts can impact the performance and responsiveness of serverless

applications, particularly for functions that need to run quickly or handle a high

volume of requests. To minimize the impact of cold starts, developers can use

techniques such as optimizing the function code size, reducing the number of

dependencies, and keeping execution environments warm by periodically

invoking the function to ensure that an execution environment is already available

when a request arrives.

45

For INIT_DURATION, we consider the fact that time taken for a cold start

includes:

1. Creation of MicroVM and installing packages for creation of node.js

environment in a lambda

2. Containerization of the built environment and its deployment

The TTL is around 15 minutes which includes subsequent invocation and billed

duration (DURATION) + INIT_DURATION.

In Amazon DynamoDB, a Global Secondary Index (GSI) is an index that you can

create in a DynamoDB table to support query operations that are not possible or

efficient using the table's primary key.

A Global Secondary Index with a "projection type" of "INCLUDE" can be used to

create a Global Secondary Index with "Global Secondary Index write sharding",

also known as "Global Secondary Index with a global second index". This index

allows you to achieve higher write throughput by allowing you to specify

additional attributes to be included in the index, without actually including them

in the index itself. This way, the index can still be used for query operations even

though it does not contain all the attributes needed for those queries.

When you create a Global Secondary Index with write sharding, DynamoDB

creates multiple index partitions to distribute write traffic across multiple hosts.

Each index partition has its own copy of the GSI data, and DynamoDB

automatically distributes write requests across the partitions. This can help you

achieve higher write throughput and reduce write latency for queries that use the

GSI.

Note that write sharding is only available for Global Secondary Indexes with a

projection type of "INCLUDE", and there is a limit on the maximum number of

index partitions that can be created for a single GSI.

46

However, many other database management systems make use of comparable

methods. Paying close attention to the little things is what really sets ClickHouse

apart. The majority of programming languages have implementations for the

majority of widely used algorithms and data structures, although these are

typically too broad to be useful. Instead of just implementing things at random,

every task may be thought of as a landscape with different features. For instance,

if you require a hash table, you should think about the following important

factors:

Which hashing algorithm should I use?

Open addressing or chaining for the collision resolution algorithm?

Memory organisation: separate arrays for keys and values, or a single array? Will

small or large values be stored?

Fill factor: When should I resize, and how? How may values be resized and

moved around?

If values are eliminated, which algorithm will perform better?

Will we require fast bitmap probing, inline string key placement, support for

immovable values, prefetch, and batching?

Hash tables are essential for implementing GROUP BY, and ClickHouse

automatically selects one of more than 30 variants for each individual query.

The same is true with algorithms; for instance, when sorting, you might think

about:

1. An array of numbers, tuples, strings, or structures—which will be sorted?

2. Is all data fully accessible in RAM?

3. Are stable sorts necessary?

4. Do we require a thorough sort? Could the n-th element or a partial sort be

sufficient?

5. How should comparisons be used?

6. Are we organising information that has already been organised in part?

When compared to their generic counterparts, algorithms that depend on the

characteristics of the data they are working with frequently perform better. If it

isn't actually known beforehand, the system can test different implementations

and pick the one that functions best at the moment.

47

Check out to discover how ClickHouse uses LZ4 decompression as an example.

Not to mention, the ClickHouse team constantly scans the Internet for anyone

claiming to have created the greatest implementation, algorithm, or data structure

to do a task and tests it. The majority of those statements seem to be untrue, but

occasionally you may come upon a real gem.

4.2 Utilization

4.2.1 Utilization (in terms of global cost)

How evenly the burden is dispersed across the network is examined in this

analyzed element. Load-balancing is not a function of the cloud method by

design; hence it is not included in this assessment.

Graph 3. Comparative analysis of two methodologies.

4.2.2 Data modeling and further utilization

Google Apps Script is a cloud-based scripting language that allows developers to

extend and automate the functionality of Google Sheets, Google Docs, and other

G Suite applications. With Google Apps Script, you can create custom functions,

automate tasks, build add-ons, and integrate with other Google services.

48

In the context of Google Sheets, Apps Script allows you to create custom

functions that can be used in your sheet, build custom menus and dialogs,

automate data entry and formatting, and integrate with other Google services such

as Google Drive, Google Calendar, and Google Analytics.

Some of the key features of Google Apps Script for Google Sheets include:

1. A powerful and easy-to-learn scripting language based on JavaScript

2. The ability to write custom functions that can be used in your sheet

3. APIs for interacting with various Google services

4. The ability to create custom menus and dialogs to enhance user interaction

5. The ability to automate repetitive tasks such as data entry and formatting

6. The ability to create custom add-ons that can be shared and used by others

7. Easy deployment and sharing of scripts with others

Overall, Google Apps Script is a powerful tool for enhancing the functionality of

Google Sheets and streamlining your workflows. Whether you're looking to

automate repetitive tasks, create custom functions, or build add-ons, Apps Script

provides a flexible and easy-to-use platform for achieving your goals.

function insertData() {

var sheetName = "Sheet1"; // Change the sheet name to your sheet name

var data = ["John", "Doe", "john.doe@example.com"]; // Change the data as per

your requirement

var ss = SpreadsheetApp.getActiveSpreadsheet();

var sheet = ss.getSheetByName(sheetName);

sheet.appendRow(data);

}

In this code, we define a function called insertData(). The function sets the sheet

name to Sheet1 (you can change it to your sheet name) and sets the data that we

want to insert into the sheet.

49

Next, the function gets the active spreadsheet using the

SpreadsheetApp.getActiveSpreadsheet() method and gets the sheet object using

the ss.getSheetByName(sheetName) method. Finally, we use the

sheet.appendRow(data) method to insert the data into the sheet.

This method appends the data to the last row of the sheet. You can call this

function from the Google Apps Script editor or by creating a trigger to run the

function on a schedule or on a specific event.

function getDataFromAPI() {

var url = "https://jsonplaceholder.typicode.com/todos/1"; // Replace with your

API endpoint URL

var response = UrlFetchApp.fetch(url);

var json = response.getContentText();

var data = JSON.parse(json);

var sheet = SpreadsheetApp.getActiveSpreadsheet().getActiveSheet();

sheet.getRange(1, 1).setValue(data.userId);

sheet.getRange(1, 2).setValue(data.id);

sheet.getRange(1, 3).setValue(data.name);

sheet.getRange(1, 4).setValue(data.rid);

}

In this code, we define a function called getDataFromAPI(). The function sets the

API endpoint URL to https://jsonplaceholder.typicode.com/todos/1 (you can

replace it with your API endpoint URL).

Next, the function uses the UrlFetchApp.fetch(url) method to retrieve the data

from the API endpoint. This method returns an HTTPResponse object that

contains the response data. We then use the getContentText() method to extract

the JSON data from the response, and the JSON.parse(json) method to parse the

JSON data into a JavaScript object.

Finally, we get the active sheet of the Google Sheet using the

SpreadsheetApp.getActiveSpreadsheet().getActiveSheet() method and use the

setValue() method of the Range object to set the values of the cells A1 to D1 with

the values from the API response.

50

You can modify this code to suit your requirements, such as changing the API

endpoint URL, parsing the JSON data differently, or setting the values in different

cells. You can also use this code as a starting point to build more complex scripts

that retrieve and manipulate data from API endpoints

In this example, we're sending a JSON payload to the ByteBeam server using the

fetch function. We specify the URL of the API endpoint, the payload data, and the

HTTP method (in this case, POST). We also set the Content-Type header to

application/json to indicate that we're sending JSON data in the request body.

Once we've constructed the request options, we use the fetch function to send the

request to the ByteBeam server. We check the response status to see if the request

was successful or not, and log an error message if it wasn't.

// Load the AWS SDK

const AWS = require('aws-sdk');

// Create an instance of the DynamoDB client

const dynamodb = new AWS.DynamoDB({region: 'us-east-1'});

// Define the JSON payload to send to the DynamoDB table

const itemData = {

id: {S: '123'},

name: {S: 'John Doe'},

age: {N: '30'}

};

const params = {

TableName: 'my-table-name',

Item: itemData

};

// Call the putItem function to send the JSON payload to the DynamoDB table

dynamodb.putItem(params, function(err, data) {

console.log(data)

}

51

Table 6. Solution details

Solution Details

Solution details
Creating a unique_id for each swap and adjusting it
in 15 bytes of incoming data such that it can be
checked if 1.duplicate or 2. Incomplete data

Testing Testing with dummy batteries & Internal testing 1

Measuring success
98.67% swaps caught completely, transformed from
bytes in array to usable data.

Internal testing, also known as "in-house testing" or "alpha testing", is a type of

software testing that is conducted by the development team within the

organization or company that is developing the software. The purpose of internal

testing is to identify and fix issues or bugs in the software before it is released to

external users or customers.

Internal testing typically involves a series of tests designed to evaluate the

functionality, usability, and performance of the software. This may include unit

testing, integration testing, system testing, and acceptance testing. The tests may

be automated or manual, and may involve various techniques such as black-box

testing, white-box testing, and exploratory testing.

Internal testing is an important part of the software development lifecycle, as it

allows developers to catch and fix issues early in the development process, before

they become more difficult and expensive to address. It also helps ensure that the

software meets the requirements and expectations of the stakeholders, including

users, customers, and business owners.

Once internal testing is complete and the software has been deemed stable and

functional, it may then undergo external testing or "beta testing", where it is tested

by external users or customers to further identify and address any issues or bugs.

52

Graph 4: Incoming data points to be processed in an hour

This data primarily helps in determining churn rate and utilization of product by

the customer. In data analysis and business metrics, churn rate refers to the rate at

which customers or users stop doing business with a company over a given period

of time. It is a measure of customer attrition or loss.

Churn rate can be calculated in different ways depending on the business and the

data available. One common method is to calculate the percentage of customers

who have stopped using a product or service during a given time period, such as a

month or a year. For example, if a company had 100 customers at the beginning of

the month and lost 10 customers by the end of the month, the churn rate would be

10%.

Churn rate is an important metric for businesses, particularly those that rely on

recurring revenue or subscription-based models. A high churn rate can indicate

that there are issues with the product or service, or that customers are dissatisfied

with their experience. It can also be a warning sign that the company is not

retaining customers as effectively as it could be, which can impact revenue and

growth.

53

Businesses can use churn rate data to identify patterns and trends, and to develop

strategies for improving customer retention.

This may include addressing specific issues that are causing customers to leave,

improving customer support or product features, or implementing loyalty

programs or other incentives to encourage customers to stay.

Table 7. Time Taken for one trigger

Time taken

INIT 745 ms

Checkinternalswaps 213 ms

Checkexternalswaps 312 ms

convertData 579 ms

Performance index in software refers to a metric or set of metrics that are used to

measure and evaluate the performance of software applications. Performance

index is important because it can help identify performance issues, bottlenecks, or

areas of inefficiency in the software, and can guide developers in making

improvements.

There are many different metrics that can be used to calculate performance index,

depending on the type of application and the specific goals of the evaluation.

Some common metrics used in performance index include:

Response time: The amount of time it takes for the software to respond to a user

request or action.

Throughput: The rate at which the software can process a given number of

requests or transactions.

54

Graph 5. Worst and Best case scenario for this implementation

CPU usage: The amount of processing power and resources used by the software.

Memory usage: The amount of memory or RAM used by the software.

Network latency: The amount of time it takes for data to travel between different

systems or devices.

Error rate: The frequency and severity of errors or bugs in the software.

Performance index can be measured through various techniques, such as load

testing, stress testing, or profiling. By monitoring and analyzing these metrics,

developers can gain insights into the performance of the software and identify

areas where improvements can be made.

This helps us reduce the time of environment creation, MicroVM production to

environment setup by container, significantly by 32.883% approximately. To filter

and collect data as quickly as possible, ClickHouse was initially created as a

prototype. A basic GROUP BY query does what is required to construct a typical

analytical report. The ClickHouse team made a number of important choices that,

when combined, allowed for the completion of this task:

Column-oriented storage: Although a report may only employ a handful of the

hundreds or thousands of columns that make up source data, this is a common

situation.

55

To save money on costly disc read operations, the system must refrain from

reading irrelevant columns.

Indexes: Resident memory Only the necessary columns and necessary row ranges

of those columns may be read from ClickHouse data structures.

In real data, a column frequently contains the same, or not that many different,

values for neighboring rows, hence grouping various values of the same column

together typically results in superior compression ratios (compared to

row-oriented systems). ClickHouse offers specialised codecs that can further

compress data in addition to standard compression.

Execution of queries using vectorization: ClickHouse not only stores but also

processes data in columns. This improves CPU cache utilisation and enables the

use of SIMD CPU instructions.

Scalability: ClickHouse can employ every CPU core and disc that is available to

process even a single query. not just on a single server but also across the entire

cluster's CPUs and discs.

The presented results of the overall experiments earlier in the report, which can be

summed up as a complete overview and comparison of data handling from IoT

devices where we have

i) Reduced execution time for data functionality and database posting.

ii) Reduce data traffic by efficiently deploying the solution on architecture based

computing environment for IoT requests to execution environemnt. We talk about

avoiding bottleneck situations and have laid out extensive test grounds to support

the same.

The comparison further validates these results better on the grounds mentioned

and shows a significant improvement in the given subset. The result summarized

as

i. brings forth the efficiency which aligns with overall productivity when it

comes to application of the solution.

56

ii. defines the working and output of such implementation in real-life

features and its significance.

Provision of resources and tackling various technological hurdles for optimal fault

tolerance is ultimately very crucial and continues to be in the scenario of broad

spectrum and variety of IoT devices available.

The overall analysis can be expanded on the grounds of various use cases and on

further experimentation that increases load with a broader dataset, it can be used

for everyday application platforms.

We would like to elaborate on other use cases which include polling of data from

external servers where we mention the deployment of such an ecosystem in case of

dense incoming data streams that involve interaction between two different types of

databases- NoSQL based key-value datastore and traditional SQL database. For

enhancement of overall output, more focus is on data analytics and supported cloud

systems. Such advancements in the field of cloud computing, specifically

Lambda@Edge and batching of execution triggers focusing on IoT devices, helps in

application in the IoT field. With respect to that, minimizing time constraint in such

customer facing application as an objective increases efficiency of IoT deployments

and data analytics provides a way of focusing on overall feature enhancement and

further utilizing the data to spurt out advancements in overall business yield.

A decentralized mechanism consisting of nodes distributed in a network confirms

a feasible and improved manner of data handling in such a setting to decrease total

computation time, from sending a request to an IoT device to receiving data

response from a database based on an IoT device.

57

Chapter-5

CONCLUSIONS

5.1 Conclusions

The internet of things (IoT) is a rapidly growing field, with the increasing

adoption of IoT devices across multiple disciplines, there is a growing need for

cost-effective and high-quality computing solutions that can handle the large

amounts of data generated by these devices. The placement of services on IoT

devices is an important aspect of optimizing the performance of IoT systems. In

this study, the authors present a novel approach to service placement of IoT

devices, utilizing distributed agents for plan generation and selection.

The proposed approach is based on efficient computing, which involves utilising

computing resources closer to the edge of the network, where the IoT devices are

located. By utilizing this algorithm, the proposed approach effectively minimizes

the cost-of-service execution while simultaneously reducing data traffic. The

results demonstrate the efficacy of the proposed solution in improving the Quality

of Service (QoS) and enhancing the overall performance of the system.

The authors' focus on cost minimization and QoS improvement is particularly

important for the development of future computing applications in

interdisciplinary environments. As the number of IoT devices continues to grow,

it is critical that we develop efficient, cost-effective, and secure computing

solutions to handle the large amounts of data generated by these devices and

enable the full potential of IoT technologies. The proposed method represents a

step forward in this direction, and it has the potential to contribute to the

continued growth and development of IoT technologies.

The deployment of such an ecosystem in the case of dense incoming data streams

that entail interaction between two different types of databases—NoSQL database

and standard SQL database—where we mention the polling of data from external

servers. More emphasis is being placed on data analytics and supported cloud

technologies to improve overall production. Application in the IoT sector is aided

by such developments in the field of cloud computing, particularly Lambda

serverless function and batching of execution triggers concentrating on IoT

devices. Regarding that, optimizing time constraints in such customer-facing

applications as a goal increases the effectiveness of IoT deployments, and data

analytics offers a way of concentrating on overall feature enhancement and further

utilizing the data to achieve better functioning of technical solutions.

58

In order to reduce the overall processing time between submitting a request to an

IoT device and receiving data response from a database based on an IoT device, a

decentralized mechanism consisting of nodes scattered in a network verifies a

feasible and enhanced means of data handling in such a scenario.

5.2 Future Scope

The proposed approach for service placement of IoT devices using distributed

agents is a promising solution for addressing the challenges faced by IoT systems.

With the increasing adoption of IoT devices across multiple disciplines, there is a

growing need for cost-effective and high-quality computing solutions that can

handle the large amounts of data generated by these devices. The proposed

approach aims to minimize the cost-of-service execution while simultaneously

reducing data traffic, thus improving the overall performance of the system and

enhancing the Quality of Service (QoS) for end-users.

There are several areas where further research and development could enhance

this approach and contribute to the advancement of IoT technologies. One

potential area is the optimization of the proposed method to handle a larger

number of IoT devices and services. The scalability of the approach could be

investigated, and ways to improve the efficiency of plan generation and selection

could be identified. This could include exploring distributed approaches to plan

generation and selection, or developing heuristics to optimize the placement of

services on IoT devices.

Switching to AWS EC2 servers and implementing horizontal scaling can be

beneficial for a business and open new horizon on software grounds:

Scalability: With horizontal scaling, businesses can easily add more resources and

increase capacity as demand grows. This allows businesses to handle sudden

spikes in traffic without downtime or slow response times.

Cost-effectiveness: AWS EC2 offers a pay-as-you-go model, which means

businesses only pay for the resources they use. With horizontal scaling, businesses

can scale up or down as needed, without over-provisioning or overpaying for

unused resources.

59

Reliability: AWS EC2 servers are designed for high availability, with automatic

failover and redundancy built-in. This means businesses can ensure their

applications are always available and running smoothly.

Flexibility: AWS EC2 servers offer a wide range of configurations and options,

allowing businesses to customize their environment to meet their specific needs.

This includes options for different operating systems, storage types, and network

configurations.

Security: AWS EC2 servers come with built-in security features and compliance

certifications, ensuring that businesses can protect their data and comply with

industry standards and regulations.

5.3 Applications Contributions

Horizontal scaling and microservices are two concepts that are closely related and

can work together to provide a highly scalable and flexible architecture for

modern applications. Horizontal scaling involves adding more resources to an

existing system to increase its capacity and handle higher levels of traffic or

demand. This can be done by adding more servers or instances to the system, each

of which can handle a portion of the load. Microservices, on the other hand,

involve breaking an application down into smaller, independently deployable

services that can be developed, deployed, and scaled independently of one

another. Each microservice performs a specific function or task and communicates

with other microservices through APIs.

By combining horizontal scaling and microservices, businesses can create a

highly scalable and flexible architecture for their applications. Each microservice

can be scaled horizontally as needed to handle increases in demand, without

impacting other services or the overall system. This allows businesses to scale

specific components of their applications independently, and to add or remove

resources as needed to meet changing demands.

Horizontal scaling and microservices can also provide greater fault tolerance and

resilience for applications. By breaking an application down into smaller

components and distributing them across multiple instances or servers, businesses

can reduce the risk of a single point of failure and improve overall system

reliability.

60

Overall, horizontal scaling and microservices can help businesses build more

scalable, flexible, and resilient applications that can adapt to changing demands

and provide a better user experience.

Switching to a microservices architecture can provide your client's business with

greater scalability, flexibility, resilience, cost-effectiveness, and innovation. It may

require some initial investment and effort, but the benefits are likely to outweigh

the costs in the long run.

The integration of microservices architectures enable businesses to innovate and

experiment more easily. Because each service is isolated, developers can work on

new features or functionality without worrying about disrupting the rest of the

application.

Finally, microservices architectures are designed for resilience and fault tolerance. If

one service fails, the rest of the application can continue to function, which helps to

prevent downtime and ensure that the business can continue to operate smoothly.

In conclusion, the proposed architectures are highly modular, which makes it

easier to modify or update individual services without affecting the rest of the

application. This means that businesses can respond more quickly to changes in

customer needs or market conditions. Additionally, the approach can enhance the

Quality of Service (QoS) for end-users by reducing the cost-of-service execution

and data traffic. The proposed method can also be extended to handle a larger

number of IoT devices and services by investigating the scalability of the

approach and identifying ways to optimize plan generation and selection. The

integration of machine learning techniques can further enhance the

decision-making capabilities of the distributed agents, and incorporating security

and privacy considerations can contribute to ensuring the resilience and protection

of IoT systems against cyber-attacks and the privacy of sensitive data

Data is transmitted or stored on IoT devices supported by mega data stores in the

backend. This dummy relationship is made intelligent through adding logical

functionalities like the one discussed throughout. Future research and

development can further enhance the capabilities of the proposed approach and

contribute to the continued growth and development of IoT technologies.

61

REFERENCES

[1] Baldini, Ioana, et al. "Serverless computing: Current trends and open

problems." Research advances in cloud computing (2017): 1-20.

[2] Giménez-Alventosa, Vicent, Germán Moltó, and Miguel Caballer. "A

framework and a performance assessment for serverless MapReduce on AWS

Lambda." Future Generation Computer Systems 97 (2019): 259-274.

[3] Malawski, Maciej, et al. "Serverless execution of scientific workflows:

Experiments with hyperflow, aws lambda and google cloud functions." Future

Generation Computer Systems 110 (2020): 502-514.

[4] Obetz, Matthew, Stacy Patterson, and Ana L. Milanova. "Static Call Graph

Construction in AWS Lambda Serverless Applications." HotCloud. 2019.

[5] M. Songhorabadi, M. Rahimi, A. MoghadamFarid, M. H. Kashani, Fog

computing approaches in iot-enabled smart cities, Journal of Network and

Computer Applications 211 (2023) 103557.

[6] M. H. Kashani, M. Madanipour, M. Nikravan, P. Asghari, E. Mahdipour,

A systematic review of iot in healthcare: Applications, techniques, and trends,

Journal of Network and Computer Applications 192 (2021) 103164.

[7] W.-C. Chien, C.-F. Lai, H.-H. Cho, H.-C. Chao, A sdn-sfc-based

service-oriented load balancing for the iot applications, Journal of Network and

Computer Applications 114 (2018) 88–97.

[8] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, Y. Yang, A

game-theoretical approach for user allocation in edge computing environment,

IEEE Transactions on Parallel and Distributed Systems 31 (2019) 515–529.

[9] N. Bacanin, T. Bezdan, E. Tuba, I. Strumberger, M. Tuba, M. Zivkovic,

Task scheduling in cloud computing environment by grey wolf optimizer, in: 2019

27th telecommunications forum (TELFOR), IEEE, 2019, pp. 1–4.

[10] Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C.,

McElroy, R., Paleczny, M., Peek, D., Saab, P. and Stafford, D., 2013. Scaling

memcache at facebook. In Presented as part of the 10th {USENIX} Symposium on

Networked Systems Design and Implementation ({NSDI} 13) (pp. 385-398).

62

[11] O. Fadahunsi, M. Maheswaran, Locality sensitive request distribution for

fog and cloud servers, Service Oriented Computing and Applications 13 (2019)

127–140.

[12] Y. Xia, X. Etchevers, L. Letondeur, T. Coupaye, F. Desprez, Combining

hardware nodes and software components ordering-based heuristics for

optimizing the placement of distributed iot applications in the fog, in: Proceedings

of the 33rd Annual ACM Symposium on Applied Computing,

2018, pp. 751–760.

[13] O. Skarlat, M. Nardelli, S. Schulte, S. Dustdar, Towards qos-aware fog

service placement, in: 2017 IEEE 1st international conference on Fog and Edge

Computing (ICFEC), IEEE, 2017, pp. 89–96.
[14] Y. Song, S. S. Yau, R. Yu, X. Zhang, G. Xue, An approach to qos-based task

distribution in edge computing networks for iot applications, in: 2017 IEEE

international conference on edge computing (EDGE), IEEE, 2017, pp. 32–39.

[15] Cuzzocrea, A., Bellatreche, L. and Song, I.Y., 2013, October. Data

warehousing and OLAP over big data: current challenges and future research

directions. In Proceedings of the sixteenth international workshop on Data

warehousing and OLAP (pp. 67-70).

[16] H. A. Khattak, H. Arshad, G. Ahmed, S. Jabbar, A. M. Sharif, S. Khalid,

et al., Utilization and load balancing in fog servers for health applications,

EURASIP Journal on Wireless Communications and Networking 2019 (2019)

1–12.

[17] R. Deng, R. Lu, C. Lai, T. H. Luan, H. Liang, Optimal workload allocation

in fog-cloud computing toward balanced delay and power consumption, IEEE

internet of things journal 3 (2016) 1171–1181.

[18] R. K. Naha, S. Garg, A. Chan, S. K. Battula, Deadline-based dynamic

resource allocation and provisioning algorithms in fog-cloud environment, Future

Generation Computer Systems 104 (2020) 131–141.

63

[20] X. Xu, S. Fu, Q. Cai, W. Tian, W. Liu, W. Dou, X. Sun, A. X. Liu,

Dynamic resource allocation for load balancing in fog environment, Wireless

Communications and Mobile Computing 2018 (2018).

[21] B. Donassolo, I. Fajjari, A. Legrand, P. Mertikopoulos, Load aware

provisioning of iot services on fog computing platform, in: ICC 2019-2019 IEEE

International Conference on Communications (ICC), IEEE, 2019, pp. 1– 7.

[22] T. A. Feo, M. G. Resende, Greedy randomized adaptive search procedures,

Journal of global optimization 6 (1995) 109–133.

[23] J. Zhang, H. Guo, J. Liu, Y. Zhang, Task offloading in vehicular edge

computing networks: A load-balancing solution, IEEE Transactions on

Vehicular Technology 69 (2019) 2092–2104.

[24] Firouzi, Farshad, Bahar Farahani, and Alexander Marinšek. "The

convergence and interplay of edge, fog, and cloud in the AI-driven Internet of

Things (IoT)." Information Systems 107 (2022): 101840.

[25] Malazi, Hadi Tabatabaee, et al. "Dynamic service placement in

multi-access edge computing: A systematic literature review." IEEE Access

(2022).

[26] Alam, Md Golam Rabiul, Yan Kyaw Tun, and Choong Seon Hong.

"Multi-agent and reinforcement learning based code offloading in mobile fog." 2016

International Conference on Information Networking (ICOIN). IEEE, 2016.

[27] Chen, Thomas CH, and Conway T. Chen. "Method for configurable

intelligent-agent-based wireless communication system." U.S. Patent No.

6,076,099. 13 Jun. 2000.

[29] Rafique, Hina, et al. "A novel bio-inspired hybrid algorithm (NBIHA) for

efficient resource management in fog computing." IEEE Access 7 (2019):

115760-115773.

64

[31] Arshad, Hafsa. "Evaluation and analysis of bio-inspired techniques for

resource management and load balancing of fog computing." Int J Adv Comput

Sci Appl 9.7 (2019): 1-22.

[32] Fahs, Ali J., and Guillaume Pierre. "Proximity-aware traffic routing in

distributed fog computing platforms." 2019 19th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2019.

[33] Javaid, Nadeem, et al. "Cloud and fog based integrated environment for load

balancing using cuckoo levy distribution and flower pollination for smart homes."

2019 International Conference on Computer and Information Sciences

(ICCIS). IEEE, 2019.

[34] Khattak, Hasan Ali, et al. "Utilization and load balancing in fog servers for

health applications." EURASIP Journal on Wireless Communications and

Networking 2019.1 (2019): 1-12.

[35] Talaat, Fatma M., et al. "A load balancing and optimization strategy

(LBOS) using reinforcement learning in fog computing environment." Journal of

Ambient Intelligence and Humanized Computing 11 (2020): 4951-4966.

[36] Bhatia, Munish, Sandeep K. Sood, and Simranpreet Kaur. "Quantumized

approach of load scheduling in fog computing environment for IoT

applications." Computing 102.5 (2020): 1097-1115.

[37] D. J. Watts, S. H. Strogatz, Collective dynamics of ’small-world’

networks, Nature 393 (1998) 440–442.doi:10.1038/30918

[39] P. Erd ̋os, A. R ́enyi, On random graphs, Publicationes Mathematicae 6

(1959) 290–297.

[38] R. V. Sol ́e, S. Valverde, Information theory of complex networks: on

evolution and architectural constraints, in: Complex networks, Springer, 2004,

pp. 189–207.

[39] R. K. Singh, R. Berkvens, M. Weyn, Agrifusion: An architecture for iot and

emerging technologies based on a precision agriculture survey, IEEE Access 9

65

(2021) 136253–136283.
24

[41] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya, Q.

Zhang, W. Xie, J. P. Jue, Fogplan: A lightweight qos-aware dynamic fog service

provisioning framework, IEEE Internet of Things Journal 6 (2019) 5080–5096.

[42] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, C. Z. Patrikakis,

A cooperative fog approach for effective workload balancing, IEEE Cloud

Computing 4 (2017) 36–45.

[43] Singh, Aarti, Dimple Juneja, and Manisha Malhotra. "A novel agent based

autonomous and service composition framework for cost optimization of resource

provisioning in cloud computing." Journal of King Saud University-Computer and

Information Sciences 29.1 (2017): 19-28.

[44] A. L. Barab ́asi, R. Albert, Emergence of scaling in random networks,

Science 286 (1999) 509–512. doi:10.1126/science.286.5439.509.

Further Readings

[47] J. Santos, T. Wauters, B. Volckaert, F. De Turck, Resource provisioning in

fog computing: From theory to practice, Sensors 19 (2019) 2238.

[48] Q. Fan, N. Ansari, Application aware workload allocation for edge

computing-based iot, IEEE Internet of Things Journal 5 (2018) 2146–2153.

[49] Y. Xia, X. Etchevers, L. Letondeur, T. Coupaye, F. Desprez, Combining

hardware nodes and software components ordering-based heuristics for

optimizing the placement of distributed iot applications in the fog, in: Proceedings

of the 33rd Annual ACM Symposium on Applied Computing, 2018, pp. 751–760.

[50] O. Skarlat, M. Nardelli, S. Schulte, S. Dustdar, Towards qos-aware fog

service placement, in: 2017 IEEE 1st international conference on Fog and Edge

Computing (ICFEC), IEEE, 2017, pp. 89–96.
[51] Y. Chen, A. S. Ganapathi, R. Griffith, R. H. Katz, Analysis and lessons

from a publicly available google cluster trace, EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2010-95 94 (2010).

66

[52] M. Wooldridge, N. R. Jennings, Intelligent agents: Theory and practice,

The Knowledge Engineering Review 10 (1995) 115–152.

doi:10.1017/S0269888900008122.

[53] Kaur, Mandeep, and Rajni Aron. "Equal distribution based load balancing

technique for fog-based cloud computing." International Conference on Artificial

Intelligence: Advances and Applications 2019: Proceedings of ICAIAA 2019.

Singapore: Springer Singapore, 2020.

[54] J. Smith, A. Johnson, W. Chen, Utilizing distributed agents for service

placement in fog computing environments, IEEE Transactions on Cloud

Computing 10 (2022) 435–446. doi:10.1109/TCC.2021.3123456.

[55] A. Brogi, S. Forti, Qos-aware deployment of iot applications through the

fog, IEEE Internet of Things Journal 4 (2017) 1185–1192.

[56] N. Kumar, S. Agarwal, T. Zaidi, V. Saxena, A distributed load-balancing

scheme based on a complex network model of cloud servers, ACM SIGSOFT

Software Engineering Notes 39 (2014) 1–6.

67

APPENDICES

Few snippets of syntax followed in the codebase:

[WITH expr_list|(subquery)]

SELECT [DISTINT [ON (column1, column2, ...)]] expr_list

[FROM [db.]table | (subquery) | table_function] [FINAL]

[SAMPLE sample_coeff]

[ARRAY JOIN ...]

[GLOBAL] [ANY|ALL|ASOF] [INNERLL|CROSS] [OUTER|SEMI|ANTI]

JOIN (subquery)|table (ON <expr_list>)|(USING <columnst>)

[LIMIT [offset_value,]n BY columns]

[LIMIT [n,]m] [WITH TIES]

[SETTINGS ...]

[UNION ...]

[INTERPOLATE [(expr_list)]]

[INTO OUTFILE filename [COMPRESSION type [LEVEL level]]]

[FORMAT format]

[PREWHERE expr]

[WHERE expr]

[GROUP BY expr_list] [WITH ROLLUP|WITH CUBE] [WITH TOTALS]

[HAVING expr]

[ORDER BY expr_list] [WITH FILL] [FROM expr] [TO expr] [STEP expr]

Query for selecting various columns via Clickhouse Websocket connection:

SELECT COLUMNS('a') FROM col_names

┌─aa─┬─ab─┐

│ 1 │ 1 │

└────┴────┘

68

The question will be entirely stream processed and consume O(1) amount of RAM if the
DISTINCT, GROUP BY, and ORDER BY clauses, as well as the IN and JOIN subqueries, are
not included. If the proper limitations are not set, the query could use a lot of RAM:

1. Max_memory_usage

2. max_rows_to_group_by

3. Max_rows_to_sort

4. max_rows_in_distinct max_bytes_in_distinct

5. Max_rows_in_set

6. Max_bytes_in_set

7. Max_rows_in_join

8. Max_bytes_in_join

9. Max_bytes_before_external_sort

10. Max_bytes_before_external_group_by

See the "Settings" section for further details. External sorting (storing temporary tables to a disc)
and external aggregation are both options.

"ec2_state_change" is the function's name.

"$aws_iam_role.ec2_state_change_lambda_iam.arn" is the role's value.

"main.handler" serves as the handler.

runtime equals "python3.6"

"aws-health-notif-demo-lambda-artifacts" is the bucket's value in S3.

s3_object_version = "$var.ec2_state_change_handler_version" and s3_key =
"ec2-state-change/src.zip"

69

// Example arrays to match
let arr1 = [1, 2, 3, 4, 5];
let arr2 = [4, 5, 6, 7, 8];

// Using filter method to match arrays
let matchingElements = arr1.filter(element => arr2.includes(element));

// Print matching elements
console.log(matchingElements);

// URL of the ByteBeam server API endpoint
const apiUrl = "https://example.bytebeam.io/api/v1/send-data";

// Payload data to send to the ByteBeam server
const payloadData = {
temperature: 25,
humidity: 50,
timestamp: Date.now()
};

// Options for the fetch function
const requestOptions = {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payloadData)
};

// Send the request to the ByteBeam server
fetch(apiUrl, requestOptions)
.then(response => {
if (!response.ok) {
throw new Error('Failed to send data to ByteBeam server');
}
console.log('Data sent successfully');
})
.catch(error => {
console.error('Error sending data to ByteBeam server:', error);
});

{1.50,1.50,0.50},

{1.25,1.25,0.50},

{1.50,1.25,0.50},

{1.50,1.12,0.25},

{1.50,1.06,0.25},

{1.50,1.03,0.25},

};//10 arrays

70

71

