Database Comparison Project

Project report submitted in partial fulfillment of the requirement for the
degree of Bachelor of Technology

in
Computer Science and Engineering/Information Technology

By

Rohan Chaturvedi (191271)

Under the supervision of

Dr. Rajni Mohana

Department of Computer Science & Engineering and Information
Technology
Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh



Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Database Comparison Tool”
in partial fulfillment of the requirements for the award of the degree of Bachelor of
Technology in Computer Science and Engineering/Information Technology submitted in

the department of Computer Science & Engineering and Information Technology, Jaypee
University of Information Technology Waknaghat is an authentic record of my own work
carried out over a period from February 2023 to May 2023 under the supervision of Dr.
Rajni Mohana (Associate Professor in the Department of Computer Science and
Engineering).

The matter embodied in the report has not been submitted for the award of any other degree
or diploma.

(Student Signature)
Rohan Chaturvedi, 191271.

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

(Supervisor Signature)

Dr. Rajni Mohana

Associate Professor

Computer Science and Engineering
Dated



JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
PLAGIARISM VERIFICATION REPORT

Dabe® oo .
Type of Document (Tick): PhD Thesis| [M.Tech Dissertation/ Report| B.Tech Project Report | Paper]

Name: __Department: Enrolment No

Contact No. E-mail.

Name of the Supervisor:

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters):

UNDERTAKING

| undertake that | am aware of the plagiarism related norms/ regulations, if | found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:

— Total No. of Pages =

— Total No. of Preliminary pages =

— Total No. of pages accommodate bibliography/references =

(Signature of Student)
FOR DEPARTMENT USE
We have checked the thesis/report as per norms and found Similarity Index at (%). Therefore, we

are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

(Signature of Guide/Supervisor) Signature of HOD
FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index Generated Plagiarism Report Details
(%) (Title, Abstract & Chapters)

Word Counts

¢ All Preliminary

Pages

e Bibliography/Ima Character Counts

Report Generated on

ges/Quotes

‘ Submission 1D Total Pages Scanned
® 14 Words String

File Size

Checked by
Name & Signature Librarian

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)
through the supervisor at plagcheck.juit@gmail.com




ACKNOWLEDGEMENT

Firstly, I express my gratitude to the god who provided me with courage and
fortitude to
complete the project.

I am grateful and wish my profound indebtedness to Supervisor Dr.Rajni
Mohana, Associate Professor, Department of CSE Jaypee University of
Information Technology, Wakhnaghat.

Deep Knowledge & keen interest of my supervisor in the field of "Data
Processing" to carry out this Project. Her endless patience, scholarly guidance,
continual encouragement, constant and energetic supervision, constructive
criticism, valuable advice, reading many inferior drafts and correcting them at
all stages have made it possible to complete this Project.

I would like to express my heartiest gratitude to Dr. Rajni Mohana,
Department of CSE, for her kind help to finish my Project.

I would also generously welcome each one of those individuals who have
helped me straightforwardly or in a roundabout way in making this project a
success. In this unique situation, I might want to thank the various staff
individuals, both educating and non-instructing, which have developed their
convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and
patience of my
parents.

(Student Signature)

Project Group No.: 94

Student Name: Rohan Chaturvedi
Rollno.: 191271



S.No.

il S

Contents

CHAPTERS

List of Figures
List of Graphs
Abstract
Chapter 1: Introduction
a. Ch 1.1: Introduction
Ch 1.2: Problem Statement
Ch 1.3: Objectives
Ch 1.4: Methodology
. Ch 1.5: Organization
Chapter 2: Literature Survey
Chapter 3: System Development
a. Ch3.1: Related Terms

1) Ch 3.1.1 Main Components of a database

oo =

i1) Ch 3.1.2 Spring Framework

ii1) Ch 3.1.3 Connection details

1v) Ch 3.1.4 Database Connections
v) Ch 3.1.5 Form Controller

vi) Ch 3.1.6 Pom.xml

vii) Ch 3.1.7 Table Comparison Class
viii) Ch 3.1.8 ResultSet

Chapter 4: Performance Analysis
Conclusion

a. Conclusion

b. Future Scope
References

PAGE

vi
vii

N BN =

12
14
17
17

20
21
22
23
27
29
32

37
46
46
46
48



LIST

OF FIGURES

FIGURE PAGE NO.
Fig 1:Program Flowchart Step (1) 10
Fig 2: Program Flowchart Step (2) 10
Fig 3: Program Flowchart Step (3) 11
Fig 4: Program Flowchart Step (4) 11
Fig 5: Program Flowchart Step (5) 12
Fig 6: Code for FormData Class (2) 24
Fig 7: Code for FormData Class (2) 25
Fig 8: Connection Page Ul 26
Fig 9: Code for TableComparatorClass (1) 29
Fig 10: Code for TableComparatorClass (2) 30
Fig 11: Code for TableComparator Class (3) 31
Fig 12: Code for ResultSet Downloader Class (1) 33
Fig 13: UI for Dual Table ResultView (1) 34
Fig 14: Performing Search operations in ResultView (2) 35
Fig 15: Code for JUnits for Table Comparison Class (1) 38
Fig 16: Code for JUnits for Table Comparison Class (2) 39
Fig 17: Code for JUnits for Connection Class (1) 40
Fig 18: Code for JUnits for formData Class (1) 41
Fig 19: Code for JUnits for formData Class (2) 42
Fig 20: Console output for Table Comparison_Test class 43
Fig 21: Console output for Connection_Test class 44
Fig 22: Console output for form_data Test class 45



ABSTRACT

The database comparison tool presented in this project is a powerful and
efficient software solution designed to facilitate the comparison and
synchronization of databases. With the increasing complexity of modern
database systems and the need for accurate data management, such a tool
becomes essential for organizations that rely heavily on database operations.

The database comparison tool offers a comprehensive set of features and
functionalities to compare the schema and data of two databases. It enables
users to identify differences in table structures, column definitions, indexes,
and constraints between databases. Moreover, it allows for the comparison of
data records, ensuring the integrity and consistency of information across

databases.

vi



CHAPTER 1 : INTRODUCTION

1.1 Introduction

In the current age of technology, databases are becoming increasingly critical
for businesses to store, manage, and retrieve data. Often, multiple
environments exist for a database, such as development, testing, quality
assurance (QA), pre-production, and production. The challenge for developers
and DBAs is to keep the databases in these environments synchronized and
up-to-date. This is where database comparison tools come into play. Database
comparison tools are specialized software applications that help developers
and DBAs compare databases, schemas, and data, identify discrepancies, and
generate scripts to sync them. These tools provide a visual representation of
the differences between databases, which makes it easy to identify changes
and update them. Here are some reasons why a database comparison tool is

essential in real-time development:

e Efficient Development Workflow: Developers and DBAs need to work
collaboratively, and a database comparison tool helps them work
efficiently. The tool identifies the differences between two databases
and generates scripts to make the changes. This eliminates the need to
manually compare and identify changes, which can be time-consuming
and prone to errors.

e Avoiding Data Loss: In the database comparison process, the tool
identifies the differences between two databases, which include
changes in the schema or data. Without a database comparison tool,
developers and DBAs may miss a change, leading to data loss. The

tool ensures that all changes are identified, and nothing is lost.



e Better Quality Assurance: Database comparison tools are invaluable
for quality assurance (QA) teams. These tools allow QA teams to test
changes and new features in a separate environment, such as a staging
or pre-production environment, before deploying to production. This
ensures that changes are thoroughly tested and reduces the risk of bugs
and other issues in the production environment.

e Compliance and Security: Database comparison tools can help ensure
compliance with regulations and standards such as HIPAA and GDPR.
The tool can identify changes to the database that may affect
compliance and generate scripts to bring the database into compliance.
Additionally, the tool can help ensure the security of sensitive data by
identifying differences in access control and other security settings.

e Scalability: As databases grow, it can become challenging to keep
track of changes and maintain synchronization between environments.
A database comparison tool makes it easy to manage and synchronize
databases of any size, whether it is a small database or a large

enterprise-level database.

Hence, a database comparison tool is essential in real-time development
because it helps developers and DBAs work efficiently, avoid data loss,
perform better quality assurance, ensure compliance and security, and scale
with ease. With the growth of databases and the need to maintain multiple
environments, database comparison tools are becoming more critical than
ever. They streamline the development process, reduce errors, and increase

productivity, making them a must-have for any development team.

1.2 Problem Statement

With the increasing complexity and size of databases in modern software

systems, it has become necessary to have a tool that can help developers and



database administrators to identify differences between different database
versions and environments. This tool can be used to compare the databases
across different servers like production, QA, pre-production, and more. In a
typical software development process, there are multiple environments where
databases are maintained, such as development, testing, staging, and
production. The data in these databases should be identical or at least
consistent across all the environments. However, due to various reasons such
as human errors, differences in software versions, hardware or network
differences, database configuration differences, etc., there may be variations

between the databases on different environments.

In such scenarios, identifying the differences between the databases can be a
time-consuming and error-prone task, as manual comparison of database
schemas and data can be challenging and prone to errors. It is essential to
identify and resolve these differences between the databases as early as
possible to ensure that the software is running as expected in all the

environments.

A database comparison tool provides a solution to this problem by automating
the comparison of databases, which helps to save time, reduce errors, and
ensure accuracy. With a database comparison tool, the user can compare the
schema of two databases, including tables, columns, indexes, triggers, and
other database objects, to identify differences between them. Additionally, the
tool can also compare the data in tables and identify differences in the data.
These tools usually have a user-friendly interface and allow the user to select
the databases to be compared and customize the comparison settings. They can
also provide features such as generating reports, scripting, and synchronization
of databases. They can also help in identifying issues such as performance

bottlenecks, optimization opportunities, and security vulnerabilities.

In conclusion, a database comparison tool is essential for any software

development project, as it helps in detecting differences between the databases



and ensuring that the software is running as expected across all the
environments. The tool can save time, reduce errors, and ensure accuracy in
the comparison process. There are many database comparison tools available
in the market, both free and commercial, that cater to different requirements
and preferences. It is essential to select the right tool that meets the project's

needs and provides accurate and reliable results.

1.3  Objectives

The objective of a database comparison tool is to help developers, database
administrators, and other stakeholders in software development to easily
compare and synchronize the data and schema of databases. Here are some of

the key objectives of such a tool:

e FEasy Comparison: The tool should provide an easy and efficient way
to compare databases, including schemas and data. This can be done
using a graphical user interface (GUI) or command-line interface (CLI)

that allows users to quickly see the differences between the databases.

e Automate Comparison: The tool should be able to automate the
comparison process so that it can be performed on a regular basis or as
part of a continuous integration/continuous delivery (CI/CD) pipeline.
This helps ensure that databases are always in sync and that any

changes made to one database are reflected in the others.

e Support Multiple Databases: The tool should be able to compare
databases of different types, including Oracle, MySQL, SQL Server,
and others. It should also be able to handle different versions of the

same database.

e Support Data Migration: The tool should be able to migrate data from
one database to another, making it easy to move data between different

environments. This is particularly useful for developers who need to



move data from a production database to a development or test

environment.

e Support Schema Comparison: The tool should be able to compare the
schema of different databases, including tables, views, stored
procedures, and other database objects. It should also be able to detect

changes in the schema and alert users to any potential issues.

e Ensure Data Integrity: The tool should be able to detect and report any
data inconsistencies between the databases being compared. This helps
ensure that data is accurate and that there are no data integrity issues

that could affect the functioning of the software application.

e Provide Reports: The tool should provide detailed reports on the
differences between the databases being compared. These reports
should be easy to understand and should provide enough detail to
allow developers to make informed decisions about how to

synchronize the databases.

e Provide Security: The tool should provide adequate security measures
to protect the sensitive data stored in the databases being compared.
This might include data encryption, access controls, and other security

features.

1.4 Methodology

1.4.1 Spring Framework

Spring is an open-source framework for developing Java applications. It
provides a comprehensive set of features that make it easy to develop modular,
scalable, and secure applications. Spring is one of the most popular Java
frameworks and is used by a wide range of organizations, including Google,

Amazon, and Netflix. pring is an open-source framework for developing Java



applications. It provides a comprehensive set of features that make it easy to
develop modular, scalable, and secure applications. Spring is one of the most
popular Java frameworks and is used by a wide range of organizations,
including Google, Amazon, and Netflix. Spring is a lightweight framework,
which means that it does not add a lot of overhead to your applications. It is
also very flexible, so you can use it to develop a wide variety of applications.

Spring is also very well-documented, so it is easy to learn and use.

Some of the key features of Spring include:

e Dependency injection: Dependency injection is a technique that allows
you to decouple your code from its dependencies. This makes your
code more modular and easier to test.

e [oC container: The [oC container is a central part of Spring. It is
responsible for managing the dependencies of your application.

e AOP: AOP is a technique that allows you to add cross-cutting concerns
to your code. This makes your code more reusable and easier to
maintain.

e ORM: Spring provides a number of ORM (object-relational mapping)
frameworks that make it easy to interact with databases.

e MVC: Spring supports the MVC (model-view-controller) architectural
pattern. This makes it easy to develop web applications.

e Security: Spring provides a number of features that make it easy to
secure your applications.

e Testing: Spring provides a number of features that make it easy to test

your applications.

Spring is a powerful and versatile framework that can be used to develop a
wide variety of Java applications. If you are looking for a framework that can
help you develop modular, scalable, and secure applications, then Spring is a

good choice.



Here are some additional benefits of using Spring:

e Spring is a well-established framework with a large community of
users and developers. This means that there are a lot of resources
available to help you learn and use Spring.

e Spring is a mature framework that has been around for many years.

This means that it has been well-tested and is reliable.

1.4.2 Spring Boot

Spring Boot is an open-source framework that makes it easy to create
stand-alone, production-grade Spring applications. Spring Boot takes care of a
lot of the boilerplate code that is typically required to get a Spring application
up and running, so you can focus on writing your application logic.

Sure. Here is a detailed explanation of Spring Boot for a project report:

Spring Boot is an open-source framework that makes it easy to create
stand-alone, production-grade Spring applications. Spring Boot takes care of a
lot of the boilerplate code that is typically required to get a Spring application

up and running, so you can focus on writing your application logic.

Spring Boot is built on top of the Spring Framework, but it provides a number
of features that make it easier to use. Some of the key features of Spring Boot

include:

e Auto-configuration: Spring Boot automatically configures many of the
common Spring features, so you don't have to do it yourself.

e Starters: Spring Boot provides a number of starters that make it easy to
add common Spring features to your application.

e Convention over configuration: Spring Boot uses convention over

configuration, which means that it makes assumptions about how your



application is configured. This can make it easier to get started with
Spring Boot.

e Production-ready features: Spring Boot includes a number of
production-ready features, such as embedded web servers, security,

and metrics.

Spring Boot is a great choice for developers who want to create Spring
applications quickly and easily. It is also a good choice for developers who

want to create production-ready applications.

1.4.3 MVC Architecture

MVC architecture is a software design pattern that separates the presentation
(view), the data (model), and the business logic (controller). This separation of
concerns makes it easier to develop, test, and maintain applications. MVC is a
popular architecture for developing web applications and is supported by

many popular frameworks, including Spring.

1.4.4 Maven Project

Maven is a build automation tool that helps you automate the process of
building, testing, and deploying Java applications. Maven provides a standard
directory structure for Java projects and a set of conventions for naming files
and directories. This makes it easy to build and deploy Java applications with
Maven.

Sure. Here is a detailed explanation of Maven for a project report:

Maven is a build automation tool that helps you automate the process of
building, testing, and deploying Java applications. Maven provides a standard

directory structure for Java projects and a set of conventions for naming files



and directories. This makes it easy to build and deploy Java applications with

Maven.

Maven uses a project object model (POM) to describe your project. The POM

is an XML file that specifies the dependencies of your project, the build

lifecycle, and other information. Maven uses the POM to build your project

and to deploy it to a repository.

Maven has a number of advantages over other build automation tools,

including:

It is a standard tool. Maven is a standard tool that is used by a large
number of Java developers. This means that there are a lot of resources
available to help you learn and use Maven.

It is easy to use. Maven is easy to use, even for beginners. The POM
makes it easy to specify the dependencies of your project and the build
lifecycle.

It is powerful. Maven is a powerful tool that can be used to build and
deploy Java applications of any size.

It is scalable. Maven can be used to build and deploy Java applications
of any size.

It is secure. Maven uses a number of security features to protect your

projects from security threats.

1.4.5 FlowChart

1.

The program initiated by the user starting up the server.



ser input for both
database
connections

Both Tables in same'
Database ?

Ask User for database
connection

USER

onnection(s;
established
uccesfully 7

User inputs
Database
connection

e
message

FIG 1: PROGRAM FLOWCHART STEP (1)

To start comparing tables, the user is required to input a database
connection. If the user is comparing two tables, they must input the
database connection for one database if both tables are in the same
database. If the tables belong to different databases, then the user needs
to input two database connections. If the user is working with a single
table and its history table for previous record values, then they input
the database connection for the table, assuming both the table and the

history table exist in the same database.

YES

ser input to input
new database
connections

Ask user fo input Both Tables in
History Table for Table preexisiting NI
1and 2 Database(s) ?

YES

1' User inputs tables
rom databases(s)

be selected

onnection(s
established
uccesfully 7

YES

=

N
message

FIG 2: PROGRAM FLOWCHART STEP (2)

2. The program checks whether the database connections were
established successfully or not. If the connections failed, the user

receives an error message indicating invalid details.

10



PHASE 2 WRITE ACCESS ROLE exist/accesible for

"o
message

READ DNILY ROLE

FIG 3: PROGRAM FLOWCHART STEP (3)

3. If'the tables selected by the user exist and are accessible by their user
role, the tables' descriptions, columns, and metadata are displayed in
the program's user interface (UI). If the tables do not exist or the user
does not have read/write access to them, an error message is displayed.
The tables are shown in the Ul in a split window, with each table in a
separate window (or history table) with command and operation

buttons at the top of the window.

READ ONLY ROLE

Provide matched,
unmatched records in
resultSet, compare (read-
anly) values from both
tables

Display meta data,
columns, description
etc of tables in split
view in window

User selects
columns for
comparison from |
both tables |

Pagination: Render 0-20
rows upfront, User can
request to render next 20
rows

YES

NO

.

NO- .| Go back to Split |
Table view Menu |

|

Generate
ResultSet 7

YES

FIG 4: PROGRAM FLOWCHART STEP (4)

4. The user selects columns from the list of columns displayed on both
tables in the UI. The program then compares column properties,
values, and data types, returning matched and unmatched records from
the selected columns in the UI.

5. Users can go back to select other columns from the selected tables and

apply operations. The user can also terminate the operations cycle and

11



see the changes made in the selected tables by a previously saved
commit from the tables' history tables.
6. Users can proceed to download the result set after completing all the

necessary operations.

|

YES
i — —
."I User selects format to freés'ﬁm:gztj ;I"‘a‘:;?:}ase:r,‘ d
| download ResultSet in P vy
[ terminate program

| —

| l

POF Farmat SV Forrmal HLSX Format ‘

FIG 5: PROGRAM FLOWCHART STEP (5)

7. After the user closes/ logs out of the site, the server will automatically

deallocate, free up used memory and terminate the program instance.

1.5 Organization

Chapter 1: Introduction
Various aspects of the project are dealt with in this section, which includes a
synopsis of the assignment, the approach that was used, an explanation of the

issue discussed by the project, as well as the goal of the project.
Chapter 2: Literature Survey

This project's literature review part discusses the evaluated resources as well

as the topics that have been investigated and recognized.

12



Chapter 3: System Design and Development
Within this section, we are going to look over project analysis and system
design implementation. We will describe the algorithms employed and share

project snapshots.

Chapter 4: Experiment and Result Analysis

This portion of the project shows the results of the analysis by displaying and
comparing the findings in snapshots. It also has the ability to show multiple
outputs. The part also discusses how the outcomes were acquired and what

they indicate for the project's achievement.
Chapter 5: Conclusion

This component of the study ends with the present project and discusses

potential additional study and development opportunities.

13



CHAPTER 2 : LITERATURE SURVEY

The numerous advancements in the field of networking and socket
programmes were covered in this part. The effectiveness of the system and
socket programming methodologies, as well as the outcomes of their testing

on the specified architecture.

2.1 Research Material / Books :

« The book "Database Design for Mere Mortals: A Hands-On Guide to
Relational Database Design" by Michael J. Hernandez can provide
valuable insights for the development of a database comparison tool. It
covers the fundamental concepts and techniques of database design that
are essential for understanding the underlying principles behind the
comparison of database entries. By studying this book, we can gain a
better understanding of the various techniques that can be used for
comparing different database schemas and entries, which can be useful in

the design and implementation of our comparison tool.

« The textbook "Database Systems: Design, Implementation, and
Management" by Carlos Coronel, Steven Morris, and Peter Rob can be a
useful reference for developing our database comparison tool. It provides
a solid foundation for understanding database systems and their
management, which can help in the development of our tool. This
textbook covers various aspects of database systems, including design,
implementation, and management, which can provide useful insights for

developing a comparison tool that can analyze and compare large datasets.
« The book "Database Modeling and Design: Logical Design" by Toby J.

Teorey, Sam S. Lightstone, and Tom Nadeau can provide valuable insights

for designing a comparison tool that can analyze and compare different

14



database schemas. It offers a detailed guide to the logical design of
databases, which can be useful in the development of our tool. By
studying this book, we can gain a better understanding of the various
techniques and strategies that can be used to compare different database

schemas and entries.

The research journal "ACM Transactions on Database Systems" can be a
useful resource for the development of our database comparison tool. It
publishes research papers on various topics related to database systems,
including data modeling, schema design, and database management. By
studying the papers published in this journal, we can gain a better
understanding of the latest trends and techniques in the field of database

systems, which can be useful in the development of our tool.

The "IEEE Transactions on Knowledge and Data Engineering" is a
research journal that covers various aspects of knowledge and data
engineering, including database design, data mining, and information
retrieval. The papers published in this journal can provide useful insights
and ideas for the development of a comparison tool that can analyze and
compare large datasets. By studying the research papers published in this
journal, we can gain a better understanding of the various techniques and

strategies that can be used to analyze and compare different databases.

The book "Advances in Database Technology - EDBT 2021" is a
collection of papers presented at the 24th International Conference on
Extending Database Technology. It covers recent advancements in
database technology, including data modeling, query processing, and
database management. By studying this book, we can gain a better
understanding of the latest trends and techniques in the field of database
technology, which can be useful in the development of our comparison

tool.

15



The "Journal of Database Management" is a research journal that covers
various aspects of database management, including data modeling,
database design, and database security. By studying the papers published
in this journal, we can gain a better understanding of the various
techniques and strategies that can be used to compare and analyze
different databases. The insights gained from this journal can be useful in

the development of our comparison tool.

The "Data Mining and Knowledge Discovery" journal covers various
aspects of data mining and knowledge discovery, including pattern
recognition, clustering, and data visualization. The papers published in
this journal can be relevant to the development of a tool that can analyze
and compare large datasets. By studying the research papers published in
this journal, we can gain a better understanding of the various techniques
and strategies that can be used to analyze and compare different

databases, which can be useful in the development of our comparison tool.

16



CHAPTER 3 : SYSTEM DESIGN &
DEVELOPMENT

3.1 System Design

3.2.1 Main components of Database tool

The system design for the database comparison tool involves several
components that work together to enable users to compare database entries.
The following sections provide an overview of each component and its

functionality.

1. User Interface (UI):

The user interface is the front-end component of the database comparison tool,
which allows users to interact with the system. It consists of various windows,
buttons, and forms that enable users to input the necessary information and
initiate database comparison operations. The Ul should be designed to be
user-friendly and intuitive, so that users can easily navigate through the system

and perform tasks.

2. Database Connection:

The tool must be able to establish a connection to the database(s) that users
want to compare. Depending on the comparison scenario, the user may be
required to input the connection details for one or more databases. The tool
should be designed to verify the validity of the connection details and display

an error message if the connection cannot be established.
3. Table Selection:

Once a database connection is established, the user can select the tables that

they want to compare. The tool should be able to retrieve the metadata for

17



each table and display it on the Ul, including the column names, data types,
and descriptions. The user should be able to select the columns that they want

to compare.

4. Comparison Operations:

The tool should be able to compare the selected columns of the two tables and
identify any matched or unmatched records. The comparison algorithm should
be designed to handle different data types and formats, and should be able to
perform various types of comparison operations, such as exact match, partial

match, and fuzzy match.

5. Operation Buttons:

The UI should include buttons that allow users to perform various operations
on the selected tables, such as adding new records, updating existing records,
and deleting records. These buttons should be disabled if the user does not

have the necessary permissions to perform the operation.

6. History Table:

If the user is comparing a table with its history table for previous record
values, the user must input the database connection for the history table. The
tool should be able to retrieve the data from the history table and display it on
the UI. The user should be able to commit the changes made to the table to the
history table.

7. Result Set:

The tool should be able to generate a result set based on the comparison
operation performed by the user. The result set should display the matched and
unmatched records in a user-friendly format, such as a table or a chart. The
user should be able to export the result set to various formats, such as CSV or

Excel.

18



3.1.2 Spring Framework Architecture

The Spring Framework architecture is designed to be modular and extensible,
allowing developers to choose the components that they need and leaving out
the ones that they do not need. The Spring Framework consists of several
modules that can be used independently or in combination with other modules.
The core module of the Spring Framework is the Spring Container, which is
responsible for managing the lifecycle of Java objects. The container is
responsible for creating, initializing, and managing the objects, and it provides

a layer of abstraction between the application and the underlying Java classes.

The Spring Framework also includes several other modules, such as Spring
MVC, which is used for building web applications, and Spring Data, which
provides support for data access and persistence. Spring Security is another
module that provides authentication and authorization functionality for

securing web applications.

The key components of the Spring Framework include the following:

1. Inversion of Control (IoC) Container: The IoC container is responsible
for managing the lifecycle of Java objects and providing dependency
injection. The container creates and manages the objects, and it injects

the required dependencies into the objects at runtime.

2. Spring MVC: Spring MVC is a module of the Spring Framework that
is used for building web applications. It provides a
Model-View-Controller (MVC) architecture for separating the

presentation layer from the business logic and data access layer.

3. Spring Data: Spring Data is a module of the Spring Framework that

provides support for data access and persistence. It supports several

19



data stores, such as relational databases, NoSQL databases, and cloud

storage services.

4. Spring Security: Spring Security is a module of the Spring Framework
that provides authentication and authorization functionality for
securing web applications. It supports several authentication
mechanisms, such as form-based authentication, OAuth, and OpenlD
Connect. These security features are great but we would not be using
this database tool as an open source available to public tool hence a lot

of security comes from it being closed/ proprietary software.

How Spring Framework Works:

The Spring Framework works by providing a set of pre-built components and
modules that developers can use to build enterprise applications. The
framework provides a layer of abstraction between the application code and
the underlying Java classes, making it easier to manage and maintain the code.
The IoC container is responsible for creating and managing the objects, and it
injects the required dependencies into the objects at runtime. This allows
developers to focus on the business logic of the application rather than

worrying about managing the object lifecycle and dependencies.

The AOP framework is used for modularizing cross-cutting concerns, such as
logging and transaction management. AOP allows developers to separate the
concerns of an application into different modules, making it easier to manage
and maintain the code. The Spring MVC module provides a
Model-View-Controller (MVC) architecture for separating the presentation
layer from the business logic and data access layer. This makes it easier to

build web applications that are easy to manage and maintain.

Using Spring MVC, we are able to divide our web application into three

distinct layers, which are the model, view, and controller. The model

20



represents the data and the business logic of the application, the view
represents the user interface, and the controller acts as the mediator between
the model and the view. This separation of concerns makes our code more

modular, maintainable, and easier to test.

3.4 Connection details Front to Back-End: Form Data Class

is a Java class named "FormData" which is used to store and communicate the
connection data for different MySQL-connection classes. The class has private
member variables such as "serverUrl", '"databasel", '"database2",
"portNumber", "username", "password", and "tableName" that are used to

store the details for establishing the connection with the MySQL database.

The class provides two constructors, including a default constructor and a
parameterized constructor, which initialize the private member variables of the
class. The parameterized constructor takes the values for the "serverUrl",
"databasel", '"database2", "portNumber", "username", "password", and
"tableName" variables and initializes the corresponding private member
variables of the class with these values. The class provides public getter and
setter methods for all the private member variables, which allow accessing and
modifying the values of these variables. For example, the "getServerUrl()"
method returns the value of the "serverUrl" private member variable, and the
"setServerUrl(String serverUrl)" method sets the value of the "serverUrl"
private member variable to the passed parameter. The "isValid()" method is
used to check the validity of the connection details. This method checks if all
the private member variables of the class are initialized and have non-empty
values. If any of the values are null or empty, the method returns false,

otherwise, it returns true.

In conclusion, the "FormData" class is a vital component of the project that

stores and communicates the MySQL database connection details for various

21



connection classes. This class is designed to ensure that all the required details
for establishing a connection with the database are available, and the provided

values are valid before proceeding with the connection process.

3.5 Testing Database Connections

Most of our data is stored and handled by Oracle Db in our company hence,
our end specification will be tailored to work best with Oracle Db servers and
Databases. During Development we used MySQL Database Servers due to
their Open source nature and minimal access needed. This class
MysqlConnection.java deals with connection with two databases and other
methods. using JDBC (Java Database Connectivity) to connect with a MySQL
database server. The code is designed to establish a connection with MySQL
using the provided database URL, username, and password. It also has
methods to check if the provided databases exist and if the provided table is
accessible in both databases. The code uses the Apache logging library to log
events and to generate logs. In addition, the code provides a method to retrieve

data from the provided table in both databases and store them in an ArrayList.

Code Structure- The code consists of a single class named MysqlConnection.
It includes several import statements to import required classes and libraries.
The code has a private constructor and a private instance of the
MysqlConnection class. It has a Connection object to establish the connection
with the MySQL database. The connection object is initialized using the
provided database URL, username, and password. The code uses the Singleton
design pattern to ensure that only one instance of the MysqlConnection class

can be created at a time.
Methods-The code has several methods to perform database operations. The

getConnection method returns the established connection with the MySQL

database. The closeConnection method is used to close the connection to the

22



database. The checkDatabases method is used to check if the provided
databases exist and if the provided table is accessible in both databases. The
method takes three parameters: two database names and the table name. The
method returns true if both databases exist and the table is accessible in both

databases; otherwise, it returns false.

The getTablesFromDatabases method is used to retrieve data from the
provided table in both databases. The method takes three parameters: two
database names and the table name. The method returns a List of Lists of Lists
of Strings, which represents the retrieved data. The method retrieves data from
both databases and stores it in a List of Lists of Strings. The first List
represents the table from the first database, and the second List represents the
table from the second database. Each table is represented by a List of Lists of
Strings, where each List represents a row in the table, and each String

represents a value in the row.

Logging- The code uses the Apache logging library to log events and to
generate logs. The library is used to create a logger object named logger,
which is used to log events. The logger object logs events of different levels,
such as info, debug, error, and warning. The logs generated by the logger

object can be stored in a file or displayed on the console.

3.4 Form Controller

This Controller class in spring is the file that acts as a controller for a web
application. The controller receives HTTP requests and processes them by
executing the appropriate business logic. In this case, the controller establishes
a connection with a MySQL database and performs some operations on it and
creates object which is used for storing and communication of connection data

to various SQLDB-connection classes

23



1 package com.project;
2
3 public class FormData {
4
5 private String serverUrl;
6 private String databasel;
7 private String database2;
8 private int porthNumber;
9 private String username;
10 private String password;
11 private String tableName;
12
13 public FormData() {
14 }
15
16 public FormData(String serverUrl, String databasel, String
17 database2, int portNumber, String username, String password,
18 String tableName) { this.serverUrl = serverUrl; this.database2 =
19 databasel; this.database2 = database2; this.portNumber =
20 portNumber; this.username = username; this.password = password;
21 this.tableName = tableName; }
22
23 public String getServerUrl() {
24 return serverUrl;
25 }
26
27 public void setServerUrl(String serverUrl) {
28 this.serverUrl = serverUrl;
29 }
30
31 public String getdatabase2() {
32 return database2;
33 }
34
35 public void setdatabase2(String database2) {
36 this.database2 = database2;
37 }
38
39 public String getdatabasel() {
40 return databasel;
41 }
42
43 public void setdatabasel(String databasel) {
44 this.databasel = databasel;

FIG 6: CODE FOR FORM_DATA CLASS (1)

24



45 }

46

47 public int getPortNumber() {

48 return portNumber;

49 }

50

51 public void setPortNumber(int portNumber) {

52 this.portNumber = portNumber;

53 }

54

55 public String getUsername() {

56 return username;

57 )

58

59 public void setUsername(String username) {

60 this.username = username;

61 )

62

63 public String getPassword() {

64 return password;

65 r

66

67 public void setPassword(String password) {

68 this.password = password;

69 )

70

71 public String gettableName() {

72 return tableName;

73 )

74

75 public void settableName(String tableMame) {

76 this.tableName = tableName;

77 )

78

79 public boolean isvalid() {

80 return tableName /= null && !tableName.isEmpty() &&
81 databasel I= null && !databasel.iskEmpty() &&
82 database2 I= null && !database2.isEmpty() &&
83 /*portNumber > 0 &&*/

84 username != null & lusername.isEmpty() &&
85 serverUrl I=null && IserverUrl.isEmpty() &&
86 password I= null && Ipassword.isEmpty();
87 }

88 )}

FIG 7: CODE FOR FORM_DATA CLASS (2)

The code uses the Spring Framework's annotations to map the HTTP requests
to the appropriate methods in the controller. It also uses a custom class to
establish a connection with the database. The class starts with a package
declaration followed by a list of import statements. The import statements
bring in the required classes from various packages used in the code. The

classes imported include FormData, Connection, DriverManager, ResultSet,

25



Statement, List, HttpServletRequest, HttpServletResponse, HttpServlet,
Controller, Model, ModelAttribute, RedirectAttributes, and RequestMethod.
The class definition starts with an annotation, @Controller, which is a Spring
Framework annotation indicating that the class is a controller. The class

extends HttpServlet, indicating that it is a servlet.

Database Comparison Tool

Database Comparison User Tool

Server Name: Server Name:

Options = Choose.. & Options = Choose.. -
Hostname: Hostname:

ex: jon_host.dot.com ex: jon_host.dot.com
Enter Port Number: Enter Port Number:

ex: B080 - ex: 8080 <
Username: Username:

Enter Username Enter Username
Password: Password:

Enter password Enter password

Connect Connect

FIG 8: CONNECTION PAGE Ul

The class has two methods with @RequestMapping annotations. The first
method, serverConnect(), handles the HTTP GET requests for the root path
and /connect path. This method creates an object of the FormData class,

provides it to the model, and returns the name of the view file. The second

26



method, submitForm(), handles the HTTP POST requests for the /submitForm
path. This method takes the form data as an input and attempts to establish a
connection with a MySQL database using the provided credentials. It then
checks whether the specified databases contain the specified table. If both
databases are accessible and contain the table, the method adds a success
message to the redirectAttributes and returns the name of the view file. If there
is an error, it adds an error message to the redirectAttributes and redirects the
user back to the /connect path. The method uses a custom class,
MysglConnection, to establish a connection with the MySQL database. It uses
the getlnstance() method of the MysqlConnection class to create a new
connection object. The method then calls the checkDatabases() method of the
connection object to check whether both databases exist and contain the

specified table.

If the checkDatabases() method returns true, the method calls the
getTablesFromDatabases() method of the connection object to get a list of
tables that match the specified table name in both databases. It then adds this
list to the request object as an attribute with the key "tables". Finally, the
method returns the name of the view file, which is confirmForm.jsp, if there is

no error, or redirects the user back to the /connect path if there is an error.

3.6 Pom.xml (Maven)

The code snippet above represents an XML file that is commonly used in Java
projects that use the Maven build automation tool. The XML file contains a set
of configurations that define the project's dependencies and build settings.

This XML file contains the necessary configuration for a Java web application
that uses several popular libraries for web development and logging. It defines
the dependencies required by the project, as well as the build process for

generating the final artifact. With this configuration, developers can easily

27



build and deploy their Java web application without worrying about manually

configuring the dependencies and build process.

At the top level, the file declares the project namespace and version using the
XML namespaces "http://maven.apache.org/POM/4.0.0" and the other as
"http://www.w3.0rg/2001/XMLSchema-instance", respectively. The project's
information, such as the group ID, artifact ID, and version, is then specified
within the <modelVersion>, <groupld>, <artifactld>, and <version> tags. The
<packaging> tag specifies the type of artifact that is being produced, in this
case, a "war" (Web Archive) file. The <name> tag specifies the name of the

project, and the <url> tag specifies the URL of the project's homepage.

The <dependencies> section lists all the external libraries that are required by
the project. The dependencies are declared using the <dependency> tag, which
contains the group ID, artifact ID, and version of the library. In this particular
case, the project depends on several libraries, including JUnit, Spring Web
MVC, and JSTL, which are all used for web development, as well as Log4j,
which is a logging framework. The <scope> tag specifies the context in which
the dependency is used. For instance, the "test" scope indicates that JUnit is

only required for running the project's unit tests.

The <build> section specifies the configuration for the project's build process.
The <finalName> tag sets the name of the output file that is generated by the
build process. The <plugins> section contains a set of Maven plugins that are
used during the build process. The first plugin, "spring-boot-maven-plugin", is
used to generate an executable JAR file for the project. The second plugin,
"maven-war-plugin”, is used to generate a "war" file, which is a format
commonly used for deploying web applications on a Java application server.
The third plugin, "maven-compiler-plugin", is used to configure the compiler
settings for the project. The <source> and <target> tags specify the Java

version that the project is compiled against, in this case, Java 7.

28



3.6.2 Table Comparison class

The TableComparator class with code shown below is designed to compare
two tables, represented by instances of the TableClass, to determine if they
have the same schema and data. The class contains three methods:

compareSchema(), compareData(), and getDifferentRows().

1 package com. 5

2

3  import java.util. 3

4 import java.util. H

5 import java.util. 5

6 import java.util. B

7

8 public class {

9 private TableClass tablel;
10 private TableClass tablel;
11

12 public (TableClass tablel, TableClass table2) {
13 this.tablel = tablel;

14 this.table2 = table2;

15 }

16

17 public boolean O {

18 List<ColumnClass> columnsl = tablel.getColumns();
19 List<ColumnClass> columns2 = table2.getColumns();
20

21 if (columnsl.size() /= columns2.size()) {

22 return false;

23 }

24

25 for (int i = @; 1 < columnsl.size(); i++) {

26 if (Icolumnsi.get(i).getName().equals(columns2.get(i).getName())) {
27 return false;

28 )

29

30 if (columnsl.get(i).getType() I= columns2.get(i).getType()) {
31 return false;

32 )

33 }

34

35 return true;

36 1

37

38 public boolean 0 {

39 List<Map<String, Object>> datal = tablel.getData();
40 List<Map<String, Object>> data2 = table2.getData();
41
42 if (datal.size() I= data2.size()) {
43 return false;
a4 I

FIG 9: CODE FOR TABLE_COMPARATOR CLASS (1)

29



45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6l
62
63
64
65
66
6/
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
a8

List<String> columnsl = getColumnNames(tablel.getColumns());
List<String> columns2 = getColumnNames(table2.getColumns());

for (Map<String, Object> rowl : datal) {
boolean found = false;

for (Map<String, Object> row2 : data2) {
boolean match = true;

for (String column : columnsl) {
if (Irowl.get(column).equals(row2.get(column))) {
match = false;
break;

¥
if (match) {

found = true;
break;

}

if (!found) {
return false;
}

}

return true;

}

public List<Map<String, Object>> getDifferentRows() {
List<Map<String, Object>> datal = tablel.getData();
List<Map<String, Object>> data2 = table2.getData();

List<String> columnsl = getColumnNames(tablel.getColumns());
List<String> columns2 = getColumnNames(table2.getColumns());

List<Map<String, Object>> differentRows = new Arraylist<>();

for (Map<String, Object> rowl : datal) {
boolean found = false;

for (Map<String, Object> row2 : data2) {

FIG 10: CODE FOR TABLE_COMPARATOR CLASS (2)

30



89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
1087
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134
135
136
137
138
139
140
141

boolean match :_true;

for (String column : columnsl) {
if (Irowl.get(column).equals(row2.get(column))) {
match = false;
break;

}

if (match) {
found = true;
break;

¥

if (!found) {
Map<String, Object> differentRow = new HashMap<>();

for (String column : columnsl) {
differentRow.put(column, rowl.get(column));

}

differentRows.add(differentRow);

¥

for (Map<String, Object> row? : data2) {
boolean found = false;

for (Map<String, Object> rowl : datal) {
boolean match = true;

for (String column : columns2) {
if (!rowl.get(column).equals(row2.get(column))) {
match = false;
break;

if (match) {

found = true;
break;

if (!found) {
differences.add(row2);

¥
3

return differences;

FIG 11: CODE FOR TABLE_COMPARATOR CLASS (3)

31



The TableComparator class provides a useful tool for comparing the schemas
and data of two tables, which is an important functionality in database
management and analysis. By using this class, developers can ensure that their
tables are consistent and that any discrepancies can be identified and
corrected.

The compareSchema() method compares the schemas of the two tables by
iterating over their respective ColumnClass lists and checking if the names
and types of each column match. If the sizes of the lists differ or any column
names or types do not match, the method returns false. Otherwise, it returns

true.

The compareData() method compares the data of the two tables by iterating
over their respective data lists and checking if each row has a corresponding
matching row in the other table. If the sizes of the data lists differ, the method
returns false. Otherwise, it compares each row in one table to each row in the
other table until a match is found or all rows have been checked. If a match is

not found for any row, the method returns false. Otherwise, it returns true.

The getDifferentRows() method returns a list of the rows that are different
between the two tables. It does this by iterating over the data in both tables and
adding any row that is present in one table but not the other to a list. It first
checks for rows in tablel that are not in table2, then for rows in table2 that are
not in tablel. For each row that is different, it creates a new Map with the

same column names as the original row and adds it to a list of different rows.

3.6.3 Result Set Download class

The below code presents a Java class named "ResultSetDownloader," which
provides the option to download the result set generated after comparing
tables, databases, schema, and performing other comparison operations on
them in the form of an Excel (.xlsx) or Comma-Separated Values (CSV) file.

This class is designed to take in a list of maps, where each map represents a

32



single row of the result set, and each key-value pair in the map represents a

column name and its corresponding value, respectively.

1 package com.project;
2
3  import java.io.File; import java.io.FileOutputStream; import
4 java.io.IOException; import java.util.List; import java.util.Map;
5 import org.apache.poi.ss.usermodel.*; import
6 org.apache.poi.xsst.usermodel.XS55FWorkbook;
7
8 public class ResultSetDownloader {
9
10 public static void downloadResultSet(List<Map<String, Object>> resultSet,
11 String fileName, String fileType) throws IOException {
12
13 // Create a new workbook
14 Workbook workbook;
15 if (fileType.equals("x1sx™)) {
16 workbook = new XSSFWorkbook();
17 } else {
18 throw new IllegalArgumentException("Invalid file type. Please choose xlsx or csv.");
19 }
20
21 // Create a new sheet
22 Sheet sheet = workbook.createSheet("Result Set™);
23
24 // Create header row
25 Row headerRow = sheet.createRow(@);
26 int columnCount = @;
27 for (String columnName : resultSet.get(@).keySet()) {
28 Cell cell = headerRow.createCell(columnCount++);
29 cell.setCellValue(columnName);
30 1
31
32 // Create data rows
33 int rowCount = 1;
34 for (Map<String, Object> row : resultSet) {
35 Row dataRow = sheet.createRow(rowCount++);
36 columnCount = @;
37 for (String columnName : row.keySet()) {
38 Cell cell = dataRow.createCell(columnCount++);
39 cell.setCellValue(row.get(columnName).toString());
10 }
11 1
42
43 // Auto-size columns
44 for (int i = @; i < columnCount; i++) {
45 sheet.autoSizeColumn(i);
46 }
47
42 // Write the workbook to a file
49 File file = new File(fileName);
50 FileOutputStream outputStream = new FileOutputStream(file);
51 workbook .write(outputStream);
52 outputStream.close();
53 }
54 %
55

FIG 12: CODE FOR RESULTSET_DOWLOADER CLASS (1)

33



To begin with, the method named "downloadResultSet" takes three arguments,
i.e., the list of maps (resultSet), the file name to be created (fileName), and the
type of file to be generated (fileType). The method first checks if the fileType
argument is valid or not. If it is not "xIsx," it throws an

Illegal ArgumentException with a message to choose xlIsx or csv as the file

type.

After validating the file type, the method creates a new workbook using the
Apache POI library, which is an open-source library used for working with
Microsoft Office files. The code uses the XSSFWorkbook class, which is used

to create a new .xlIsx file.

Show entries Search: l I

Name 1& Position Office Age Start date Salary
Airi Satou Accountant Tokyo 33 2008/11/28 $162,700
Alice Wang Product Manager Los Angeles 31 2017/09/30 $135,000
Andrew Davis Financial Analyst Chicago 29 2016/06/15 $80,000
Anna Garcia HR Specialist Mexico City 31 2015/05/10 $75,000
Ashton Cox Junior Technical Author San Francisco 66 2009/01/12 $86,000
Benjamin Kim Web Developer Boston 26 2018/08/06 $95,000
Bradley Greer Software Engineer London a1 20121013 $132,000
Brielle Williamson Integration Specialist New York 61 2012/12/02 $372,000
Cedric Kelly Senior Javascript Developer Edinburgh 22 2012/03/29 $433,060
Charde Marshall Regional Director San Francisco 36 2008/10/16 $470,600
Name Position Office Age Start date Salary

Showing 1 to 10 of 45 entries

FIG 13: UI FOR DUAL TABLE RESULTVIEW (1)

Next, the code creates a new sheet in the workbook with the name "Result
Set." Then, it creates a header row in the sheet, where each cell in the header

row represents a column name in the result set. It uses a for loop to iterate over



the key set of the first map in the resultSet list, which represents the column
names. For each column name, it creates a new cell in the header row with the
column name as its value.

After creating the header row, the code creates data rows in the sheet, where
each row represents a single map in the resultSet list. It uses another for loop
to iterate over each map in the resultSet list. For each map, it creates a new
row in the sheet, and for each key in the map, it creates a new cell in the row
with the corresponding value as its value.

Once the data rows are created, the code auto-sizes the columns of the sheet to
fit the content of the cells. It uses a for loop to iterate over each column in the
sheet and calls the autoSizeColumn method to auto-size the column based on

the content in the cells.

Show entries Search: |San l

Name |z Position Office Age Start date Salary
Ashton Cox Junior Technical Author San Francisco 66 2009/01/12 $86,000
Charde Marshall Regional Director San Francisco 36 2008/10/16 $470,600
Colleen Hurst Javascript Developer San Francisco 39 2009/09/15 $205,500
Daniel Kim Software Engineer San Francisco 28 2018/03/12 $110,000
Herrod Chandler Sales Assistant San Francisco 59 2012/08/06 $137,500
Jane Doe Software Engineer San Francisco 28 2018/02/14 $120,000
Name Position Office Age Start date Salary

Showing 1 to 6 of 6 entries (filtered from 45 total entries)

FIG 14: PERFORMING SEARCH OPERATION IN RESULTVIEW (2)

Finally, the code writes the workbook to a file with the specified file name
using the FileOutputStream class. It then closes the output stream, completing
the download of the result set.

Standard views are calculated when the view is read and are not saved to disc.

Materialized views are saved and accessed from disc on demand. Standard



views rely on the underlying collection's indexes. As a consequence, you
cannot directly create, drop, or rebuild indexes on a conventional view, nor
can you retrieve an array of index on the view. On-demand materialized views
outperform normal views in terms of read performance since they are accessed
from disc rather than calculated as part of the enquiry. This speed advantage
grows in proportion to the sophistication of the process and the amount of

information being aggregated.

36



CHAPTER 4 : EXPERIMENTS & RESULT
ANALYSIS

For the testing analysis of the project, we would be using JUnits
framework. JUnit is a popular Java-based open-source testing
framework that is widely used in software development to write
and run automated tests. It is a unit testing framework that
facilitates the testing of individual units of code, ensuring that they
work as expected. With JUnit, developers can easily create test
cases for their code, execute them automatically, and obtain
feedback on the behavior of their application. JUnit allows
developers to create test cases using annotations, making it easy to
write and manage tests. Developers can use the @Test annotation
to mark test cases, (@Before to set up any necessary data or objects,
and @After to clean up after the test. JUnit also provides a variety
of assertion methods, allowing developers to test for a wide range
of expected behaviors. For example, developers can use the
assertEquals() method to test whether two values are equal, the
assertTrue() method to check whether a condition is true, or the

assertNull() method to verify that an object is null.

4.1 Testing Parameters:

It is important to test all aspects of the software that are critical to
its functionality and performance. This may include testing
individual methods and functions, testing entire modules or

components, and testing the integration of various components and

37



modules. To ensure that the testing is comprehensive and effective,
it 1s important to define specific test cases that cover all possible
scenarios and input data. This may involve creating a suite of test
cases that include boundary testing, negative testing, and edge-case
testing. Additionally, it is important to monitor and measure the test

coverage to ensure that all code paths are being tested adequately.

4.1.1 JUnits Test Class for testing TableComparator Class:

1  package com. ;
2  import static org.junit.Assert.*;
3 import java.util H
4 import java. ;
5 dimport java.ut ;
6  dimport java.util H
7 import org.junit. N
8
9  public class {
1e
11 @Test
12 public void O {
13 List<ColumnClass> columnsl = new Arraylist<>();
14 columns1.add(new ColumnClass("columnl™, ColumnType.STRING));
15 columns1.add(new ColumnClass("column2™, ColumnType.TINT));
16 TableClass tablel = new TableClass("tablel", columnsl);
17
18 List<ColumnClass> = new Arraylist<>();
19 .add(new ColumnClass("columnl™, ColumnType.STRING));
20 .add(new ColumnClass("column2™, ColumnType.INT));
21 TableClass table? = new TableClass("table2", )
22
23 TableComparator comparator = new TableComparator(tablel, table2);
24 boolean result = comparator.compareSchema();
25
26 assertTrue(result);
27 }
28
29 @Test
3e public void O {
31 List<ColumnClass> columnsl = new Arraylist<>();
32 columnsl.add(new ColumnClass("columnl”, ColumnType.STRING));
33 columnsl.add(new ColumnClass("column2”, ColumnType.INT));
34 TableClass tablel = new TableClass("tablel", columnsl);
32
36 List<Map<String, Object>> datal = new Arraylist<>();
37 Map<String, Object> rowl = new HashMap<>();
38 rowl.put{"columnl™, "valuel™);
39 rowl.put{"column2™, 1);
4@ datal.add(rowl);
41 tablel.setData(datal);
42
43 List<ColumnClass> = new Arraylist<>();
44 .add(new ColumnClass("columnl™, ColumnType.STRING));
45 .add(new ColumnClass("column2", ColumnType.INT));
46 TableClass table? = new TableClass("table2", );
a7
48 List<Map<String, Object>> datal = new Arraylist<>();

FIG 15: CODE FOR JUNITS FOR TABLE_COMPARATOR CLASS (1)

38



49 Map<String, Object> row2 = new HashMap<>();

50 row2.put("columnl™, “valuel™);

51 row2.put("column2™, 1);

52 data2.add(row2);

53 table2.setData(data2);

54

55 TableComparator comparator = new TableComparator(tablel, table2);
56 boolean result = comparator.compareData();

57

58 assertTrue(result);

59 1

60

61 @Test

62 public void testGetDifferentRows() {

63 List<ColumnClass> columnsl = new Arraylist<>();

64 columnsl.add(new ColumnClass("columnl”, ColumnType.STRING));
65 columns1.add(new ColumnClass("column2", ColumnType.TNT));
66 TableClass tablel = new TableClass("tablel", columnsl);
67

68 List<Map<String, Object>> datal = new Arraylist<>();

69 Map<String, Object> rowl = new HashMap<>();

70 rowl.put("columnl®™, "valuel™);

71 rowl.put("column2™, 1);

72 datal.add(rowl);

73 tablel.setData(datal);

74

75 List<ColumnClass> columns2 = new Arraylist<>();

76 columns2.add(new ColumnClass("columnl™, ColumnType.STRING));
77 columns2.add(new ColumnClass("column2™, ColumnType.INT));
78 TableClass table2 = new TableClass("table2", columns2);
79

80 List<Map<String, Object>> data2 = new Arraylist<>();

81 Map<String, Object> row2 = new HashMap<>();

82 row?.put ("column1l®™, "value2");

83 row2.put("column2™, 2);

84 data2.add(row2);

85 table2.setData(data2);

86

87 TableComparator comparator = new TableComparator(tablel
88

FIG 16: CODE FOR JUNITS FOR TABLE_COMPARATOR CLASS (2)

39



4.1.2 JUnits Class for testing MySQL Connection class

package com.project;

import static org.junit.Assert.¥*;
import java.sql.SQLException;
import org.junit.After;

import org.junit.Before;
9 import org.junit.Test;

I e Y N

11 public class MysqlConnectionTest {

13 private MysqlConnection mysqlConnecti

14

15 @Before

16 public void =etUp() throws Exception {

17 mysqlConnection = MysglCennection.getInstance("jdbc:mysql://localhost:33@6/", "user", "password");
18

19

2@ @After

21 public void tearDown() throws Exception {

22 mysqlConnection.closeConnection();

23 1

24

25 @Test

26 public void testGetInstance() throws SQLException {

27 MysglConnection instancel = MysqlConnection.getInstance("jdbc:mysql://localhost:33086/", "user", "password");
28 MysglConnection instance2 = MysqlConnection.getInstance("jdbc:mysql://localhost:3306/", "user", "password");
29

3@ assertNotNull(instancel);

31 assertMotNull(instance2);

32 assertSame(instancel, instancel);

33 1

34

35 @Test

36 public void testGetConnection() {

37 assertNotNull(mysqlConnection.getConnection());

38 1

39

40 @Test

41 public void testCheckDatabases() {

42 boalean resu mysqlConnection.checkDatabases("databasel", "database2", "tablel");
43 assertTrue(result);

vl }

45

46 @Test

47 public void testGetTablesFromDatabases() throws SQLException {

48 String dbl = “"databasel™:

49 String db2 = "database2";

50 String tableName = “tablel™;

51

52 assertEquals(2, mysglConnection.getTablesFromDatabases(db1l, db2, tableName).size());
53 T

54

55 )

56

FIG 17: CODE FOR JUNITS FOR MYSQL_CONNECTION CLASS (1)

40



4.1.3 JUnits class for testing FormData class:

1 package com.project;

2

3 dimport org.junit.Test;

4 import static org.junit.Assert.*;

5

6 public class FormDataTest {

7

8 @Test

g public void testIsValid() {
1@ // Create a new FormData object with valid values
11 FormData formData = new FormData(
12 "localhost™, "databasel", "database2", 3386, "username", "password", "table_name"
13 );
14
15 // Test that the object is valid
16 assertTrue(formData.isValid());
17
18 // Test with a null tableName
19 tormData.settableName(null);
20 assertFalse(formData.isValid()});
21
22 // Test with an empty tableName
23 formData.settableName(™™);
24 assertFalse(formData.isvalid()});
25
26 // Test with a null databasel
27 formData.setdatabasel(null);
28 assertFalse(formData.isValid(});
29

30 /f Test with an empty databasel
31 formData.setdatabasel("");

32 assertFalse(formData.isValid(});
33

34 // Test with a null database?2

35 formData.setdatabase2(null);

36 assertFalse(formData.isvalid()});
37

38 // Test with an empty database?
39 formData.setdatabase2("");
40 assertFalse(formData.isValid(});
41
42 // Test with a null portNumber
43 formData.setPortNumber(@);
44 assertFalse(formData.isValid(});
45
46 // Test with a negative portNumber
a7 formData.setPortNumber(-1);
48 assertFalse(formData.isValid(});

FIG 18: CODE FOR JUNITS FOR FORM_DATA CLASS (1)

41



50 S/ Test with a null username

51 .setUsername(null);

52 assertFalse( . ()
53

54 // Test with an empty username
55 .setUsername("");

56 assertFalse( . 0));
57

58 /S Test with a null serverUrl
59 . (null);

6@ assertFalse( . )
62 [/ Test with an empty serverUrl
63 - "");

64 assertFalse( )
65

66 // Test with a null password

67 . (null);

68 assertFalse( . )
70 // Test with an empty password
71 . "");

72 assertFalse( . 0));
73 }

74

75

FIG 19: CODE FOR JUNITS FOR FORM_DATA CLASS (2)

4.1 Test Results:

4.1.1 Result of JUnits class for testing TableComparator class:

The test file for Table Comparator Class consists of three methods,
each of which tests a different aspect of the TableComparator class.
If the TableComparatorTest passes, it means that the
TableComparator class is working correctly, and is able to compare
tables correctly. This is important because it ensures that the class
is able to identify differences between tables and return accurate
results. The passing of the test also means that the class is able to
handle different data types and compare tables with different

schemas.

42



Passing the TableComparatorTest also ensures that the code is
robust and has fewer errors. The test covers a range of scenarios,
including comparing tables with different data types and different
schemas. The passing of the test means that the code has fewer
bugs, and is more stable. It also means that the code is able to

handle unexpected inputs without crashing.

FIG 20. CONSOLE OUTPUT FOR TABLE_COMPARATOR TEST

4.1.2 Result of JUnits class for testing MySQL Connection class:

If the MySQL connection test passes, it means that the application
is able to establish a successful connection with a MySQL
database. The MySQL connection test is an important part of
testing any application that uses a MySQL database, as it ensures
that the application is able to communicate with the database and
perform operations on it.
A successful MySQL connection test is indicative of the following:

e The MySQL server is running and accepting connections

e The credentials provided to the MySQL server are valid

e The application is able to communicate with the MySQL

Server

43



e The application is able to authenticate itself with the MySQL

SCrver

FIG 21. CONSOLE OUTPUT FOR MYSQL_CONNECTION TEST

A failed MySQL connection test could indicate a number of issues,
such as incorrect credentials, network connectivity issues, or a
misconfigured MySQL server. In such cases, it is important to
troubleshoot the issue and resolve it before proceeding with further

testing.

4.1.3 Result of JUnits class for testing FormData class:

When the FormData test passes, it means that the FormData object
is working as intended. The FormData object is used to represent
form data in an HTML form, allowing you to easily send the data
to a server using an XMLHttpRequest object. Passing the
FormData test indicates that the object is properly able to collect
form data, including any files that were uploaded as part of the

form. This is important for web developers, as it allows them to

44



easily collect and send form data to a server using JavaScript,

without needing to rely on a server-side language.

FIG 22. CONSOLE OUTPUT FOR FORM_DATA_TEST CLASS

When testing FormData, it is important to test various scenarios,
such as:
e Testing form fields with different types of data (text,
numbers, checkboxes, radio buttons, etc.)
e Testing the ability to append files to the FormData object
e Testing the ability to append multiple values for the same
form field name
e Testing the ability to append complex nested data structures
By testing these scenarios, you can ensure that the FormData object

is able to handle any form data that a user might submit.

45



CHAPTER 5 : CONCLUSIONS

In conclusion, the development of a database comparison tool has been
successfully completed. The tool is capable of comparing two different
databases based on their schema, table structures, and data entries. The
tool has been implemented using java - spring framework and several
open-source libraries, making it platform-independent and easily
modifiable for future enhancements.

The project has addressed the problem of manual database comparison,
which is a time-consuming and error-prone task. The tool has the
potential to save a significant amount of time and effort for database
administrators, developers, and analysts. The testing and validation of
the tool have shown promising results, and the tool has been able to

identify various differences between the databases accurately.

Future work can involve further enhancements and optimization of the
tool to handle more complex database structures and data types. The
user interface can be improved by integrating frontend frameworks like
React for better performance and modern standards and can also be
improved to provide more user-friendly and intuitive features.
Additionally, the tool can be integrated with other database management
systems and tools to provide a complete solution for database

comparison and management.

The tool could support collaboration between team members, allowing
multiple users to access the tool and work together on database
comparison and synchronization tasks. The tool should be flexible
enough to allow for customization based on the needs of the user. This

might include the ability to exclude certain database objects from the

46



comparison, or the ability to customize the comparison criteria. Overall,
the development of the database comparison tool has been a challenging
and rewarding experience, and it has demonstrated the potential of
technology in automating complex tasks and improving productivity in

the field of database management.

47



REFERENCES

[1]  Hernandez, M. J. (2003). Database design for mere mortals:
a hands-on guide to relational database design. Addison-Wesley
Professional.

[2] Coronel, C., Morris, S., & Rob, P. (2016). Database
systems: design, implementation, and management. Cengage
Learning.

[3] Teorey, T. J., Lightstone, S. S., & Nadeau, T. (2011).
Database modeling and design: logical design. Morgan Kaufmann.
[4] ACM Transactions on Database Systems. (n.d.).
https://dl.acm.org/journal/tods.

[5] IEEE Transactions on Knowledge and Data Engineering.
(n.d.).
https://ieeexplore.ieee.org/xpl/Recentlssue.jsp?punumber=69.

[6]  Guerrini, G., Kornacker, M., & Zhou, X. (Eds.). (2021).
Advances in database technology — EDBT 2021: 24th International
Conference on Extending Database Technology, Nicosia, Cyprus,
March 23-26, 2021, Proceedings. Springer.

[7]  Journal of Database Management. (n.d.).
https://www.igi-global.com/journal/journal-database-management-j
dm/1072.

[8] Data Mining and Knowledge Discovery. (n.d.).
https://www.springer.com/journal/10618.

48



