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ABSTRACT 

The Internet of Things (IoT) is a revolutionary invention that ushers in the 

digital era in the physical world. The IoT boom has resulted in an explosion of 

new products on the market, including voice assistants, smart cars, and 

smartphones. IoT technology exists to enhance and simplify daily 

conveniences. The Internet of Things (IoT) is a network of physical objects that 

are represented digitally. It can be compared to a system of embedded, internet-

connected gadgets with sensors that collect data on the objects they are 

embedded in. The Internet of Things is bringing about a new wave of 

automation, intelligence, and control. IoT sensors monitor the environment for 

changes or anomalies and provide feedback to people or systems so they can 

react appropriately. Real inclusion and exclusion criteria, as well as a thorough 

analysis, were used to choose the primary analysis. IoT infrastructures often 

connect sensors, controllers, and the outside world through a central node or 

gateway. 

The adage "Necessity is the Mother of Invention" sums up the creation of WSN 

nicely. As technology has improved, systems have accelerated the creation of 

smart sensors. As a result, a network can be built using different sensor nodes. 

Applications for wireless sensor networks include military operations, 

monitoring vital infrastructure, and data collection in dangerous locations. 

Weather that poses a threat has an influence on the WSNs that remote sensor 

organizations use to monitor their systems. Sensor hubs are designed to function 

independently under potentially hazardous circumstances. A sensor node's 

lifespan might vary from a few hours to months or years, depending on the 

environment it functions in. As a result, WSNs are susceptible to defects, which 

are likely to occur frequently and randomly. The ability to distinguish between 

malfunctioning and functioning nodes due to errors is crucial in a sensor 

network. Fault management poses a substantial design difficulty for WSNs 

because to all of these factors. Faults must be treated with particular care and 

respect. As a result, WSNs are susceptible to flaws, which are unpredictable and 
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likely to occur frequently. There will always be flaws in a sensor network, thus 

it's critical to distinguish between malfunctioning and functional nodes. Fault 

management poses a substantial design difficulty for WSNs because to all of 

these factors. Faults must be treated with particular care and respect. As a result, 

WSNs are susceptible to flaws, which are unpredictable and likely to occur 

frequently. There will always be flaws in a sensor network, thus it's critical to 

distinguish between malfunctioning and functional nodes. Fault management 

poses a substantial design difficulty for WSNs because to all of these factors, 

faults must be treated with particular care. 

The project's goal is to create a network structure for a fault-tolerant data 

collection system that can handle various faults and data transmission failures. 

It offers a trustworthy, fault-tolerant framework that offers a dependable and 

fault-tolerant structure that may be used in future IoT applications on different 

patterns. 

 

Keywords: Fault-Tolerance, Redundancy, Internet of Things, Dynamic 

Reconfiguration, Remote Monitoring, Scalability, Wireless Sensor Networks 

(WSNs), Sensors Management, Network Architecture, Network Topology, 

Data Transmissions, IoT Applications. 
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Chapter-1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

70% of the world's inhabitants are projected to live in urban regions by 2050. 

Cities must make use of contemporary information and communications 

technologies to promptly deliver up-to-date information to their residents in 

order to facilitate such rapid expansion. The Internet of Things (IoT) is one of 

the technological advancements that is frequently cited as a viable solution. 

Many of the current smart cities have standalone, non-interoperable IoT 

systems. Instead of creating many discrete closed form systems, IoT devices 

mounted on various assets should be networked to increase efficiency and 

realize the full potential of smart cities. Both public and private IoT 

infrastructures should be shared to prevent overprovisioning and pointless 

redundancy. For example, a smart city typically has a number of Data Things. 

For instance, a smart city usually includes a range of applications; hence, 

different apps may be compliant with the same set of devices. Additionally, it's 

possible that numerous programmers will use the same information. The 

reduced deployment costs, time, and maintenance needs of the shared 

infrastructure in such a case will benefit applications greatly. Additionally, 

using the infrastructure-as-a-service business model, identical infrastructure can 

be made available to apps for a fee. The allocation of resources, data collecting, 

data privacy and security, energy use, and a few other issues must all be 

resolved. Modern protocols for IoT and WSN applications have been primarily 

developed to enhance network hierarchy and performance. For instance, the 

changes investigated put a strong emphasis on automating job management and 

maintenance as well as boosting resilience against failures (such as electrical or 
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communication failures). As a result, third-party management protocols (like 

SNMP) keep track of the node's state and issue alerts. The majority of Internet 

of Things (IoT) applications are made up of software components that are 

dispersed throughout the network as perception, data processing, storage.  

The network shown in Figure [1] shows the majority of IoT networks 

concentrate on fault-tolerant data analysis and transmission, an architecture-

based characteristic of the ensuing data processing and storage modelling are 

defined- 

 

 

 

Fig. 1.1: Architecture of Internet of Things (IoT) 

 

Since multiple applications may query data sources simultaneously and the 

freshness of the data must be maintained, the process of data collection presents 

a significant challenge. Depending on this factor, either a single node or several 

nodes dispersed across the IoT system should run data analysis software. In 

other words, when IoT processing and storage software is deployed to hardware, 

it is referred to as distribution. The Fault is decreased by employing a distributed 

approach since data flow and bandwidth use are minimized results in the easy 

communication between the devices and respective nodes. 
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1.2 Problem Statement 

Due to the numerous variances in Internet of Things (IoT) devices topologies, 

morphology, environmental conditions, the identification and categorization of 

fault tolerant methods has proven to be a difficult challenge for specialists. 

Traditional identification techniques including error detection, error masking, 

error monitoring, and error recovery using data are time-consuming, costly and 

need a deep understanding of botany. The development of an accurate and 

effective system using Fault Tolerant Data Collection Algorithms to identify 

and classify various types of faults present in the IoT devices on a very large 

scale is necessary due to the growing demand for IoT devices and smartly 

connected things due to their potential health benefits in the field of medicine, 

safety, and the need for sustainable and responsible fault tolerant devices 

development practices. 

This system will be created utilizing a cutting-edge fault-tolerant algorithm that 

can analyses the error and locate the defect using visual characteristics and 

patterns in the channeled data to identify and deliver simple and rapid results 

for the device where the error occurred. The algorithmic operations of several 

models for the delay and fault, together with their related labels, will be used to 

train the system.  On the other hand, applications like permafrost monitoring 

demand continuous and rapid data transfer over extended periods of time, which 

is classified as continuous data collection. 

 

1.3 Objectives 

A key step towards delivering service quality to consumers under a variety of 

scenarios is the development of an effective and accurate approach for 

recognizing fault in nodes and in communication connections based on their 

interoperability. To do this, the system must be preprocessed, and fault 

augmentation techniques must be used to raise the accuracy of the data 

collection and the variety of the technical domains and data nodes. Cluster 
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Heads and the parent and child nodes they are related with, together with their 

respective labels, should be present in the Sensory Base Station nodes.  

Advanced algorithms should be built to guarantee the dependable and 

continuous collection and data storage with failover mechanism through with 

rerouted data may be used. This will help design a Fault Tolerant Data 

Collection Network Structure model for identifying fault tolerance through 

optimal workload. In order to recognize multiple sorts of failures, such as node 

or link failure, power outages, and network congestion, among others, for fault 

identification jobs, these model structures may learn complicated characteristics 

and patterns in the fault failover process. The objective is to provide an 

automated, effective technique with a structural approach for correctly 

identifying and detecting the failover node in various communication protocols 

based on certain wide-ranging circumstances. 

 

The Network Structure model must be validated using a number of validation 

conditions and indicators, including:  

If the device is broken, verify its rank; if it turns out to be a dummy, change the 

topology. If it's broken, examine the number of children. Advanced fault 

tolerant techniques and fine-tuning the hyperparameters can boost the model's 

performance even more.  

For example, we may focus on specific base model scenarios and their 

conditions where the entire structure can be adjusted to increase the precision 

of the fault tolerance detection task. The Cases followed are: 

1. For Rank 1 is Faulty. 

2. For Rank > 1 & Leaf node is Dummy. 

3. For Rank > 1 & Leaf node is not Dummy. 

 

1.4 Methodology 

The parallel trees that gather data simultaneously are designed to get the data 

quickly from the same set of nodes to several storage station locations. It is 

known that the CDCT (Concurrent Data Collection Trees) network structure is 
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not optimum in terms of the number of time slots required. In this sense, we can 

fairly obtain the results i.e. rings produce less data collecting time for the same 

number of nodes since they employ more nodes than the α -rings. Fewer time 

slots would be necessary for data collection if more nodes could be used in a 

time-slot. Here, we talk about CDCT's following drawbacks. First, the 

dependency that demands a maximum of one -ring if the value is required to 

maximize beta rings total number handled in terms of µ max is unusual. The 

maximum number of devices that can be allocated to a " α -ring" is also limited 

by CDCT. The most devices that can be connected to a " β -ring" is equal to 2 

τ1 + 1. We concentrate on increasing the number of α -rings because they use 

more nodes than other rings do. The proposed method allows for a maximum 

of 2 -rings, which can be used to increase the number of rings and speed up 

concurrent data collecting. We seek to use more devices in each time-slot by 

altering the network topology by increasing the number of "rings." Additionally, 

the time slots 1 and 2 must be adjusted if the topology is based on maximizing 

the α -rings. In light of this, we suggest the updated computation of time-slots 1 

and 2, which is described in the next section. The network architecture is built 

along with the value of max number of nodes in a data stream being even either 

odd, which is another CDCT constraint. We abandon this constraint and 

demonstrate the topology creation method regardless of whether u-max is even 

or odd. As a result, whether the value of maximum number of nodes is even or 

odd, the overall number of time-slots for concurrent data gathering in the 

proposed task can be decreased. The proposed method's do-able transmission 

schedule. 

 

1.4 Organization 

The organization's research and analysis primarily concentrate on the existence 

challenges between the externally induced events and actions that interfere with 

organizational communication functionality such as data and node 

communication, providing the challenges and differences with fault detection 

and swiftly verifying them in wireless sensing networks. 
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Due to obstructions or totally due to a poor connection, communication between 

nodes is not possible. Critical systems must operate in wireless sensor networks 

with reliable connectivity. Despite this, wireless sensor networks have a 

reputation for being unstable and prone to errors that interfere with their regular 

operation. Wireless sensor networks, especially in open spaces, must be capable 

of detecting anomalies to reduce network failures. By reducing the delays in 

gathering and retrieving data from wireless sensors, as well as new problems. 

 

Network Model Development: 

 

● Increasing the fault tolerance model's efficiency while concurrently 

communicating with the Base States to hasten model development and 

enhance performance. 

● Utilize a variety of performance metrics to evaluate the model's ability 

to manage processes on a tree cluster and to use a hybrid model process 

for each running concurrent process. 

● Research to determine the variables influencing model performance, 

depending on factors including the size of the dataset, the selection of 

the hyperparameters, and the number of layers in the model, various 

alpha or beta rings may be produced on the cluster heads. 

 

 

System Validation: 

 

● Test the system thoroughly to make sure it satisfies the required 

performance and functionality standards. This includes unit, integration, 

and acceptance testing. 

● Create a procedure for continuous monitoring and feedback on errors to 

make sure the system is responsive to user needs and up-to-date. 

● Evaluate the system's ethical and legal standing to make sure it complies 

with all applicable legal and ethical standards. 
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Documentation and Reporting: 

 

● Create thorough documentation, such as technical specifications, user 

guides, and training materials, to make the project replicable and 

extensible by others. 

● Share the project's findings and outcomes through papers, conferences, 

and social media to raise awareness of the endeavor and draw in IoT-

related prospective collaborators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

 

Chapter-2 

 

  

LITERATURE SURVEY  

 

 
 

According to the research [1], the assembly of clusters of remote sensor hubs 

reduces energy dispersal by lowering the number of nodes involved in long-

distance transmission. paper [1] focuses on assembling groups of remote sensor 

hubs and energy dispersing is reduced by reducing the number of nodes 

connected with long-distance transmission. The author proposed network 

design in [1] aims to reduce delays in distant sensor network information-

gathering operations. Various clusters separate a group organization. in every 

bunch, one kind, sensor node is designated, the group leader, Cluster Head 

(CH), with many others serving as group members, Cluster Members (CM). The 

group leader will either directly or indirectly obtain information from its 

members. Energy dispersion is reduced by clustering remote sensor nodes and 

reducing the number of nodes involved in long-distance transmission. 

Information/choice combination at nodes along the information aggregation 

path can also reduce the number of information transfers and energy 

consumption. 

 

The goal of a clustering algorithm is to classify sensor nodes. One node is chosen 

to serve as the cluster head inside each cluster. Data from cluster members must 

be gathered by the cluster head, combined utilizing data/decision fusion 

techniques and sent to the distant base station. 

 

In terms of data collection efficiency, the proposed network structure is once 

again ideal, given that  

i. each sensor node may only connect to one other sensor node at a time. 

ii. Data fusion can be placed at any sensor node. 

iii. The network has been segmented into clusters.  
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For the Delay Aware Proposed network structure, a tree structure is 

recommended. To optimize data collection efficiency, the number of nodes in the 

recommended network structure must be restricted to, where it will be proved in 

a future section that such limits may be decreased by forsaking some 

performance. Each member of the cluster will be allocated a rank, which is an 

integer between 1 and k. A node with rank k will form data links with other nodes, 

each of which has a different rank ranging from 1 to k-1. All of these nodes will 

be children of the node with rank k. A data link will be made between the node 

with rank and a node with a higher rank. 

The figure addresses Circles with CM addressing the cluster of individuals. The 

circle with CH addresses the cluster head. A filled circle with BS addresses the 

base station. The position of every hub is addressed by the variable. The arrow 

addresses the presence of information connected and the heading of the arrow 

shows the course of the information stream. 

 

Let’s take an example of a proposed network structure with n = 16 nodes 

Individuals are addressed in circles with CM. The bunch head is addressed by a 

circle with CH. The base station is addressed by a filled circle with BS. The 

variable addresses the position of each hub. 

A running bolt indicates the presence of an information link, and the bolt's 

heading indicates the direction of the information stream. 
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Fig. 2.1: Proposed network topology for Delay Aware Data Collection 

 

The paper [2] aims to Trees of Concurrent Data Collection for Internet of Things 

Applications. It emphasizes utilizing α-ring, and β-ring structures (yield a more 

limited information assortment process term for a similar number of hubs). It 

follows Node to Node and Node to Base Station communication. 

 

Equal information streams present new issues for IoT defer minimization. 

Simultaneous information assortment trees are acquainted in this article with 

diminishing all-out information gathering time. IoT hubs might communicate 

with each other and interface with BSs. The work in [2] deciphers information 

assembled from different IoT gadgets is accepted to be absolutely fusible, and 

that implies that few got information bundles might be melded into one preceding 

being sent to one's parent hub. A solitary unit of information will be 

communicated for the one-time allotment, and the term of an information 

combination process is accepted to be irrelevant. Each simultaneous information 
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conglomeration activity will use an unmistakable BS to interface with the IoT 

organization, with a sum of k simultaneous information streams. 

  

The procedure for creating transmission plans for the proposed network structure 

is basically modifiable to fit extra improvement limitations or measures. One run-

of-the-mill cause of stress for portable organizations is the general 

correspondence distance of the information-gathering tree, which can essentially 

diminish the battery duration of cell phones. When the widths and number of 

alpha and beta rings are characterized, the proposed construction's N2N 

correspondence distance inside each ring can be brought down utilizing bunching 

procedures with given group sizes. This boundary can be additionally brought 

down by utilizing mobile sales rep issue solvers to change the request for the hubs 

inside each circle, subsequently shortening the general course length of the ring. 

      

Power depletion in N2BS communication collisions is a disadvantage. This part 

of Network for Concurrent Data Collection provides two unique network 

topologies known as alpha ring and beta ring to achieve the desired performance 

in data-gathering methods. When Umax = 1, the BS of each data stream can 

collect information from |N| IoT nodes using star topologies (i.e., T = |N|). Data 

aggregation processes with durations equal to (7) may be implemented in 

networks with U-max = 2 and U-max = 3 by grouping the nodes into the alpha 

ring and beta ring, respectively. 
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Fig. 2.2: Proposed network configuration for concurrent data collection 

 

 

Data collection in a network N with |N | = 9 nodes and k = 3 concurrent data 

streams. Circles and triangles indicate IoT nodes and base stations, respectively. 

The flow of data streams is shown by arrows. The text adjacent to an arrow 

indicates its data stream (i.e., A, B, C) and time-slot number (i.e., 1,, 5). 

  

The paper [3] focuses on Concurrent Data Collection Trees that are Time Optimal 

for IoT Applications. It utilizes more of the β-rings than α-rings. It has a 

combination of network topologies to lower the delays. In this research, we 

propose a network layout that reduces the number of time slots required for 

concurrent data collection.  

The network configuration is made up of a group of devices/nodes, designated 

by N = n1; n2..., n |1|, that are shared by several applications, denoted by S = s1; 

s2, S|6|. We foresee a single-hop network with gadgets connecting directly to the 

BS. A device can also communicate with any other device in its immediate 

proximity. Devices can aggregate and transfer data because the data acquired by 

numerous devices are assumed to be linked. Multiple apps may simultaneously 

request data, demanding ongoing data collection. It is assumed that all N devices 

have data to convey and are involved in data transmission. 
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Because beta-rings require more nodes than alpha-rings, the article focuses on 

expanding the number of beta-rings. The proposed approach allows for a 

maximum of two alpha-rings, which enables faster concurrent data collection by 

increasing the beta-rings. It desired to employ more devices in each time slot by 

altering the network topology and increasing the beta-rings. 

 

 

 

Fig. 2.3: α (Alpha)-Ring Structure 
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Fig. 2.4: β(Beta)-Ring Structure. 

 

 

The paper [4] examines low-energy adaptive clustering hierarchy (LEACH), a 

convention design for microsensor networks that joins the ideas of the energy-

proficient cluster-based routing and media access with application-explicit 

information aggregation to accomplish great framework lifetime. 

LEACH incorporates another dispersed bunch development procedure that 

permits huge quantities of hubs to self-sort out, calculations for adjusting nodes 

and pivoting cluster head positions to equitably convey the energy load among 

all nodes, and strategies for empowering circulated signal handling to save 

communication assets. When contrasted with universally useful multi-hop 

methods, the outcomes recommend that LEACH can increase framework life 

expectancy by a significant degree. 

In LEACH, nodes organize themselves into nearby groups, with one node filling 

in as the cluster head. All non-cluster head hubs communicate information to the 

group head, though the group head node gets information from all cluster 

members, performs signal handling processes on the information, and sends 

information to the far-off Base Station. Subsequently, being a group head node 

requires fundamentally more energy than being a non-cluster head hub. 

Assuming that the cluster heads were picked indiscriminately and stayed steady 

during the framework's life expectancy, these nodes would quickly drain their 
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restricted energy. At the point when the cluster head runs out of energy, it stops 

working and all cluster nodes lose communication capacity. 

Subsequently, LEACH consolidates a randomized revolution of the great energy 

at cluster head position among the sensors to try not to deplete the battery of any 

one sensor in the organization. Along these lines, the energy heap of a cluster 

head is uniformly disseminated among the hubs. 

 

 

CONCURRENT DATA COLLECTION TREES  

 

Consider an Internet of Things (IoT) network N = n1, n2, n|N| and a collection of 

base stations S = s1, s2, s|S|. It is expected that each of these |N| IoT nodes can 

connect to the base stations and communicate with one another. Since numerous 

incoming data packets can be fused into one before being forwarded to one's 

parent node, data collected from various IoT devices is believed to be perfectly 

fusible [6]. A single unit of data will be transmitted throughout one time slot, and 

it is believed that the time it takes to combine the data will be minimal. The total 

number of concurrent data streams is k, and each concurrent data aggregation 

process will access the IoT network via a distinct base station (BS). The issue of 

concurrent data collecting using several data streams at multiple base stations is 

first addressed by the authors in Concurrent Data Collection Trees. The 

aforementioned method is based on the design of CDCT, which is depicted as 

rings, also known as α-rings and β-rings. The data collecting time from the same 

set of nodes to many base stations is shortened as a result of this network 

structure. The network structure is predicated on the idea that nodes can combine 

data from many IoT nodes into a single packet before sending it on. It is 

anticipated that a single piece of data will be conveyed once. Such data 

aggregation operations can all operate simultaneously to a different IoT base 

station. The total amount of base stations is equivalent to the total amount of 

active data gathering operations, which is indicated by the letter k. Additionally, 

it is believed that the network's transmissions are synced. In other words, 

numerous transmissions can take place simultaneously between non-overlapping 
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sets of nodes. The proposed network configuration makes use of the most nodes 

possible during each time slot, depending on the quantity of nodes and data 

streams. Additionally, each data stream inside a time slot must use a unique 

combination of nodes for transmission. Umax specifies the maximum number of 

nodes that can be used by a data stream in its first time slot. All concurrent data 

streams should start and stop during the same time period in order to guarantee 

fairness among these users. However, each time slot in parallel data streams 

should use the same number of nodes. Each data stream should make use of the 

greatest number of nodes at each time-slot in order to accelerate the overall data 

collection process. 

 

 

TIME OPTIMAL CONCURRENT DATA COLLECTION TREES 

 

In contrast to Wireless Sensor Networks (WSNs), the Internet of Things (IoT) 

allows many applications to share the same device infrastructure. The devices 

can be queried by multiple such apps at once, which might necessitate starting 

concurrent data streams on the devices. The authors have noted this problem in 

[2]. In order to overcome this, they presented a concurrent data gathering tree 

structure known as α-rings and β-rings that is represented as rings. These rings 

are used to create the network architecture, and data is collected simultaneously 

at several base stations (BSs) using the same set of nodes. Therefore, it's crucial 

to make the most of the nodes throughout a particular time period. To do this, [4] 

concentrated on the β-rings rather than the α-rings to maximize node utilization. 

The Time Optimal CDCT network structure that minimizes the quantity of time 

slots needed for concurrent data collecting is defined here. The network 

configuration consists of a number of devices or nodes, denoted by N = {n1, n2, 

. . ., n|N|} ... base-stations (BS) S = {s1, s2, . . ., s|S|} are used to symbolize, n|N| 

that are shared by many applications. s1, s2, s3..., s|S|. We consider a single-hop 

network architecture in which devices can connect directly to the BS. A device 

can also talk to any other device in its vicinity. Assuming that the data produced 

by these devices is related, devices can combine and communicate data. 
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Concurrent data collection is necessary because multiple applications may need 

data at once. All devices in N are assumed to have some data to send, and are 

involved in data transmission. It is assumed that every device in the network N is 

engaged in data transmission and has some data to send. A certain number of 

concurrent data streams k are started in the network depending on how many of 

these parallel applications are requesting data. Each time-slot is typically thought 

of as transmitting one unit of data. The suggested network topology makes use 

of the most devices in the first τ1 time-slots, depending on the quantity of devices 

and data streams. The devices used for data transmission of various data streams 

vary depending on the time slot. U-max specifies the most devices that can be 

used by a data stream in the first time slot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

Chapter-3  

 

SYSTEM DEVELOPMENT 

 

 

3.1 Design Analysis 

 

We have recommended, after carefully reviewing the aforementioned literature 

studies and other research publications, to develop a fault tolerant data gathering 

network topology with improved fault tolerance mechanism.  

This building's design is essentially a ring of trees. When there are numerous 

nodes, it will be difficult to use just one design, which is why a hybrid 

architecture may be useful. Nodes will be arranged into clusters called "trees," 

each of which has a cluster head. Making the greatest use of the time that is 

available, the cluster heads will gather all the data from the child nodes 

concurrently. The cluster heads will employ ring architecture to interact with 

the base stations, who will then give the data to the individual processes, after 

collecting all the data from each group. Processes can either be greater than or 

less than the number of tree clusters, depending on such situation, many tree 

clusters will manage a certain process. 

Analysis: The analysis of the methodology for fault tolerance network structure 

for easily communication of processes on the large scale involves evaluating the 

performance of the structure design and interpreting the results. If there are more 

processes than tree clusters, or fewer processes than tree clusters, then more 

than one tree cluster may be controlling a particular process. On the cluster 

heads, multiple alpha or beta rings may be formed, but they must stick to the 

final time t1 + t2. The following rules must be followed while creating the 

network:  

There will be k concurrent processes, and a single process may be linked to 

several trees. 

The base stations for each concurrent process will be independent. 
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Each tree network's cluster heads will be able to interact with one another, 

meaning that each cluster head may also talk to a base station. 

 

3.2 Proposed Design 

 

 

 

 

Fig 3.1: Fault Tolerant Design 

 

Representation of Fault Tolerant Design shows the communication from: 

BS-Base Stations: Serves as a Central Communication point for wireless device 

CN-Cluster Node: Groups of servers that work together to perform task. 

CH-Cluster Head: Gathers data from its representative child node and pass data 

to base stations. 

Base Stations marks the communication from each cluster nodes to cluster 

heads to Base Station. Rank wise distribution should be provided to check the 

Time taken by each node from its child node to parent node. 

 

 



22 

 

Fig 3.2: Rank=1 [Faulty] 

The figure illustrates the (Cluster Node with K=1) i.e. Faulty, and Faulty node 

is dummy node. Dummy nodes with the Leaf Nodes [Rank=1]. Checking the 

Faulty node is whether dummy node. 

 

 

 

Fig: 3.3: Rank>1 & Leaf Node is Dummy 

The figure illustrates the (Cluster Node with K=3) i.e. Faulty. Now, If faulty 

node rank >1, check if real nodes>N/2 & dummy nodes <N/2. Then replace it 

with a workable node. Send it to its maximum ranked child in order to remove 

fault. 
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Fig 3.4: Rank>1 & Leaf Node is not Dummy 

The figure illustrates the (Cluster Node with K=3) i.e. Faulty. If faulty node 

rank >1 & real nodes <N/2 & dummy nodes >N/2. We now restructure the 

whole tree. Again, starting with reconstruction of the whole structure by the 

faulty nodes from given nodes.  

Then initializing the value of N & TN number of nodes in the form of 2^p. 

We again add dummy nodes and check for the three cases mentioned above, till 

the whole structure if it is Fault Tolerant. 

 

In the following figures, cluster heads link various tree clusters head to base 

stations and to one another. According to [3], Each tree will simultaneously 

collect data from its progeny for certain t1 time intervals. Following that, data 

will be collected simultaneously using ring architecture in t2 time periods from 

all cluster heads. Thus, the total time needed would be t1 plus t2. 

 

 

3.3 Mathematical Analysis of Model 

 

 In a tree design, each cluster member is assigned a rank, which is a number 

between 1 and k. Nodes of rank k will create data linkages between nodes with 

rankings ranging from 1 to k-1. Each of these nodes will combine into the node 

with rank k, becoming its progeny. To exchange data, a node with rank k will 

link to a node with rank greater. The cluster leader is the network node with the 

highest rank. A data link will be created by the cluster leader. 
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The number of time slots necessary for the cluster head to collect 

data from all of its offspring is provided by the equation:  

𝒕(𝑵)  =  𝒍𝒐𝒈2(𝑵) + 𝟏  

 

In a ring architecture, there are a total of k concurrent data streams, and each 

concurrent data aggregation process connects to the IoT network via a different 

base station. All concurrent data streams should start and stop at the same time 

to maintain fairness among these users. A single data stream may use a 

maximum of |N| k nodes in a network N with k concurrent data aggregation 

operations during the first time slot. 

In the proposed data collecting tree, a data stream would use U-max nodes in 

the first 1 time-slots in a row, where 1 is defined as 

 

 𝑢𝑚𝑎𝑥 = [
|𝑁|

𝑘
] 

where N is the number of ring nodes and k is the number of 

processes. 

𝜏𝟏 = [
𝟐(𝑵 − 𝒖𝒎𝒂𝒙)

𝒖𝒎𝒂𝒙 + 𝟏
+ 𝟏]      (𝒊𝒇 𝒖𝒎𝒂𝒙 𝒊𝒔 𝒐𝒅𝒅) 

 

𝜏𝟏 = [
𝟐(𝑵 − 𝒖𝒎𝒂𝒙)

𝒖𝒎𝒂𝒙
+ 𝟏], 𝒊𝒇 𝒖𝒎𝒂𝒙 𝒊𝒔 𝒆𝒗𝒆𝒏 

 

For 𝜏𝟐 there are the following cases: 

𝜏𝟐 = { 

𝑖𝑓 (|𝑁|  −  𝜏1(𝑢 𝑚𝑎𝑥 + 1)/2)  >  0 𝑎𝑛𝑑 𝑢 𝑚𝑎𝑥𝑖𝑠 𝑜𝑑𝑑, 

[𝑙𝑜𝑔 2(|𝑁|  −  𝜏1(𝑢 𝑚𝑎𝑥 + 1)/2)] + 1 

 

𝑖𝑓 (|𝑁|  −  𝜏1(𝑢 𝑚𝑎𝑥)/2)  >  0 𝑎𝑛𝑑 𝑢 𝑚𝑎𝑥𝑖𝑠 𝑒𝑣𝑒𝑛, 

[𝑙𝑜𝑔 2(|𝑁|  −  𝜏1(𝑢 𝑚𝑎𝑥)/2)] + 1 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

0 

} 
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Therefore, the total amount of time taken would be: 

 𝒕 =  𝝉𝟏 + 𝝉𝟐   

 

Model and Assumption for Design: 

Let's assume that our hybrid network has N total nodes and k 

concurrent processes that each have data to deliver to their 

respective base stations. Assume that each tree will contain TN 

nodes in order to be fair, and allow there to be a total of T trees. 

 

For each case, we must analyze, calculate the formula, and 

compare it to the ring architecture that already exists. 

𝑇𝑁 ∗ 𝑇 =  |𝑁|        ……………….  (1) 

where TN = node number in each tree cluster,  

T = Tree Clusters number,  

N = Total number of nodes in Network. 

 

 

Case A: In the Case that T = n base stations: 

Consider the scenario where there are as many processes as cluster 

heads, or the number of trees in the network, and as many base 

stations as there are processes. 

𝑘 =  𝑇  (2) 

𝑢𝑚𝑎𝑥 =  𝑇/𝑘 =  1 

Assuming there are N total nodes, we must partition them as 

equally as feasible into T tree nodes, each of which has TN nodes; 

TN   must strictly take the form of 2p, where p is any positive 

integer. From ring architecture [4] we have,  

𝜏𝟏 = [
𝟐(𝑻 − 𝒖𝒎𝒂𝒙)

𝒖𝒎𝒂𝒙 + 𝟏
+ 𝟏], 𝒊𝒇 𝒖𝒎𝒂𝒙 𝒊𝒔 𝒐𝒅𝒅 

𝜏𝟏 = [
𝟐(𝑻 − 𝟏 )

𝟐
+ 𝟏] 

𝜏𝟏 = 𝒇𝒍𝒐𝒐𝒓( 𝑻 )  
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And the time taken to collect data by each tree is  

𝑡 = 𝑓𝑙𝑜𝑜𝑟( 𝑙𝑜𝑔2(𝑇𝑁)) 

Total time will be  

𝒇𝒍𝒐𝒐𝒓(𝑻) + 𝒇𝒍𝒐𝒐𝒓( 𝒍𝒐𝒈𝟐( 𝑻𝑵 )) 

from (1)  = 𝒇𝒍𝒐𝒐𝒓(𝒌) + 𝒇𝒍𝒐𝒐𝒓( 𝒍𝒐𝒈𝟐(𝑵/𝒌))  …    (3) 

 

𝑁

𝑘
= 2𝑝 = 𝑇𝑁 ……….. (4) 

 

 

Case B:  when TN will always be in the form of 2p: 

In this instance, N is taken to be selected such that N=k*2p, where 

p is an integer in the positive range. The graph for the following 

equations is shown below: 

 

𝒇𝒍𝒐𝒐𝒓(𝒌) + 𝒇𝒍𝒐𝒐𝒓(𝒍𝒐𝒈𝟐(𝑵/𝒌)) 

𝑵 =  𝒌 ∗  𝟐𝒑 from (4) 

 

 

Case C:  when TN may not be presented as 2p 

In the past, we had set up N so that TN   would always be a power 

of two. Since N will be random in this situation, we will derive 

equations and evaluate them in such a way that adding fake nodes 

to specific tree clusters will cause TN   to be in the power of 2. 

 

To make it acceptable for a given k and N, where N might not be 

in the form k*2p, we need to add a few extra fake nodes. 

 

Total nodes that will be there after adding extra nodes will be 

given according to the given formula,  

𝑵 =  𝒌 ∗  𝟐𝒄𝒆𝒊𝒍(𝒍𝒐𝒈𝟐(𝒙/𝒌))  x=node number  ..  (6) 
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For instance, if k = 3 and x = 45, then adjusted N would be 48, 

which is nothing more than 3 * 24, and additional dummy nodes 

will only be 3.  

It determines the bare minimum node that must be added. 

 

 

 

3.4 Numerical Analysis:  

 

Take the case where N is 100 and k is 4. The revised value of N 

that will be utilized to create clusters must be chosen so that the 

cluster tree will have 2p nodes. This is achievable by utilizing (6), 

𝑵 =  𝒌 ∗  𝟐𝒄𝒆𝒊𝒍(𝒍𝒐𝒈𝟐(𝒙/𝒌)) 𝒘𝒉𝒆𝒓𝒆 𝒙 𝒊𝒔 𝒈𝒊𝒗𝒆𝒏 𝒏𝒐 𝒐𝒇 𝒏𝒐𝒅𝒆𝒔. 

 

Formulation: 

  

# U-maxis even: 

    # τ1 = 𝑓𝑙𝑜𝑜𝑟 (2 * 𝑘 − 1) 

    # τ2 = [𝑙𝑜𝑔2(𝑘 * 2^𝑝 − t1 (2^(𝑝−1)] + 1 

# U-maxis odd: 

    # τ1 = [2(𝑁 − 𝑢𝑚𝑎𝑥)/(𝑢𝑚𝑎𝑥+1) + 1] 

    # τ2 = [log2(n-t1*(umax+1)/2)] +1 

 

 

N = 4 * 32 = 128. 

28 dummy nodes were inserted. 

T (trees) = 4, and P (processes) = 4. 

32 plus 25 is the TN  

4 base stations 

Total amount of time: 

𝑓𝑙𝑜𝑜𝑟(𝑘) + 𝑓𝑙𝑜𝑜𝑟( 𝑙𝑜𝑔2(𝑁/𝑘))  from (3) 

t = 4 + 5 = 9. 
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The tree will gather information from each of its children over a 

5-slot period. Following that, simultaneous data transfer between 

the cluster heads and base stations will begin in the following 

manner. Let's say there are 4 processes, and A, B, C, and D the 4 

cluster heads: 

 

A will transmit to 1, B will send to 2, C will send to 3, and D will 

send to 4 during the first-time window. 

 

A will transmit to 4, B will send to 3, C will send to 2, and D will 

send to 1. In the second time slot. 

 

A will transmit to 2, B will send to 1, C will send to 4, and D will 

send to 3 in the third time slot. 

 

A will transmit to 3, B will send to 4, C will send to 1, and D will 

send to 2 at the fourth time slot. 

 

calc_umax: This returns the value of the umax parameter in integer always. It 

can be zero as well. 

 

● calc_t1: This returns the t1 time as proposed in the ring architecture. 

 

● calc_t2: This returns the t2 time as proposed in the ring architecture. 

 

● calc_ring: Calculates the time delay using the formulas of ring architecture. 

 

● calc_hybrid: Calculate the time delay using the formulas of the proposed  

design. 
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Algorithm:  

 

Step 1: Initialize the value of N and k. N denotes the total number of devices in 

an IoT network and k is the total number of concurrent data streams. 

 

Step 2: Initialize the value of total number of Base stations required. There will 

be one base station for each concurrent process. 

 

Step 3: Let’s say we have N nodes in total, we have to divide it as equally as 

possible into T tree nodes each having TN number of nodes, TN is strictly in 

the form of 2^p where p is any positive integer. 

 

Step 4: Allocation of devices or nodes must be in form of 2^p and the time taken 

to collect data by each tree is t =floor(log2(TN)). 

 

Step 5: In order to have 2^p Nodes we need to add dummy nodes. 

 

Step 6: Now check for the inputs where fault occurred. Once fault is detected 

we check for three conditions (as mentioned in fig 3.3(from System Analysis)). 

If the faulty node is the leaf node, consider it as dummy decrement the no of 

real nodes and increment the no. of dummy nodes. 

 

Step 7: If faulty node rank >1, check if real nodes>N/2 & dummy nodes <N/2. 

Then replace it with a workable node. Send it to its maximum ranked child in 

order to remove fault. 

 

Step 8: Repeat till it reaches leaf or to a higher ranked node whose all child are 

dummy. Nodes should be seen out for the checking. 
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Step 9: If faulty node rank >1 & real nodes <N/2 & dummy nodes >N/2. We 

now restructure the whole tree. Again, starts with Step 1 by subtracting the 

faulty nodes from given nodes. 

Then initializing the value of N & TN number of nodes in the form of 2^p. 

 

We again add dummy nodes and check for the three cases mentioned above, till 

the whole structure if Fault Tolerant and check the Tolerances. 

 

 

Model Development 

 

Steps for Model Development Fault Tolerant Detection: 

 

1. Import libraries: Import the necessary libraries such as NumPy, 

Matplotlib, NetworkX for graphical use. 

 

2. Load data: Load the preprocessed and augmented data into the memory 

using various key functions. 

 

3. Train the model: Use Node_generator method to train the model on the 

training node data for a specified number of values and approaches. 

 

4. Evaluate the model: Calculate and evaluate the metrics on the various 

values and keys to assess the trained model's performance on the 

validation and testing Cluster node data. To do evaluation, use 

evaluate_generator method. 

 

5. Fine-tune the model: Adjust the model's hyperparameters with variable 

keys such as the modern model techniques to optimize and improve the 

fault tolerance performance of the model.  
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6. Save the model: Save the trained and fine-tuned model in a format like. 

ipynb for later use can be use in Jupyter Notebook or Google 

Collaboratory. 

 

7. Predictions: Use the trained model to make calculations on new values 

and process of nodes by loading the saved model and using the predict 

method from model by changing node values. 

 

8. Deployment: Deploy the trained and fine-tuned model to modern IoT 

applications for future users of Model. 

 

 

Selecting the proper hyperparameters, avoiding fault, and employing methods 

like basic function regularization to boost the model's performance are some 

modeling best practices. The performance of the model can also be validated by 

using real-world data from other sources. 

 

 

 

Computational Method: 

 

The computational method for fault tolerant detection involves several 

important steps.  

 

1. Data collection: Firstly, the node data collection process is critical to the 

success of the system. The project team must collect the Cluster data 

with the nodes that are labeled with the corresponding data collection 

process. The dataset must be non-faulty, containing child to parent node 

with different backgrounds, lighting conditions to ensure that the model 

can generalize well to unseen data. 

 

2. Model training: The Fault tolerant Data Collection model is trained 

using the training set in the model training method. During training, the 
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model develops the ability to identify the correct fault tolerant by 

separating out non-existed elements. 

 

3. Model evaluation: Examining the model's performance on the test set 

comes after it has been trained. Calculating model on new metrics is 

necessary to determine whether the model is capable of correctly 

classifying fault tolerant into the appropriate model.  

 

4. Model optimization: The model can then be further tuned via transfer 

learning based on the evaluation findings by the project team. In order 

to increase a model's accuracy and generalization performance, 

especially when working with fresh and new node data and Cluster 

heads which contains various classes of fault, this entails employing a 

pre-trained model and retraining it on a new data collection process. 
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Chapter-4  

 

PERFORMANCE ANALYSIS 

 

4.1   Mathematical Analysis: 

 

When TN can be represented as 2p           

 

For the hybrid model proposed the time delay is calculated 

as:𝒇𝒍𝒐𝒐𝒓(𝒌) + 𝒇𝒍𝒐𝒐𝒓( 𝒍𝒐𝒈𝟐(𝑵/𝒌))  from (3) 

𝑵 =  𝒌 ∗  𝟐𝒑 from (5) 

putting values we get, 𝒕 =  𝒇𝒍𝒐𝒐𝒓(𝒌) +  𝒇𝒍𝒐𝒐𝒓(𝒑) ……... (7) 

 

For ring architecture model proposed the time delay is calculated 

as: 

umax = N/k = 2p (even)  

 

𝜏𝟏 = [𝟐(𝑵 − 𝒖𝒎𝒂𝒙)

𝒖𝒎𝒂𝒙
+ 𝟏], 𝒊𝒇 𝒖𝒎𝒂𝒙 𝒊𝒔 𝒆𝒗𝒆𝒏  from [4] 

 

𝜏𝟏 = 𝒇𝒍𝒐𝒐𝒓( 𝟐 ∗ 𝒌 − 𝟏) (𝒐𝒏 𝒔𝒊𝒎𝒑𝒍𝒊𝒇𝒚𝒊𝒏𝒈) 

 

𝜏2 =  [𝑙𝑜𝑔 2(|𝑁| −  𝜏1(𝑢 𝑚𝑎𝑥)/2)] + 1 

 

𝜏2 =  [𝑙𝑜𝑔 2(𝑘 ∗ 2
𝑝

 −  𝜏1(2
𝑝−1

)] + 1 

 

Total time will be 𝜏2  +  𝜏1. 

 

The proposed model and the ring architecture model have been 

compared and their results presented on the graph, which displays 

the characteristic of p in N=k*2p versus time delay. The number 
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of processes has been maintained constant at 5 in the graph below. 

Our findings showed that the proposed model has a lower time 

delay than ring architecture and that it varies linearly with p, the 

power of 2, in the formula N=k*2p, where N is the number of 

nodes. 

 

In N=k*2p, where N is the number of nodes, the graph illustrates 

the characteristic of the number of base stations or processes with 

the time delay at the fixed value of p, which is 3 Our findings 

indicate that the proposed model has a shorter time delay than the 

ring architecture. 

 

4.2   Metric analysis 

 

Case 1: where TN can be represented in the form of 2p 

Let's start with the hybrid model approach, assuming that k = 3 

and N = 3 * 24 = 48. 

There will therefore be three trees, each with 24 = 16 nodes. 

Considering (7), t = floor(k) + floor(p), total time is 3 + 4 = 7. 

 

Ring architecture method: for k=3, and N = 48, umax = 24. 

umax is even here,  

𝜏𝟏 = 𝒇𝒍𝒐𝒐𝒓( 𝟐 ∗ 𝒌 − 𝟏)  =  𝟓.  

𝜏2 =  [𝑙𝑜𝑔 2(𝑘 ∗ 2
𝑝

 −  𝜏1(2
𝑝−1

)] + 1 

𝜏2 =  4 

Total time = 5 + 4 = 9  

 

Result: The ring architecture model has more time, while the 

hybrid model has less. 
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Case 2: when TN cannot be represented in the form of 2p 

First using the hybrid model method: 

Let’s say k = 3 and N = 57.  

using (7), the total nodes that will be there after adding extra nodes 

will be given according to the given formula,  

𝑵 =  𝒌 ∗  𝟐𝒄𝒆𝒊𝒍(𝒍𝒐𝒈𝟐(𝒙/𝒌))  where x is the given number of nodes 

  (6) 

N = 3 * 2ceil(log2(57/3))  

N = 96.  

we need to add dummy nodes to make it 96.  

 

N = 3 * 25 

Now using formula (7), t = floor(k) + floor(p) = 3 + 5 = 8.  

 

Second using ring model method: 

 

k = 3, N = 57.  

umax = floor (N/k ) = floor( 19 ) = 19.  

Since umax is odd, 

𝜏𝟏 = [
𝟐(𝑵 − 𝒖𝒎𝒂𝒙)

𝒖𝒎𝒂𝒙 + 𝟏
+ 𝟏], 𝒊𝒇 𝒖𝒎𝒂𝒙 𝒊𝒔 𝒐𝒅𝒅 

𝜏𝟏 =  𝒇𝒍𝒐𝒐𝒓 (  𝟒. 𝟖 )  =  𝟒.  

 

𝜏2 =  [𝑙𝑜𝑔 2(|𝑁| −  𝜏1(𝑢 𝑚𝑎𝑥 + 1)/2)] + 1 

𝜏𝟐 = 5.  

Total time = 5+4 = 9.  

 

Result: As a result, the Hybrid architecture model outperforms 

better and relevant than Ring architecture model. Time taken by 

Hybrid model is also quite less as comparison with ring 

architecture model. 
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4. 3 Implementation 

 

The proposed hybrid model and the model presented in [2], which 

is a ring architecture, are both implemented in the code below. We 

contrasted the two models based on a number of parameters and 

presented the results as graphs. 

 

In the first section, we displayed the network's time delay for a 

fixed number of processes over a range of values for the number 

of nodes, N, and plotted the resulting graph. We use the value of 

N in the ring architecture as-is and include it into the formula 

suggested in the research publication [4] to obtain the time delay 

values. In contrast, the proposed architecture scales the value of 

N by adding a few dummy nodes so that TN = 2p, or the number 

of nodes per tree cluster, will be to the power of two. 

 

In the second section, we plotted the graph and displayed the 

network's time delay for various constant values of N, or the 

number of nodes, over various values of K, or the number of 

processes. We pass N's value exactly as it is once more in the ring 

design, but in hybrid, we try to create dummy nodes to make it 

comply with the formula. We iterated over the number of 

processes k for some fixed value of N while keeping k at a very 

low level, around 10. 
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Chapter-5 

 

RESULTS 

 

5.1 SIMULATION RESULTS: 

 

The simulations were performed in a Python (Jupyter Notebook) The 

inputs of Nodes and base stations were varied and the results were then 

observed. The number of nodes (N) were increased in a random fashion 

so that the inputs do not have any correlation with each other  

 

Comparison between number of nodes and time delay for a value- 

CASE I: 
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Fig. 5.1: Plot of the number of nodes vs time delay for k = 5. 

 

 

Number of processes= 5 The given graph illustrates the relationship 

between node density and time delay. The results show that the 

proposed model has a lesser time delay than the ring (previous) 

architecture model. After detection of faulty nodes=10, Structure 

changes as mentioned in Fig 5.1. 
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CASE II: 

 

 

Figure: 5.2:  Plot of the number of nodes vs time delay for k = 4 
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Number of processes = 4 

The given graph illustrates the relationship between node density 

and time delay. The results show that the proposed model has a 

lesser time delay than the ring (old) architecture model. 

After detection of faulty nodes=8, Structure changes as mentioned 

in Fig 5.2.  

 

 

CASE III: 

 

 

Fig. 5.3: Plot of the number of nodes vs time delay for k = 5. 

 

Number of processes=8. The given graph illustrates the relationship 

between node density and time delay. The results show that the proposed 

model has a lesser time delay than the ring(old) architecture model. After 

detection of faulty nodes=2, Structure changes as mentioned in (Fig 5.3) 
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For the following Graphs 

Comparison between number of processes and time delay for a value of 

N that is constant vs time delay. 

 

CASE I: 

 

 

 

Fig. 5.4:  Plot of the number of BS vs time delay N = 36. 
 

 

The graph, where N is the number of nodes that were kept, displays the 

characteristics of the number of processes in relation to the time delay. 

The results show that the suggested model's time delay is less than that of 

the old design. 
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CASE II: 

 
Fig. 5.5:   Plot of the number of processes vs time delay N=100. 

In respect to the number of nodes kept at N=100, the graph shows the 

features of the number of processes vs the time delay. 

 

CASE III: 

 

 

Fig. 5.6:  Plot of the number of processes vs time delay for N =500. 
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The graph shows the features of the number of processes in relation to the 

time delay, where N is the number of nodes that were retained. According 

to the findings, the proposed model has a shorter time delay than the ring 

architecture model. 

In this study, we suggest the best way to gather data concurrently in IoT 

systems. Due to the expanded advantages of shared device infrastructure, 

an increasing number of Internet of Things (IoT) applications rely on such 

shared systems for their data demands. As numerous of these applications 

request data simultaneously, concurrent data transmission is necessary to 

maintain the freshness of the data. Furthermore, quick data distribution is 

crucial for making crucial decisions in real-time systems. The 

recommended network structure in this case uses a variety of network 

topologies to cut down on delays. The simulation and performance 

analysis findings show that the suggested approach performs better than 

the two most often used data gathering techniques, CDCT and Time 

Optimal CDCT. An IoT federation is expected to be established soon as 

public and private internet of things (IoT) systems are linked. Under these 

connected systems, numerous parties will share IoT devices. Different 

data collecting processes launched by different users might run 

simultaneously on the same collection of IoT devices. 

 

IoT devices that capture data quickly can help us obtain data with less 

delay than ever before. which, given that IoT applications are now 

commonplace in our daily lives, may eventually contribute to a worldwide 

gain. This endeavor may be expanded to include more fields. We have just 

looked at the network structure between nodes and base stations for the 

sake of this study. In the future, we may look at how much energy certain 

data collection processes use as well as how frequently each device is used 

in an effort to lower both. We may then use less energy to run an IoT 

network as a result of this. Through the processing of massive amounts of 

data, cloud computing is currently generating a lot of interest among 

various businesses where information is acquired from sensor Networks. 
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Chapter-6  

 

CONCLUSIONS  

 

 

6.1 COCLUSIONS 

 

In this study, we provide the ideal method for concurrent data collection 

in IoT devices. A growing number of Internet of Things (IoT) applications 

rely on such shared systems for their data needs due to the enhanced 

benefits of shared device infrastructure without any fault. Concurrent data 

transmission is required to ensure the data's freshness since several of 

these apps request data at once. Furthermore, real-time systems require 

quick data distribution in order to make critical decisions. To reduce the 

fault delays, the suggested network layout in this situation employs a 

variety of network topologies. The results of the simulation and 

performance analysis demonstrate that the recommended methodology 

outperforms the two most popular data collection methods, CDCT and 

Time Optimal CDCT. 

 

An IoT federation is expected to be established soon as public and private 

internet of things (IoT) systems are linked. Under these connected 

systems, numerous parties will share IoT devices. Different data 

collecting processes launched by different users might run simultaneously 

on the same collection of IoT devices. linked. Under these connected 

systems, numerous parties will share IoT devices.  

 

Fast-capture IoT devices can assist us in obtaining data with less delay 

than ever before. which, given the prevalence of IoT applications in 

modern society, could eventually result in a global benefit. This 

undertaking may be broadened to include other areas. We have just looked 
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at the network structure between nodes and base stations for the sake of 

this study. In the future, we may look at how much energy certain data 

collection processes use as well as how frequently each device is used in 

an effort to lower both. We may then use less energy to run an IoT network 

as a result of this that capture data quickly. 

Through the processing of massive amounts of data, cloud computing is 

currently generating a lot of interest among various businesses. where 

information is acquired from several sources, such as social networks, 

sensor networks, and automobiles. Concerns concerning the security of 

the data coming from the aforementioned sources and being sent to the 

cloud data center may still be addressed. To facilitate data gathering from 

sensors to the cloud, a standard architecture is required. Large 

heterogeneous networks of sensing devices, topologies, and protocols 

make up the Internet of Things (IoT). Fault identification and management 

is a crucial and time-consuming activity in this vast IoT network.  

 

Network protocols act as the building blocks of any communication system  

that adheres to a specific Quality of Service (QoS) for each communication 

application. Remote system design becomes increasingly potent when installed 

technology advances quickly, and its topological structure and correspondence 

also change in unanticipated ways. It may be possible to add data collecting 

from WSNs and other sources to the recommended model.  

  

 

6.2 FUTURE SCOPE 

 

 

Future research has a huge potential for the classification of nodes inside cases 

that represent stationary nodes using Internet of Things (IoT) and fault-tolerant 

approaches for detection. The following are some possible growth areas: 

  

1. Increasing the Accuracy and Efficiency of the Model: By employing 

larger and more thorough tolerant models, enhancing data concurrent 

methods, and creating more effective hardware, researchers can 
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continue to improve the models. The effectiveness and precision of the 

models can also be improved by further research and optimization of 

various Fault Tolerant approaches. 

  

2. Integrating Other Modalities: A more thorough and precise 

identification of the fault tolerant model may be achieved by combining 

model classification function with additional modalities, such as data 

morphology, profiles, and genetic data methodology. Researchers can 

create more robust and reliable categorization systems by fusing several 

modalities. 

  

3. Developing Portable and User-Friendly Applications: To find and 

detect the fault tolerant approach in the field, researchers might create 

applications that are simple to use for non-experts. For smartphones, 

tablets, and other portable devices, these applications may be created, 

making it simpler for consumers to obtain information about the Internet 

of Things and its objects.  

 

4. Expanding the use of Fault Tolerant Detection: The Data Collection 

devices can also be used in other fields, such as the Internet of Things 

(IoT), Cloud Computing, and bioprospecting, in addition to the 

conventional ways for defect detection. Researchers can find new 

applications for data collecting and increase their potential advantages 

by investigating these new fields of use.  

 

5. Addressing Ethical and Legal Concerns: The necessity to conserve 

traditional knowledge, stop biopiracy, and guarantee a just and equitable 

distribution of profits are only a few of the ethical and legal issues that 

should be considered as the usage of fault tolerant approaches for 

methodology detection increases. Involved parties and researchers can 

create rules and regulations to make sure moral and legal standards are 

upheld. 
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6.3 APPLICATIONS 

 
As the world's population shifts toward relying more on technology than 

manual methods, everyone wants a job done for them without any effort. 

Everyone wants a work done for them without any effort as the world's 

population swings towards depending more on technology than manual 

techniques. The phrase "Internet of Things" essentially refers to 

computing equipment that transmits and receives data via the internet. The 

relevance of IoT in people's life is increasing as a result of its advantages 

and the degree of comfort people are experiencing. There are numerous 

ways that IoT can benefit humanity, some of which are described below: 

 

1. The Medical Sector:  Adoption on a large scale is possible. Exams, 

medical wearable technologies, telemedicine, and a great deal 

more. adoption is feasible.  

 

2. Smart Homes: New technology has been unveiled, including Nest, 

Google Home, and Alexa from Amazon. Each of these devices has 

a certain function that improves our quality of life and makes it 

easier for family members to communicate online.  

 

3. Intelligent Transportation Systems: In "smart cities," where time-

wasting traffic congestion is the major issue, the Internet of Things 

(IoT) is providing connection and information exchange to enable 

proactive situational management. contemporary security and 

parking systems. 

 

In addition, there are other more industries as well, including 

manufacturing, improved power supply, planning, industrial automation, 

and the digitization of cities in developing nations (for instance, have a 

look at Mark Zuckerberg's JARVIS). There are many opportunities. 
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6.4 Performance Requirements: 

i. Performance Requirements:  

How well a system operates under different circumstances, considering 

factors like time restrictions, environment, and so forth. system operates 

under different circumstances and considering factors. 

 

ii. Energy Consumption:  

Because the majority of Internet of Things (IoT) devices run on batteries, 

it is crucial to connect resource conservation to a variety of other quality 

factors, including performance. While coping with network connection 

loss, algorithms must find disconnected routes that consume the least 

amount of energy. most IoT devices are battery-powered, it is vital to link 

resource conservation to many other quality characteristics, such as 

performance. Algorithms must discover disjoint paths that use the least 

amount of energy while dealing with network connection loss.  

 

6.5 Security Requirements: 

 i. Detection and Tolerance Early: The IoT network should have 

procedures and rules in place once an attack starts to make sure that it is 

stopped before it causes significant damage and extends throughout the 

network. IoT network architectures should be secure against hacks and 

other malicious assaults from the beginning. 

ii. Data Transmission Enhancement & Security: Making sure data is 

transferred securely through a public channel without hiding information 

from anybody and preventing the illicit flow of information about persons 

or things is another aspect of security. 
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iii. Sensory Distribution Mechanism: This feature determines whether 

data analysis software should be installed on a single node or a number of 

nodes spread out throughout the IoT system. In other words, when IoT 

processing and storage software is deployed to hardware, it is referred to 

as distribution. The delay is decreased by employing a distributed 

approach since data flow and bandwidth use are minimized. 

 

6.6 Attributes of Software Quality: 

 i. Accessibility: The system's capacity to function fully or partially when 

required. Since a fault-tolerant system is expected to operate without 

interruption, but a highly available system may experience service 

interruptions, fault tolerance and availability are not the same thing. On 

the other hand, a fault-tolerant approach should maintain high device 

availability and performance and valuable system. A fault-tolerant 

strategy, on the other hand, should keep device availability and 

performance high. 

 ii. Scalability: Internet of Things (IoT) systems must function effectively 

when there are several heterogeneous devices present. It is built on the 

incorporation of future on-demand resources. 

 iii. Localization: Processing and storage can be carried out locally or 

remotely depending on the amount of the data and the complexity of the 

needed analyses. It is built on the incorporation of future on-demand 

resources. The centralized cloud, dispersed edge, and fog notions start to 

make sense at this stage. 
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APPENDICES 

 

 
#/-Pseudocode for Fault Tolerant Data Collection Network-# 

 

INPUT: number of initialNodes, BaseStations, FaultyNodes 

  CALL: calculate method 

  CALL: newnodenum with initialNodes,BST,faultyNodes 

INITIALIZE: newNum # new nodes in power of 2 

   COMPUTE: newNum = int(k * math.pow(2, math.ceil(math.log2(n/k)))) 

   CALL: umax with newNum,BST,faultyNodes 

   COMPUTE: m # maximum utilized nodes in a cluster   

   CALL: calc_umax with newNum,no of BST,faultyNodes 

OUTPUT: Floor value of newNum / BST 

   CALL: actualanddummy with m,BST,faultyNodes 

INITIALIZE: ntemp equal to initialNodes 

INITIALIZE: btemp equal to BST 

INITIALIZE: act equal to list of actual nodes 

    For: iteration equal to number of cluster head  

INITIALIZE: 0 in act 

INITIALIZE: dum equal to list of dummy nodes 

    For: iteration equal to number of cluster head 

INITIALIZE: 0 in dum 

    FOR: iteration equal to number of cluster head 

INITIALIZE: ith value of act 

    COMPUTE: act[i] by ntemp/btemp typecaste to integer 

INITIALIZE: ith value of dum 

    COMPUTE: dum[i] by m-act[i] 

INITIALIZE: ntemp 

    COMPUTE: ntemp-act[i] 

DECREMENT: btemp 

    IF: faultyNodes>0  

THEN 

    CALL: condition with m,act,dum,faultyNodes 

    For: iteration equal to length of dum list 

    IF: dum[itr] + faultyNodes > m/2  

THEN: OUTPUT: return  

TRUE 

                 

ENDIF: dum[itr] + faultyNodes < m/2  

THEN: OUTPUT: return FALSE  

THEN: INITIALIZE: initialNodes 

   COMPUTE: initialNodes equal to initialNodes-faultyNodes 

             INITIALIZE: faultyNodes equal to 0 

             REPEAT:  

             CALL: calculate method 

             UNTIL: condition OUTPUT: FALSE 
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ELSE: 

          IF: case1 equal TRUE #RANK 1 node is faulty 

   THEN: leaf node becomes faulty 

ELSE: case2 equal TRUE #Rank >1 is faulty 

          IF: case2_1 equal TRUE #Rank>1 leaf Node dummy 

          THEN: REPEAT: replace faultyNode with maximum ranked child 

          UNTIL:working higher ranked node whose all child are dummy 

ELSE IF: case2_2 equal TRUE #Rank>1 leaf Node not Dummy 

      THEN: replace faultyNode with leafNode 

                   

                OUTPUT: Changed the topology 

        ELSE:  

            OUTPUT: Working fine 
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