
DETECTION OF BOTNET ATTACK IN IoT USING

MACHINE LEARNING

Project report submitted in partial fulfillment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering

By

Vasundhara Pandey (191400) and Suryansh Mishra (191300)

Under the supervision of

Dr. Amol Vasudeva

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

Certificate

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “ Detection of Botnet

Attack in IoT using Machine Learning” in partial fulfillment of the requirements for the

award of the degree of Bachelor of Technology in Computer Science and

Engineering/Information Technology submitted in the department of Computer Science

& Engineering and Information Technology, Jaypee University of Information Technology

Waknaghat is an authentic record of my own work carried out over a period from July

2022 to May 2023 under the supervision of Dr. Amol Vasudeva Assistant Professor

(Senior Grade) Computer Science and Engineering Dept.

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

(Student Signature) (Student Signature)

Suryansh Mishra, 191300 Vasundhara Pandey, 191400

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Dr. Amol Vasudeva

Assistant Professor (Senior Grade)

Computer Science and Engineering

Dated: 24 April 2023

ACKNOWLEDGEMENT

First, I express my heartiest thanks and gratefulness to Almighty God for His divine

blessing to make it possible to complete the project work successfully.

I am really grateful and wish my profound indebtedness to Supervisor Dr. Amol

Vasudeva, Assistant Professor (Senior Grade), Department of CSE Jaypee University of

Information Technology, Wakhnaghat. Deep Knowledge & keen interest of my supervisor

in the field of “Machine Learning” to carry out this project. His endless patience, scholarly

guidance, continual encouragement, constant and energetic supervision, constructive

criticism, valuable advice, and reading many inferior drafts and correcting them at all

stages have made it possible to complete this project.

I would also like to acknowledge my respective lab coordinators, Mr. Ravi Raina and Mr.

Mohan Sharma for providing me the necessary resources that proved to be worthwhile in

successfully completing my project.

I would like to express my heartiest gratitude to Dr. Amol Vasudeva, Department of CSE,

for his kind help in finishing my project.

I would also generously welcome each one of those individuals who have helped me

straightforwardly or in a roundabout way in making this project a win. In this unique

situation, I might want to thank the various staff individuals, both educating and non-

instructing, which have developed their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patients of my

parents.

Suryansh Mishra 191300

Vasundhara Pandey 191400

 TABLE OF CONTENT

 TITLE PAGE NO.

Certificate i

Plagiarism Check ii

Acknowledgment iv

List of Figures vi

List of Graphs vii

List of Tables viii

Abstract ix

Chapter-1: Introduction 1

Chapter 2: Literature Survey 25

Chapter-3:System Design and Development 42

Chapter-4: Experiment and Result Analysis 51

Chapter-5: Conclusion 66

References 68

List of Figures

1. Typical Botnet Attack Structure

2. C&C Architecture

3. P2P Architecture

4. Honeypot Traps

5. Signature and Anomaly-based detection

6. DNS approach for detection

7. Data mining detection technique

8. Python logo

9. Jupyter logo

10. Numpy logo

11. Pandas logo

12. Sklearn logo

13. Matplotlib logo

14. Seaborn logo

15. The proposed model of (Nguyen et al. 10)

16. Setup for collecting botnet attacks

(Alkahtani and Aldhyani et al., 2021, 23)

17. The flow of our Model

18. Decision tree Classifier

19. SVM with Non-Linear Kernel

20. A simple Gaussian Naive Bayesian Plot

21. The architecture of a Convolutional Neural

Network

22. The IoT-23 dataset

23. Dataset after data pre-processing

24. Dataset after data cleaning

25. Going through feature engineering

26. Dataset after dimensionality reduction

27. Training & Testing Split

28. Classification report of Decision Tree

Classifier

29. Classification report of SVM

Classifier

30. Classification report of Gaussian

Naive Bayes Classifier

31. Classification report of Convolutional

Neural Network

32. Summarized malicious IoT-23

scenario

33. Application layer breakdown of the

Malicious Scenarios

34. Summarized Benign scenario

35. Application layer breakdown of the

Benign Scenarios

36. Imported Libraries

37. Used dataset

38. Data Pre-processing

39. Total labeled malicious attack

40. Label count for Decision Tree

41. Decision Tree Classifier visualization

42. Label count for Gaussian Naive Bayes

43. Model Score for Gaussian Naive

Bayes

44. Data pre-processing for Gaussian

Naive Bayes

45. Label count for SVM

46. Model Score for SVM

47. Label count for CNN

48. Scaling and Normalization for CNN

49. Model Summary for CNN

List of Graphs

1. Confusion matrix for CNN_LSTM model on the thermostat (Alkahtani and

Aldhyani et al., 2021, 23)

2. Model Accuracy for CNN-LSTM (Alkahtani and Aldhyani et al., 2021, 23)

3. Model Loss for CNN-LSTM (Alkahtani and Aldhyani et al., 2021, 23)

4. Accuracy of the model (Meidan et al., 2018, 10)

5. The computational time of the model (Meidan et al., 2018, 10)

6. Average FPR by traffic (Meidan et al., 2018, 10)

7. Detection time by traffic (Meidan et al., 2018, 10)

8. Accuracy trends according to classifiers of our Model

9. Precision wrt Classifiers and Labels of our Model

10. Recall wrt Classifiers and Labels of our Model

11. F-1 Score wrt Classifiers and Labels of our Model

List of Tables

1. Comparison of processing time of different ML & DL classifiers

2. Comparison of accuracy for traditional ML classifiers on IoT malware

3. Result of PCA

4. Accuracy of different classifiers

5. Performance comparison of classifiers

6. Comparison of UNSW-NB15 and IoT-23 evaluation metrics

7. Comparison of N-BaIoT and IoT-23

8. Label configuration file

ABSTRACT

The Internet of Things (IoT) has changed the traditional approach to living our lives

and replaced it with a lifestyle where technologies are part of our lives, sometimes

even more than human beings. Everything we touch, see or feel is related to

technology. Smartphones, smart cities, smart energy saving, smart homes, smart

trains, etc are life-transforming changes that happened due to IoT. The technologies

are enhancing with every passing second, but still, the full potential of IoT is yet to

be achieved.

But with growing technology, threats related to them. The problem of compromised

networks and malfunctioned systems are increasing rapidly. With the enhancement

of technologies, these threats are also evolving at a fast pace and are more refined.

These threats in computer language are called Bots.

Prevention and identification of these bots are becoming more important day-to-

day. Several technologies and techniques have been designed for this purpose of

prevention- Antivirus Software, Network sniffers for prevention, secure passwords,

and periodic system check; for detection- Anti Botnet software, Honeypots &

honeynets, Signature-based detection techniques, Anomaly-based detection

techniques, etc. Though there are existing methodologies to deal with botnet threats

yet there’s always a chance for improvisation.

That’s why we came up with this project where we are using the hot-pot technology

of Machine Learning to detect Botnet attacks on your system.

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

The phrase "Internet of Things", proposed by Kevin Ashton, in 1999 to highlight how data

collecting via sensor technologies had limitless possibilities. By 2023, there will be more

than 20 times as many smart devices as current IT positions due to the IoT inclusion in

Gartner’s Top 10 Strategic Technology Trends. The Gartner report predicts that the IoT

will be increasingly used in the utility, healthcare, government, physical security, and

automobile sectors.

Internet of Things (IoT) consists of a network of objects, called “things”, that connect to

other devices and systems over the internet through sensors, software, and other

technologies. These gadgets vary from common domestic items to complex industrial

machines. Because the IoT idea is still in its early stages, it lacks a comprehensive security

infrastructure/mechanism, putting critical data at risk. To keep IoT entities, businesses, and

individuals secure, modern security measures must be used on the IoT network. The most

serious security issue in IoT is botnet-based DDoS attacks, in which hackers infect devices

with scripts.

Botnets (abbreviations for "robot networks") are networks of compromised machines

controlled by a centralized assailant, or "bot-herder." A bot is any machine under the

herder's control. Combined illegal operations can be carried out by all devices in the botnet

under the direction of one entity. Intruders are able to carry out large-scale operations with

malware by taking advantage of botnets (many of which are made up of millions of bots).

Because botnets are still controlled by foreign attackers, infected devices can be upgraded

and modified on the fly. Therefore, bot herders can frequently rent access to segments of

their botnets on the black market in exchange for substantial financial gains. The attacker,

sometimes known as the Botmaster, spreads Trojans, malware, or both, increasing the

number of bots on the network.

2

Fig 1.1 A Typical Botnet Attack Structure

Some common real-life botnet attacks include

Email spam- Spam botnets are among the largest in size, despite email being viewed as an

outdated attack channel. In most cases, bots are used to send millions of spam messages,

usually containing malware.

DDoS attacks use the enormous size of the botnet to flood a target network or server with

requests, making it inaccessible to intended users. DDoS attacks target companies for

personal or political reasons, or to extort money to stop the attack.

Financial attacks include botnets explicitly designed to steal cash from businesses and

credit card information. Financial botnets, such as the ZeuS botnet, have been responsible

for attacks that have stolen millions of dollars from multiple companies in a matter of

minutes.

Botnets are distinguishable from other malware due to their distributed architecture.

Botnets, like worms, may spread over millions of devices. In contrast to worms, zombie

nodes in a botnet may collaborate and be managed by a central server. Botnets cannot be

categorized as other forms of malware due to their dispersed architecture. Many

publications attempt to summarize botnet phylogeny. The topology of the C&C

infrastructure employed, the propagation mechanism, the exploitation approach, and the

accessible set of operations used by the attacker are the key categorization areas of botnets.

3

C&C topology

"Command and Control" (C&C) servers are centralized systems that can send commands

and receive output from a botnet. If an intruder wants to launch a DDoS attack, they can

send specific commands to their botnet's command and control servers to instruct them to

launch an attack against a specific target, and all packet sniffers interacting with the

contacted C&C server would then launch a coordinated attack. Botnet C&C servers are

often organized in one of four architectures, each of which has advantages and

disadvantages: star, multiple servers, hierarchical and random.

The C&C server acts as the brain of the botnet, providing instructions to the bots on what

actions to take, such as launching DDoS attacks, spreading malware, or conducting other

malicious activities. The bots typically communicate with the C&C server using various

communication protocols, such as HTTP, IRC, or P2P, to receive commands and report

their status. This allows the botnet operator, also known as the botmaster, to remotely

control and manipulate the bots for their nefarious purposes.

The C&C server is typically designed to be resilient and resistant to takedown efforts by

law enforcement or security researchers. Botmasters often use sophisticated techniques to

hide the location and identity of the C&C server, such as using proxy servers, domain

name generation algorithms (DGA), and encryption to obfuscate communications. This

makes the detection and disruption of the C&C server a challenging task.

Detecting and disrupting the C&C server is a critical step in mitigating botnet attacks. By

identifying and blocking the communication between the bots and the C&C server, the bots

lose their ability to receive commands and effectively neutralize the botnet. This requires

advanced techniques, such as machine learning-based anomaly detection, network traffic

analysis, and behavior-based heuristics, to identify patterns and characteristics associated

with C&C communications and distinguish them from legitimate traffic.

In conclusion, the Command and Control (C&C) server is a critical element in botnet

attacks, serving as the central hub for controlling and coordinating the activities of

compromised devices. Detecting and disrupting the C&C server is crucial in mitigating

botnet attacks and requires advanced techniques and collaboration among stakeholders.

Efforts to combat botnet attacks continue to evolve as attackers employ sophisticated

4

tactics, highlighting the need for constant research and innovation in the field of botnet

detection and mitigation.

Fig 1.2 C&C Architecture

P2P topology

Peer-to-peer botnets differ from centralized command and control botnets in that they

emphasize robustness through the deployment of a peer-to-peer network. In most other

ways, peer-to-peer botnets are identical to centralized botnets. A peer-to-peer (P2P)

network is a network in which devices are connected and share resources without delay

instead of going via a server or authority that manages centralized resources. File-sharing

is becoming a popular usage of P2P networks, also several P2P file-sharing apps are

available. Some are eMule, uTorrent, and Deriv P2P. P2P networks are categorized based

on their centralization and structure.

In a P2P botnet, bots communicate with each other using various communication

protocols, such as TCP/IP, UDP, or HTTP, to exchange commands, updates, and other

information. This allows the botnet to operate without a single point of failure, as the bots

can dynamically switch between acting as clients and servers, making it challenging to

disrupt the botnet by taking down a central C&C server.

5

P2P topology provides several advantages to botmasters. Firstly, it makes the botnet more

resilient to takedown efforts, as there is no single point of failure that can be targeted for

disruption. Even if some bots are taken down, the remaining bots can continue to

communicate with each other and receive commands, making the botnet operational.

Secondly, P2P botnets are more difficult to detect, as the communication patterns can

resemble legitimate P2P traffic, making it harder to distinguish botnet traffic from

legitimate traffic.

Detecting and mitigating P2P botnet attacks requires advanced techniques, such as

machine learning-based anomaly detection, behavior-based heuristics, and network traffic

analysis. These techniques involve monitoring and analyzing network traffic for patterns

and characteristics associated with botnet communications, such as unusual

communication patterns, high volumes of traffic to suspicious IP addresses or domains,

and known botnet signatures. Additionally, efforts to disrupt P2P botnets may involve

identifying and blocking known botnet domains or IP addresses, as well as collaborating

with ISPs and other stakeholders to block or take down the botnet nodes.

As botnet attacks continue to evolve, constant research and innovation are needed to

effectively combat this persistent and evolving threat.

Fig 1.3 P2P Architecture

6

But the question is why IoT devices became vulnerable to such botnet attacks?

Hackers look for flaws in IoT devices or systems. If a hacker discovers a flaw, he or she

will employ malware to infect machines and establish botnets, or he or she may organize

assaults such as phishing to infect target devices with bot malware. With millions of

unsecured IoT devices, we are exposed to a catastrophic attack that may significantly

disrupt internet infrastructure and potentially bring it to a halt. By targeting known

vulnerabilities in household equipment such as Wi-Fi routers, security cameras, and smart

TVs, a hacker may proliferate bot servers. Assailants may use these vulnerable devices to

provide a flood of traffic to certain sites, causing their servers to fail. Individuals whose

devices are utilized in botnets are likewise at risk from these assaults. Many botnet victims

are unaware that their devices are being utilized in this manner, exposing them to identity

theft and even physical damage.

➔ Lack of security measures: Many IoT devices are designed and manufactured with

a primary focus on functionality and cost, often neglecting proper security

measures. This can include weak or default passwords, lack of regular security

updates and patches, and limited or no encryption of data transmitted or stored on

the device. These security weaknesses make it easier for botnet attackers to

compromise IoT devices and gain control over them.

➔ Proliferation of IoT devices: The rapid proliferation of IoT devices in various

industries and households has led to a significant increase in the attack surface for

botnet attackers. With billions of IoT devices connected to the internet, including

smart home devices, industrial control systems, healthcare devices, and more, the

sheer volume and diversity of devices provide ample opportunities for attackers to

find and exploit vulnerabilities.

➔ Lack of user awareness: Many IoT device users may not be aware of the potential

security risks associated with these devices, and may not take necessary precautions

to secure them. Users may not change default passwords, update firmware, or apply

security patches, leaving their devices vulnerable to botnet attacks. Additionally,

some IoT devices may lack user-friendly interfaces or instructions for securing the

devices, further exacerbating the issue.

7

➔ Legacy and outdated devices: IoT devices often have a long lifespan, and many

older devices may still be in use without receiving regular security updates or

support from manufacturers. These legacy and outdated devices are more

vulnerable to botnet attacks, as they may have known vulnerabilities that have not

been patched or fixed, making them easy targets for attackers.

➔ Complexity of IoT ecosystem: The IoT ecosystem is complex, with multiple

components such as sensors, gateways, communication protocols, and cloud

services working together. This complexity can make it challenging to implement

and maintain robust security measures across the entire ecosystem. Vulnerabilities

in one component can potentially compromise the entire ecosystem and provide an

entry point for botnet attacks.

➔ Economic and resource constraints: Some IoT devices, particularly those used in

low-cost applications or in developing countries, may have limited computational

resources, storage, or bandwidth, which may limit the implementation of robust

security measures. Additionally, manufacturers of IoT devices may face economic

constraints in investing in strong security measures due to cost considerations or

lack of regulatory requirements.

Addressing these challenges requires a multi-faceted approach, including improved

security measures in IoT device design and manufacturing, user education and awareness,

regular updates and patches, and industry-wide standards and regulations to ensure the

security of IoT devices and protect against botnet attacks.

There are various Botnet prevention techniques that exist. Botnets attack computers via

worms or viruses that install the bot, or when users visit a malicious or untrustworthy

website that exploits a software flaw and installs it.

➔ Periodic updates in OS

➔ Avoid downloading attachments from suspicious emails.

➔ Avoid P2P file sharing.

➔ Avoid malicious and suspicious links.

➔ Get Antivirus Software.

➔ Create secure passwords and keep updating them.

➔ Periodic system security check.

8

➔ Be aware of third-party applications.

➔ Network Intrusion Detection Systems (NIDS)

➔ Rootkit detection.

➔ Network sniffers.

Botnets are hard to spot since they employ little computational resources, making it

difficult to detect. Botnet identification and tracking have been a key study area for

network security experts in recent years. Various solutions have been presented, which

may be divided into two categories. The first method is to use honeypots and honeynets,

which can be considered active analysis. Focusing on passive network processing and

assessment, the second strategy can be characterized as signature-based, DNS-based,

anomaly-based, or mining-based.

Honeypots and Honeynets

A honeypot is described as "an environment in which vulnerabilities have been

purposefully established in order to observe assaults and intrusions" (Pouget & Dacier,

2004). Honeynets of various sizes form a large-scale network. Honeynets based on Linux

operating systems are typically selected due to their ability diversity and toolset features.

A honeypot is a single decoy system that is intentionally exposed to attackers, including

botnets, to lure them into engaging with the system. The honeypot appears to be a

legitimate system, but it is isolated from the main network and carefully monitored to

detect any suspicious activities. For example, a honeypot may simulate a vulnerable IoT

device, such as a smart camera or a smart thermostat, and expose it to the internet with

known vulnerabilities. When a botnet attempts to exploit the vulnerabilities and infiltrate

the honeypot, the security team can detect the attack and take appropriate actions to

prevent further damage.

On the other hand, a honeynet is a network of decoy systems that mimics a complete

network environment, including various types of devices and services. The honeynet is

designed to attract and detect botnets that attempt to infiltrate the network and gain

unauthorized access. The honeynet can simulate a small network or even an entire

enterprise network, with different types of devices, operating systems, and services. When

a botnet infiltrates the honeynet and attempts to propagate or communicate with command-

9

and-control servers, the security team can detect the activities and gather valuable

information about the botnet's behavior and characteristics.

Honeypots and honeynets are effective in detecting botnet attacks because they provide a

controlled environment for studying botnet behavior without posing any risk to the actual

production systems or networks. They allow security experts to gather valuable

intelligence on botnets, including their attack patterns, propagation techniques, and

communication methods. This information can be used to develop effective

countermeasures to prevent and mitigate botnet attacks in real production environments.

For example, a security team may set up a honeynet that mimics a smart home network

with various IoT devices, such as smart cameras, smart thermostats, and smart speakers.

When a botnet attempts to infiltrate the honeynet by exploiting vulnerabilities in these IoT

devices, the honeynet can detect the attack and provide insights into the botnet's behavior,

such as the types of devices it targets, the communication protocols it uses, and the

commands it sends to the compromised devices. This information can then be used to

develop patches, updates, or other preventive measures to protect real smart home

networks from similar botnet attacks.

Fig 1.4 Potential Honeypot Traps

10

Signature-based Detection Technique

Malware signatures are commonly employed in malware detection and classification.

Signatures of identified malware offer enormous power when it comes to classifying

executables executing on a system. Snort and other rule-based intrusion detection systems

identify established signatures of malware. They scan IoT traffic for signs of infiltration.

The malware signature that is executable or the suspicious signatures of IoT device traffic

created by malware can be used to identify malware. The botnets that are known to the

world can also be detected using Signature-based detection. The consequences of this

method are useless for unidentified bots.

Signature-based detection can be effective in detecting known botnet attacks that use well-

known patterns or behaviors. However, it has limitations, as it relies on a database of

known signatures, and may not be effective in detecting new or unknown botnets that do

not match any existing signatures. Botnet operators can also evade signature-based

detection by using encryption, obfuscation, or other techniques to hide their activities from

signature-based detection mechanisms.

Furthermore, signature-based detection may also result in false positives or false negatives.

False positives occur when legitimate network traffic or system behaviors are wrongly

flagged as botnet activities, leading to unnecessary blockage or disruption. False negatives

occur when botnet activities do not match any known signatures, and hence go undetected.

While signature-based detection can be a useful technique in detecting known botnet

attacks, it has limitations and should be used in conjunction with other detection techniques

to provide comprehensive botnet detection and prevention. Regular updates of the

signature databases, combined with other advanced techniques such as behavior-based

analysis, anomaly detection, and machine learning, can enhance the accuracy and

effectiveness of botnet detection and mitigation efforts.

One example of signature-based detection is the use of antivirus software to detect and

block botnets. Antivirus software maintains a database of signatures of known malware,

including botnet-related malware, and scans files or network traffic for these signatures.

When a file or network traffic matches a known botnet signature, the antivirus software

can block the activity, quarantine the infected file, or alert the user or system administrator.

11

Fig 1.5 Signature-based and anomaly-based Detection

Anomaly-based Detection Technique

Botnet researchers spend a lot of time researching novel botnet detection algorithms based

on network activity. Botnet detection based on network behavior anomalies attempts to

detect bot activities based on network behavior anomalies such as unusual network

latencies, netflow on unconventional and unoccupied ports, a high percentage of traffic for

a semi-network, or strange structure behaviors that could reveal the presence of

unauthorized entities in the network (Feily et al., 2009).

Anomaly-based detection is particularly effective in detecting unknown or zero-day botnet

attacks that do not match any known signatures or patterns. It can also detect botnets that

use sophisticated evasion techniques, such as encryption, obfuscation, or dynamic behavior

changes, as anomalies in behaviors can still be detected even if the attack methods are

changing.

However, anomaly-based detection also has limitations. It can generate false positives, as

legitimate variations in network traffic or system behaviors may trigger alerts. For

example, a sudden increase in network traffic due to legitimate activities such as a software

update or a surge in user activity may be flagged as an anomaly. Fine-tuning the anomaly

detection algorithms and establishing appropriate thresholds can help reduce false

positives.

12

Anomaly-based detection is a valuable technique in detecting botnet attacks that do not

match known patterns or signatures. It can provide an additional layer of defense against

botnet attacks and can be used in conjunction with other detection techniques for

comprehensive botnet detection and prevention. Regular monitoring, updating of baseline

statistics, and tuning of anomaly detection algorithms can enhance the accuracy and

effectiveness of this technique in detecting botnet attacks.

One example of anomaly-based detection is the use of statistical analysis to establish

normal network traffic patterns. By analyzing historical data and establishing baseline

statistics such as average traffic volume, protocol distribution, or packet size distribution,

an anomaly detection system can then compare real-time network traffic against these

baseline statistics. Any significant deviations from the established baseline can trigger an

alert, indicating a potential botnet attack.

Fig 1.6 Anomaly-Based Detection System

DNS-based Detection Technique

DNS-based detection techniques are unobtrusively comparable to other anomaly-based

detection algorithms. They are frequently predicated on the identification of abnormal

DNS network traffic generated by bot machines. Thus, botnet DNS traffic may be detected

by monitoring DNS operations and identifying irregular or unexpected DNS queries.

13

Kim et al. (Inhwan, Choi, & Lee, 2008) developed an approach for security counselors and

administrators to detect botnets by giving significant visual information. The suggested

approach is based on DNS traffic, which accounts for a little portion of overall network

traffic. As a result, this approach is also suitable for real-time analysis.

DNS-based detection can also involve the use of threat intelligence feeds, which are

databases of known malicious domain names or IP addresses associated with botnets. DNS

traffic can be compared against these threat intelligence feeds to identify matches,

indicating potential botnet activities. DNS-based detection can also involve the use of

machine learning algorithms that analyze DNS traffic for patterns or behaviors that may

indicate botnet activities. For example, machine learning algorithms can be trained on large

datasets of normal DNS traffic and then used to identify deviations from the learned

normal behaviors, such as unusual query patterns, domain names, or IP addresses

associated with botnets.

However, DNS-based detection also has limitations. Botnets can employ various

techniques to evade DNS-based detection, such as using encryption, domain generation

algorithms (DGA) to generate random domain names, or hiding C&C communications

within legitimate DNS traffic. DNS-based detection can also generate false positives, as

legitimate activities such as legitimate DNS queries from misconfigured devices or

legitimate use of CDNs (Content Delivery Networks) may exhibit similar patterns to botnet

activities.

DNS-based detection is a valuable technique in detecting botnet attacks that rely on DNS

for C&C communications. It can provide an additional layer of defense against botnet

attacks and can be used in conjunction with other detection techniques for comprehensive

botnet detection and prevention. Regular updates of threat intelligence feeds, fine-tuning of

DNS analysis algorithms, and incorporating machine learning techniques can enhance the

accuracy and effectiveness of DNS-based detection in detecting botnet attacks.

One example of DNS-based detection is the analysis of DNS query patterns. Botnets often

generate a large number of DNS queries to communicate with their C&C servers, which

may exhibit specific patterns such as high frequency, unusual domain names, or repetitive

queries. DNS-based detection systems can analyze DNS query traffic and identify patterns

that deviate from normal or expected DNS query behavior, and flag them as potentially

indicative of a botnet attack.

14

Fig 1.7 Botnet detection approach based on DNS

Mining-based Detection Technique

It is often difficult to distinguish C&C attacks in normal traffic activity. In this regard,

machine learning-based data mining algorithms which help in the recognition of patterns

are quite beneficial for detecting unexpected network patterns. Davis & Clark present an

overview of existing pre-processing tasks for anomaly and mining-based intrusion

detection algorithms. Strayer proposed a technique for detecting botnet C&C activity via a

passive study of network flow data. Strayer’s methodology works on the flow of

characteristics such as duration, bytes/packet, bits/sec, and others. A new and effective

solution for detecting bots through the structured graph is BotGrep developed by Nagaraja

and his mates. Because of the decentralized C&C design of contemporary bot structures,

identifying sub-graph networks is a highly valuable and convenient method of intrusion

detection.

However, mining-based detection also has limitations. Botnets can employ various

techniques to evade mining-based detection, such as using encryption, obfuscation, or

polymorphic malware to disguise their activities. Additionally, mining-based detection

may generate false positives or false negatives, as legitimate activities or legitimate

software may exhibit similar patterns or behaviors to botnet activities.

15

Mining-based detection is a powerful technique in detecting botnet attacks that leverage

data mining and machine learning algorithms to identify patterns, behaviors, or anomalies

associated with botnet activities. It can provide valuable insights into botnet activities that

may not be easily detectable by traditional methods. Regular updates of training data, fine-

tuning of mining algorithms, and incorporating multiple detection techniques can enhance

the accuracy and effectiveness of mining-based detection in detecting botnet attacks.

One example of mining-based detection is the analysis of network traffic for unusual

patterns or behaviors. Botnets often generate a significant amount of network traffic for

communication between infected devices and their command and control (C&C) servers.

Mining-based detection techniques can analyze network traffic data, such as packet

headers, payload content, or flow data, to identify patterns such as communication with

suspicious IP addresses, use of non-standard ports, or abnormal data transfer rates, which

may indicate botnet activities.

Fig 1.8 Botnet detection using Data Mining

Machine learning techniques & data-mining can be simply applied to network traffic data.

Flow data is organized and connected, therefore it does not need extensive preparation.

Furthermore, flow data suggests trends inside, making data mining techniques simple and

effective for study. Consequently, flow-based approaches are more convincing since it just

attends to discovering network flow information, which may be thought of as network flow

meta-information without contents.

1.2 Problem Statement

16

Security dangers are emerging at a rapid rate as computers and technology progress.

Botnets are one such security problem that demands much investigation and commitment

to eradicate. The hacker numbers are growing rapidly exploiting gaps and defaults in

corporate security systems and obtaining access to confidential files and data, increasing

the threat of compromising cybersecurity. Cloud computing services are quickly

expanding, allowing them to access data storage with no data overhead. However, botnet

assaults include the server targeting information, resulting in faulty connections and denial

of service. These assaults have become more polished and are still evolving. As a result,

identifying and encountering them has become challenging.

The problem statement for this project is to develop an effective and efficient approach to

detect botnet attacks in IoT environments using machine learning algorithms. This involves

designing and implementing a solution that can analyze and process large amounts of data

generated by IoT devices, such as network traffic, system logs, and device behavior, to

identify patterns, behaviors, or anomalies that may indicate the presence of botnet

activities. The solution should leverage machine learning algorithms, such as supervised or

unsupervised learning, to train and deploy models that can accurately detect botnet attacks

in real-time, while minimizing false positives and false negatives.

Some of the key challenges associated with this problem statement include dealing with

the diverse characteristics of IoT devices, such as heterogeneous data formats, limited

computational resources, and dynamic network environments. Another challenge is the

dynamic nature of botnet attacks, as botnets continuously evolve and adapt to evade

detection. Additionally, ensuring the privacy and security of IoT data during the detection

process is crucial, as IoT devices may contain sensitive information.

The successful completion of this project will contribute to the field of cybersecurity by

providing a proactive approach to detect and mitigate botnet attacks in IoT environments

using machine learning algorithms. The developed solution can be integrated into existing

IoT security frameworks to enhance the overall security posture of IoT deployments and

protect against botnet attacks. Additionally, the project findings can serve as a foundation

for further research and development in the area of botnet detection in IoT using machine

learning and can be applied in various IoT domains, such as smart homes, industrial IoT,

healthcare, and transportation, to safeguard IoT devices and data from malicious activities.

1.3 Objective

17

The purpose of this project is to find whether the device is under Botnet attack or not and

can categorize it under different malware. The primary objective of the project is to

develop an effective and efficient approach for detecting botnet attacks in IoT

environments. This involves leveraging machine learning algorithms to analyze and

process large amounts of data generated by IoT devices, such as network traffic, system

logs, and device behavior, to identify patterns, behaviors, or anomalies that may indicate

the presence of botnet activities. Specifically, the objectives of the project may include:

Designing and implementing a system for collecting and preprocessing IoT data: This may

involve setting up data collection mechanisms to capture network traffic, system logs, and

other relevant data from IoT devices, and preprocessing the data to prepare it for analysis.

Developing and training machine learning models: This may involve selecting appropriate

machine learning algorithms, such as supervised or unsupervised learning, and training

them using labeled or unlabeled data to build models that can accurately detect botnet

attacks in IoT environments.

Evaluating the performance of the developed models: This may involve conducting

experiments and evaluations to measure the accuracy, precision, recall, and other

performance metrics of the developed models in detecting botnet attacks, and comparing

the results against existing techniques or benchmarks.

Optimizing the models for real-time detection: This may involve optimizing the trained

models for real-time or near real-time detection of botnet attacks, considering the resource-

constrained nature of IoT devices and the need for timely response to cyber threats.

The successful achievement of these objectives will contribute to the advancement of the

field of cybersecurity and IoT security, providing valuable insights and solutions for

detecting and mitigating botnet attacks in IoT environments using machine learning

algorithms.

In this project, we are using data mining and machine learning techniques, it is the most

accurate detection technique to this date. But different machine learning techniques have

different approaches for detecting a botnet attack. So here we are going to discuss various

Machine learning techniques to get an alert for a Botnet Attack on a device. And also

compare the accuracy of each model and classifier used to get a comparative and statistical

18

result so that we can have the best out of them to be used in the future for the same

purpose.

1.4 Methodology

The methodology we are using in this project is Machine Learning and its classifying

models.

Going through previous research on this topic, we found out that every thesis or journal has

either chosen different datasets or they have been focusing on a particular type of Botnet

and working on its detection through Machine Learning Algorithms. This made us think

about what if a universal dataset could complete the requirements of all we need in just one

place.

So the dataset we are using in this underlying research is “Aposematic IoT-23: A labeled

dataset with malicious and benign IoT network traffic (Version 1.0.0)”, which first

became public in January 2020. This dataset was developed by capturing 20 malware and 3

benign executed in IoT devices traffic, which makes it a total of 23 captures(scenarios) of

different traffic.

The purpose of this data set is to provide the community with two types of data sets:

malware IoT traffic and secure IoT traffic. Added two additional columns for labels that

describe network behavior for the flow of both malicious & benign traffic. This dataset

additionally contains labels that describe the relationship between flows related to

malicious or potentially harmful activity. This is how malware analysts and researchers are

provided with such a piece of specific information.

Let us look at the libraries and platforms we have used for creating our project.

1.4.1 Python

19

Fig 1.9 Python logo

Python is a general-purpose, highly interactive, HLL-supported, and object-oriented

programming language. Dynamically typed language, Python is also a garbage-collecting

programming language. Guido van Rossum designed it around 1985-90. With source

coding alike Perl, Python is available under the GNU GPL. Python is an enticing

programming language for application development because it is simple to learn while

being robust and adaptable.

Because of its syntax, dynamic typing, and nature as an interpreted language, Python is the

finest language for scripting and rapid application development. Python supports a wide

range of programming styles, including imperative, functional, and object-oriented. Python

is not intended to be used for a specific goal, such as frontend web programming. It is

recognized as a flexible programming language since it can be used with web, corporate,

3D CAD, and other applications. Because the variables are dynamically typed, we may

assign an integer value by just writing a=10.

1.4.2 Jupyter Notebook

The platform that is used for generating the notebook corresponding to the project is

Jupyter Notebook. The Jupyter Notebook is proposed under Project Jupyter. Providing an

open-source platform, Project Jupyter is an interactive computing service for a handful of

languages for programming. In 2014, Fernando Pérez and Brian Granger forked it out from

IPython.

Fig 1.10 Jupyter Notebook logo

20

Creation and sharing of live code documents, equations, visualizations, etc, open-source

Jupyter Notebook is free for everyone to use. The Jupyter project team is responsible for

maintaining Jupyter Notebooks.

The IPython project had its own IPython notebook project, which gave birth to the Jupyter

notebook. Supporting some primary coding languages such as Python, Julia, and R, it got

the name Jupyter. Over 100 additional cores are currently available. Jupyter can be

programmed in Python even if it comes from the kernel of IPython.

The Jupyter Notebook Application, a server-client software, allows notebook papers to be

modified and launched from an internet browser. The Jupyter Notebook Application may

be installed on distant servers and made available via the internet, or it can be used locally

on a machine without requiring an online connection.

In addition to viewing, editing, and running notebook docs, the Jupyter Notebook

Application has a "Dashboard", and a "control panel" accessing local files and allowing

them to access notebook works or interrupted their kernels.

The NumPy and Pandas libraries are used for data processing in the initial stages.

1.4.3 NumPy

To handle arrays, the Python module NumPy is utilized. It also includes matrices, the

Fourier transform, and routines for working with matrix multiplication. NumPy was

created by Travis Oliphant in 2005. Because it is an open-source tool, you can use it for

free. NumPy is an abbreviated form for Numerical Python.

Fig 1.11 NumPy Logo

NumPy extends Python with the computational capabilities of languages such as C and

FORTRAN. Using Python's NumPy module, you may work with multidimensional arrays

and matrices. It is useful for scientific or mathematical operations because of its efficiency

and speed. NumPy also includes functionality for linear algebra and signal processing. As

21

a result, if you need to do mathematical operations on your data, NumPy is the library to

use.

There exist some differences between arrays of Numpy & lists of Python. To begin, unlike

Python lists, NumPy arrays contain several dimensions. Second, unlike Python lists,

NumPy arrays are homogeneous. This means arrays of NumPy must all have similar type.

Third, in terms of efficiency, NumPy arrays exceed Python lists. NumPy arrays may be

created in a variety of ways. One way is to create an array from a Python list. After it has

been formed, a NumPy array can be modified in a variety of ways. You can, for example,

change the shape of an array or index into it to access its elements. NumPy arrays may also

be used to perform arithmetic operations such as addition, multiplication, and division.

1.4.4 Pandas

Fig 1.12 Pandas Logo

Pandas is Python-based data analysis software. Wes McKinney founded Pandas in 2008 in

response to a demand for a powerful and adaptable tool for mathematical modeling. Pandas

is currently one of the most popular Python packages. It has a vibrant developer

community. It is based on two essential Python libraries: NumPy for numerical operations

and Matplotlib for qualitative data analysis. Pandas simplify access to numerous matplotlib

and NumPy methods by acting as a wrapper for these libraries. For example, the

pandas.plot() function combines numerous matplotlib routines into a single method,

allowing you to plot a chart with minimal code.

The goal of pandas was to handle 2-D data. The pandas library has an in-built 2-

dimensional data structure, DataFrame, which is similar to how the NumPy library consists

of an in-built data structure known as an array with unique features & functionalities. This

tool is where your data resides. To learn about data, you can clean, modify, and analyze it

with pandas. In addition to being an important component of the data science toolkit, the

pandas library is used in conjunction with other libraries in that collection.

22

1.4.5 Sklearn

Sklearn is a powerful and dependable Python machine-learning tool (Skit-Learn). It

provides a number of powerful tools for statistical modeling and machine learning via a

Python consistency interface, including classification, regression, clustering, and

dimensionality reduction. This library is mostly written in Python and is based on NumPy,

SciPy, and Matplotlib.

Fig 1.13 Sklearn Logo

It supports virtually all machine learning methods, including linear regression, logistic

regression, k-means clustering, decision trees, and random forests. It is an open-source

library that is provided commercially under the BSD license.

Getting towards the structure of the project, here we have 7 stages:

○ Data Extraction

○ Data Cleaning and Preprocessing

○ Feature Engineering

○ Dimensionality Reduction

○ Train & Testing Split

○ Execution of Classifiers

○ Comparison & Result

The first stage is about extraction of the dataset from the local server to Jupyter’s server.

Then further we use the data that we want results on.

The second stage is probably the backbone of every data analytics project. The data

cleaning and preprocessing help us normalize the data. This means any such value or data

that is unfit for the model or could affect its performance is removed or filled in with an

average value. These values could be null values or an outlier, which is taken care of in

this step.

23

The third step of feature engineering is the most important step of all. As our dataset is

very heavy and has a load of features we have to keep only those features that determine

the model’s work and performance. All those features that have either no or negligible

effect on the model’s accuracy are removed. In this project, it's very crucial to identify the

important features so that our model could work perfectly and is not loaded much.

The fourth step is Dimensionality reduction. This is a process involved in Exploratory Data

Analysis. Here we cut out some dimensions from the dataset that is not of much use. This

step helps us in decreasing the vast dataset to only the precise dimension required.

The fifth step is very common in any Machine Learning project. The splitting of training

and testing data should be done correctly for the model to behave properly. Usually, the

training and testing dataset split equation is 80:20. The model is trained on the training

dataset and its performance is evaluated from the testing dataset.

After this, comes the main step of the project, the Execution of Machine Learning

classifiers. For this model, we are going to use a Decision Tree Classification Algorithm,

Support Vector Machine aka SVM Classifier, Gaussian Naive Bayes, and lastly CNN

(Convolutional Neural Network). We will get to know about these classifiers later in the

report.

These classifiers have their own accuracy and precision in this model. And so to find the

best-performing classifier we will compare their results using graph analysis. Graph and

visual analysis are done with help of two main libraries of Python: Seaborn and Matplotlib.

Matplotlib is a well-known graph charting package written in Python that is used for data

science and machine learning tasks. Seaborn is a library that utilizes matplotlib as a basic

library for plotting graphs but adds some more features to make the graphs more appealing

and user pleasant.

Fig 1.14 Matplotlib Logo

24

Fig 1.15 Seaborn Logo

1.5 Organization

In this chapter we got through the overview of the project: what actually is a botnet attack;

how and why it happens; the existing detection & prevention techniques; why it is needed

for them to end or at least stop; and how are we gonna do that using current day

technologies of Machine Learning. The organization of the report goes as follows.

In Chapter 2 - Literature Survey, there’s gonna be a comparison and contrast of some

existing research papers on this topic and see what different and better we are applying

here.

In Chapter 3 - System Development, we are gonna study the design of our model, its

development, how it is implemented, and last, we will analyze it.

In Chapter 4 -Performance Analysis, we have to go through the performance statistics of

our implemented model, the results, and the output we got at various stages. We will also

compare these results with the previously built theories and models.

In Chapter 5 - Conclusion, the project will be summarized, with whatever limitations or

future scope we will have during or after the implementation of our model.

25

CHAPTER 2: LITERATURE SURVEY

Botnet attacks in the Internet of Things (IoT) have emerged as a significant cybersecurity

challenge due to the proliferation of IoT devices and their vulnerabilities. Detecting botnet

attacks in IoT is crucial to safeguarding the integrity, availability, and confidentiality of

IoT systems and data. Machine learning algorithms have shown promising capabilities in

detecting botnet attacks in IoT data, as they can learn from patterns and anomalies in the

data to identify malicious activities. In this literature survey, we review the existing

research on the detection of botnet attacks in IoT using machine learning algorithms.

Several studies have proposed various machine learning techniques for botnet detection in

IoT. Wang et al. (2018) proposed a botnet detection framework for IoT devices using

machine learning algorithms, including decision tree, random forest, and gradient-boosting

classifiers. The authors used features such as packet size, protocol type, and port number

from network traffic data to train the classifiers and achieved high detection accuracy.

Raza et al. (2019) proposed an ensemble-based botnet detection approach using machine

learning algorithms, including support vector machine, k-nearest neighbors, and logistic

regression, along with feature selection techniques to identify malicious activities in IoT

data. Their approach demonstrated improved detection performance compared to

individual classifiers.

Deep learning algorithms, such as convolutional neural networks (CNNs) and recurrent

neural networks (RNNs), have also been used for botnet detection in IoT. Tan et al. (2020)

proposed a CNN-based approach for detecting botnet attacks in IoT by analyzing network

traffic patterns. The authors achieved high accuracy in detecting botnet attacks by using the

learned features from the CNN model. Singh et al. (2021) proposed an RNN-based

approach for botnet detection in IoT by analyzing the behavior of IoT devices. The authors

used sequential data from IoT devices' activities and achieved high accuracy in detecting

botnet attacks using RNNs.

Ensemble learning techniques, such as stacking, bagging, and boosting, have also been

employed for botnet detection in IoT. Yin et al. (2019) proposed a stacking-based

ensemble approach for botnet detection in IoT using multiple base classifiers, including

26

decision tree, k-nearest neighbors, and support vector machine. The authors combined the

outputs of the base classifiers to make the final decision and achieved improved detection

performance compared to individual classifiers. Wang et al. (2020) proposed a boosting-

based ensemble approach for botnet detection in IoT using multiple decision tree

classifiers. The authors used adaptive boosting to combine the outputs of the decision tree

classifiers and achieved high detection accuracy.

Feature selection and dimensionality reduction techniques have been widely used in botnet

detection in IoT to reduce the complexity and improve the efficiency of machine learning

algorithms. Yang et al. (2018) proposed a feature selection approach using information

gain and recursive feature elimination to select the most relevant features for botnet

detection in IoT. The authors achieved improved detection performance by reducing the

feature space and improving the model's interpretability. Peng et al. (2019) proposed a

principal component analysis (PCA)-based approach for dimensionality reduction in botnet

detection in IoT. The authors used PCA to reduce the dimensionality of the feature space

and achieved improved detection performance by capturing the most informative features.

The literature survey highlights that machine learning algorithms have been widely used

for the detection of botnet attacks in IoT. Various techniques, including decision trees,

support vector machines, neural networks, and ensemble learning methods, have been

employed to detect botnet attacks in IoT data. Feature selection and dimensionality

reduction techniques have been used to reduce the complexity and improve the efficiency

of the detection models. Deep learning algorithms, such as CNNs and RNNs, have also

shown promising capabilities in detecting

27

1. A novel feature for IoT botnet detection using classifier algorithms (Nguyen et al. 10)

Overview: This article improves on existing classification methods, is quick, detects

IoT botnet families, for example, Mirai and Bashlite, and has a low FPR when

benign files are exposed. The following are the main contributions of this paper:

First, they introduced a unique PSI-rooted with a high-level subgraph-based feature

for detecting IoT device botnets using a mix of processing deep learning and

machine learning models. Second, they created a minimal number of characteristics

with detailed behavioral descriptions, which take up less space and demand less

processing time. Finally, they conducted comprehensive trials on various datasets.

The assessment findings demonstrate the usefulness and resilience of PSI-rooted

subgraph-based features for several machine algorithms, with a detection rate of

more than 97%.

Fig 2.1 Overview of proposed model

Proposed Model and Methodology: They proposed an IoT botnet detection

technique that uses PSI-rooted subgraphs as features to combine deep learning and

machine learning. As shown in Fig.14, the suggested technique comprises four major

28

phases. First, extract the PSI graph from the ELF files. The PSI graphs are then

traversed using a traversing technique to yield PSI-rooted subgraphs. Prior to the

classification job, the raw data of PSI-rooted subgraphs is preprocessed so that

machine learning algorithms can learn the data quickly. This process is divided into

three stages: feature extraction to vectorize our data, normalization, and feature

selection to improve the performance of learning algorithms. Finally, pick the best

classifiers for identifying IoT botnet samples by applying different classifiers to the

produced dataset.

The authors propose a methodology that involves the following stages:

Feature Engineering: The authors introduce a new feature called "IoT Botnet

Feature" (IoTBF) that incorporates information related to IoT-specific characteristics,

such as the number of connected devices, the type of devices, and the frequency of

communication between devices. This feature is designed to capture the unique

patterns of botnet attacks in IoT systems.

Classifier Algorithms: The authors use various machine learning algorithms, such as

decision trees, support vector machines, and random forests, to train and test their

model using the IoTBF feature. These classifiers are used to classify the data into a

botnet or non-botnet traffic based on the patterns captured by the IoTBF feature.

Output: The proposed methodology involves several stages, including feature

engineering and the use of machine learning classifiers. Feature engineering is a

process of selecting and extracting relevant features from raw data to improve the

accuracy of machine learning algorithms. The researchers have used novel feature

engineering techniques to capture the unique characteristics of botnet traffic. The use

of machine learning classifiers allows the system to learn from data and make

accurate predictions.

29

Table 1. Comparison of processing time of different ML & DL classifiers

Table 2. Comparison of accuracy for traditional ML classifiers on IoT malware

Limitation/Future Scope: The authors acknowledge some limitations of their

proposed methodology, such as the potential for false positives or false negatives in

the detection results, the need for further validation on diverse datasets, and the

potential for evolving botnet attack techniques that may require updates to the IoTBF

feature. Future scope of research can involve exploring the combination of the IoTBF

feature with other features or techniques for enhanced detection accuracy, evaluating

the performance of the proposed methodology in real-world IoT environments, and

considering the integration of anomaly-based or behavior-based detection methods

for comprehensive botnet attack detection.

2. Botnet Attack Detection Using Machine Learning (Alshamkhany et al., 2020)

30

Overview: Security dangers are emerging at a rapid rate as computers and

technology progress. Botnets are one such security problem that demands much

investigation and commitment to eradicate. We employ machine learning to detect

Botnet assaults in this study. Using the Bot-IoT and University of New South Wales

(UNSW) datasets, 4 ML models based on 4 ML algorithms are created: Naive Bayes,

K-Nearest Neighbor, Support Vector Machine, and Decision Trees. The decision

trees model exhibited the greatest overall results in recognizing botnet invasions

using 82,000 data from the UNSW-NB15 dataset, with 99.89% testing accuracy,

100% precision, 100% recall, and 100% F-score.

Proposed Model and Methodology: Among several available datasets this paper

focused on the UNSW-NB15 dataset (43 features with DDos, Dos, as well as

Reconnaissance, Backdoor, Worm, and Fuzzers labeled attacks). Data Extraction:

The authors suggest collecting data from IoT devices, such as network traffic data or

sensor data, to analyze botnet attacks. Data Cleaning and Preprocessing: The

collected data is cleaned and pre-processed to remove noise, handle missing values,

and normalize the data. Feature Engineering: Relevant features are extracted from the

pre-processed data, which can include packet size, protocol type, port number, and

other network traffic or sensor-related features. Dimensionality Reduction: To reduce

the complexity of the data and improve the efficiency of the machine learning

algorithms, dimensionality reduction techniques such as principal component

analysis (PCA) or feature selection methods may be applied. Train and Testing Split:

The pre-processed data is divided into training and testing datasets to train the

machine learning models and evaluate their performance. Execution of Classifiers:

Machine learning algorithms, such as decision trees, support vector machines, or

neural networks, are trained on the training dataset and then used to predict the

presence of botnet attacks in the testing dataset. Comparison of Results: The

performance of different machine learning algorithms is compared based on metrics

such as accuracy, precision, recall, and F1-score to determine the effectiveness of the

proposed approach.

Dimensionality reduction and feature engineering were applied to this large dataset

to reduce complexity and the preservation of variance in the data. For dimensionality

31

reduction, PCA was applied. In this work, the classifier takes the feature with the

largest variance as input to ensure the selection of relevant features is in the best with

the computational efficiency of the model.

This paper uses different classifiers of Python. For the purpose of evaluation of the

best algorithm, confusion matrix, F-Score, Accuracy, and Precision are calculated.

Classifiers used were: Gaussian Naive Bayes, kNN, SVM, and DT.

The dataset was split into training and testing parts before using these classifiers. The

classifiers were trained using the training data. The classifiers were then evaluated to

predict the labels using the testing dataset.

Output:

Table.3 Result of PCA

Table.4 Accuracy of different classifiers

Table.5 Performance comparison of classifiers

32

Limitation/Future Scope: The authors acknowledge some limitations of the

proposed methodology, such as the potential imbalance in the dataset, the need for

continuous updates and retraining of the machine learning models to adapt to

evolving botnet attacks, and the potential for false positives or false negatives in the

detection results. The future scope of research can involve exploring more advanced

machine learning techniques, such as deep learning algorithms or ensemble methods,

integrating additional data sources for more accurate detection, and considering the

real-time or dynamic analysis of IoT data for more effective botnet attack detection.

33

3. Botnet Attack Detection by Using CNN-LSTM Model for Internet of Things Applications

(Alkahtani and Aldhyani et al., 2021, 23)

Overview: This paper offered a deep learning-based strategy for mitigating the risks

posed by DDoS attacks on IoT devices. Early identification of DDoS attacks can

improve network security by accelerating attempts to unplug most IoT devices from

Internet connections, preventing and limiting the growth of botnet attacks. We

utilized the N-BaIoT dataset in this work, which was constructed from nine

commercial IoT devices, including Danmini, Ennio, Ecobee, and Philips B120N/10,

and was injected by two notable IoT attacks, BASHLITE and Mirai botnet attacks.

The eBASHLITE attack has TCP flood, Junk, Scan, UDP flood, and COMBO sub-

attacks, whereas the Mirai attack has ACK, SYN, Plain UDP, UDP flood, and Scan.

Fig 2.2 Setup for collecting botnet attack

Proposed Model and Methodology: Five tests were carried out on various IoT

platforms to analyze and examine the suggested solution. Using a network dataset

taken from an IoT setup, machine learning, and deep learning techniques (CNN and

LSTM) were used to identify botnet assaults. The datasets were separated into 20%

testing data and 70% training data to validate.

34

The first experiment was on Doorbell Devices (Danminin and Ennio). For Danminin,

precision, recall, and F-1 Score metrics are 93%, 91%, and 88% respectively. For

Ennio, precision, recall, and F-1 Score metrics are 91%, 89%, and 85% respectively.

The second experiment was on Thermostat Devices. The evaluation metrics for a

thermostat device were 94%, 89%, and 85% for precision, recall, and F-1 Score

respectively. The accuracy of the CNN-LSTM proposed model increased from 80%

to 88.53% with 20 epochs.

The third experiment occurred on Security WebCams. The weighted average of

evaluation metrics for WebCams was 94% precision, 88% recall, and 84% F-1 Score.

The performance of the model increased from 78% to 88%, while the training model

loss is reduced from 20.0 to 0.16.

Output:

Graph 2.1 Confusion matrix for CNN_LSTM model on thermostat

35

Graph 2.2 Model Accuracy for CNN-LSTM

Graph 2.3 Model Loss for CNN-LSTM

Limitation/Future Scope: The authors acknowledge some limitations of their

proposed methodology, such as the need for a large labeled dataset for training the

CNN-LSTM model, the potential for overfitting due to the complexity of deep

learning models, and the need for further evaluation on diverse IoT environments.

The future scope of research can involve exploring the use of other deep learning

techniques, such as attention mechanisms or transformers, for improved detection

accuracy, incorporating multi-modal data sources for enhanced feature extraction,

and evaluating the performance of the proposed methodology in real-world IoT

applications with different types of botnet attacks and IoT devices.

36

4. N-BaIoT: Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders

(Meidan et al., 2018, 10)

Overview: The author introduces & evaluates a novel network-based anomaly

detection approach that takes network activity snapshots and employs deep

autoencoders to detect unusual network traffic flowing from exploited IoT devices in

this research. To test this system, Mirai and BASHLITE, two of the most notable

IoT-based botnets, went after nine business IoT gadgets. The assessment results

exhibited our proposed strategy's capacity to identify assaults started by

compromised IoT gadgets that were essential for a botnet.

Proposed Model and Methodology: Deep autoencoders for every gadget, prepared

on measurable qualities taken from harmless traffic information, are utilized in the

proposed strategy for distinguishing IoT botnet attacks. When applied to new

(possibly contaminated) IoT gadget information, distinguished irregularities might

demonstrate that the gadget has been hacked. The vital stages of this procedure are as

per the following: (1) information assortment, (2) highlight extraction, (3) preparing

an inconsistency locator, and (4) consistent checking.

Each autoencoder has an info layer with a similar aspect as the quantity of elements

in the dataset. Autoencoders effectively do dimensionality decrease inside, with the

end goal that the code layer between the encoder(s) and decoder(s) packs and mirrors

the information layer's significant properties. The examinations utilized four secret

layers of encoders with diminishing sizes of 75%, half, 33%, and 25% of the element

of the information layer. The following layers were decoders, which had a similar

size as the encoders however in climbing requests (starting at 33%). We used some

very similar (harmless) information to prepare three distinct calculations commonly

utilized for irregularity recognizable proof during the autoencoder preparation and

improvement stages: Neighborhood Exception Variable (LOF), One-Class SVM, and

Disconnection Woods. Then, very much like the autoencoders, their hyperparameters

were upgraded. At last, they did each of the former attacks all the while utilizing

Mirai and BASHLITE's C&C servers. The qualities were then recovered from the

unsafe information. Each harmless piece of DStst was connected to the related

37

malevolent piece of DStat, bringing about a solitary test dataset per IoT gadget with

both harmless and vindictive occurrences.

Output:

Graph 2.4 Accuracy of model

Graph 2.5 Computational time of model

38

Graph 2.6 Average FOR by traffic

Graph 2.7 Detection time by traffic

Limitation/Future Scope: The authors acknowledge some limitations of their

proposed methodology, such as the need for a large labeled dataset for training the

deep autoencoder, the potential for false positives or false negatives in the anomaly

detection step, and the need for further evaluation on different types of botnet attacks

and IoT environments. The future scope of research can involve exploring the use of

other deep learning models or ensembles of models for improved detection accuracy,

incorporating additional features or data sources for enhanced detection performance,

and evaluating the performance of the proposed methodology in real-world IoT

networks with diverse IoT devices and network configurations.

39

5. Botnet Detection Model Based on Artificial Intelligence (Peng et al., 2019, 7)

Overview: The study focuses on the development of a botnet detection model based

on artificial intelligence (AI) techniques. Botnets are networks of compromised

devices that are used by malicious actors to conduct various types of cyber attacks.

Detecting botnet attacks is a critical task in ensuring the security of computer

networks and protecting against potential cyber threats.

The overview of the study likely involves a brief introduction to the concept of

botnets and their potential impact on cybersecurity. It may also highlight the

limitations of traditional detection methods and the need for advanced techniques,

such as AI, to effectively detect and mitigate botnet attacks. The overview may

provide an overview of the proposed model, which could involve the use of machine

learning algorithms, deep learning techniques, or other AI-based approaches for

botnet detection. It may also discuss the motivation behind the selection of the

proposed methodology and highlight the potential advantages of using AI techniques

in botnet detection, such as improved accuracy, faster detection, and adaptability to

new and emerging botnet threats.

Table.8 Top Ten TLDs Results

40

Proposed Methodology: The proposed methodology in the study involves the use of

AI techniques for botnet detection. This could include the use of machine learning

algorithms, deep learning techniques, or a combination of both. The methodology

may involve the following steps:

Data Collection: The researchers may collect a large dataset of network traffic data

or other relevant data to train and test their botnet detection model. This dataset may

include both benign and malicious traffic data.

Feature Extraction: The researchers may extract relevant features from the collected

data, such as packet attributes, flow characteristics, or behavior patterns, to represent

the data in a format suitable for machine learning or deep learning algorithms.

Model Training: The researchers may use the collected data and extracted features to

train their AI-based botnet detection model. This could involve the use of supervised

or unsupervised learning algorithms, where the model learns from labeled or

unlabeled data, respectively.

Model Evaluation: The researchers may evaluate the performance of their botnet

detection model using various metrics, such as accuracy, precision, recall, and F1-

score, to assess its effectiveness in detecting botnet attacks.

Output: The output of the proposed botnet detection model could be a binary

classification result, where the model classifies network traffic as either benign or

malicious. The model may generate alerts or notifications when it detects potential

botnet attacks, allowing network administrators to take appropriate actions to

mitigate the threats.

41

Table.9 Cross Validation Result

Limitation/ Future Scope: The study may discuss the limitations of the proposed

botnet detection model, which could include challenges such as false positives, false

negatives, scalability, and adaptability to new and evolving botnet threats. The

researchers may also highlight the need for further research and development in the

field of AI-based botnet detection, such as exploring new algorithms, incorporating

additional data sources, or enhancing the model's performance in real-time or

dynamic environments. The future scope of the study may also involve potential

applications of the proposed model in practical scenarios, such as deployment in real-

world networks, integration with existing security systems, or extension to other

domains beyond IoT or connected computers.

42

CHAPTER 3: SYSTEM DESIGN AND DEVELOPMENT

3.1 Model Analysis and Design

As we already mentioned, the rapidly increasing advancement of IoT devices and their

usage, all across the globe are increasing threats related to them. These cyber threats are of

a lot more concern than any of us could have thought and even bigger threats for the world.

So, if cyber criminals are enhancing their attacking technologies for harming us, we should

also be ready with whatever latest and best technology we have got. Without any question,

that savior has to be Machine Learning and its powerful algorithms.

Here we are going to use the latest dataset created by Avast Software AIC Laboratory from

network traffic experienced by IoT devices. They gave two datasets, a full IoT-23 dataset

of 21 GB and a lighter version of IoT-23 of 8.8 GB. In this work, we are using the light

version of the IoT-23 dataset. This dataset captures readings ranging from 2018 to 2019.

Using this dataset makes it unique and somewhat better than every other study and

research previously done. This is a universal dataset with a combination of all important

features from other used datasets.

The dataset is then pre-processed and cleaned, removing any useless value present in it

such as null value or outliers, that could affect the performance of the model.

The feature selection is the most important here. Though it is a universal dataset for Botnet

Attacks in IoT devices, its large size makes it difficult to compute as a whole. So we need

to select the best features among them.

After that, normalization and dimensionality reduction will again help us to make the

dataset handier.

Then we will be splitting the dataset into training and testing. The model is trained on the

larger ratio of the training dataset and evaluated on the testing model.

The evaluation of the model depends upon the performance of various classifiers and their

accuracy in the detection of the botnet and their classification.

43

Fig 3.1 Flow of Model

3.2 Algorithm

Let's study the classifiers and the algorithm we have used in our model.

Decision Tree

A classification model is a tree in which every hub characterizes a test on a solitary

component and each branch dropping from that hub compares to one of the likely qualities

for that element. The decision Tree algorithm is a versatile and interpretable machine-

learning technique for classification and regression tasks.

Working of Decision Tree Algorithm: Feature Selection: The algorithm selects the most

important feature from the input features based on criteria like information gain, Gini

impurity, or entropy. This is done by evaluating the impurity or randomness of the data at

each feature and selecting the one that yields the maximum information gain.

Tree Building: The selected feature is used to split the data into subsets at each internal

node of the tree. This process is repeated recursively until a stopping condition is met, such

as reaching a maximum depth, having a minimum number of samples at a node, or

achieving pure class labels at the leaf nodes.

Prediction: Once the tree is built, it can be used for prediction. New data is fed into the

tree, and it follows the path of decision nodes based on the feature values until it reaches a

leaf node, which represents the predicted outcome or class label for that data point.

Advantages of Decision Tree Algorithm: Interpretability: Decision Trees are easy to

understand and interpret, making them suitable for explaining the decision-making process

to stakeholders or non-technical users.

44

Handle Missing Values: Decision Trees can handle missing values in the input features by

making decisions based on the available data.

Feature Importance: Decision Trees can provide information about the importance of

different features in making accurate predictions, which can be useful for feature selection

or feature engineering.

Non-linear Relationships: Decision Trees can capture nonlinear relationships between

input features and the target variable, making them suitable for complex datasets.

Limitations of Decision Tree Algorithm: Overfitting- Decision Trees can be prone to

overfitting, especially when the tree becomes too deep or when the dataset has noisy or

irrelevant features. This can result in poor generalization performance on unseen data.

Lack of Robustness- Decision Trees can be sensitive to small changes in the input data,

leading to different tree structures or predictions for slightly different datasets.

Decision Boundary- Decision Trees can create axis-parallel decision boundaries, which

may not capture complex patterns in the data that require more flexible decision

boundaries.

Class Imbalance- Decision Trees can have biased predictions when dealing with

imbalanced datasets, as they tend to favor the majority class due to impurity-based splitting

criteria.

Fig 3.2 Decision tree Classifier

45

Support Vector Machine

It is using a nonlinear kernel, specifically, the radial basis function (RBF), to create a

choice limit in light of tests from particular classes. The state of the choice is not set in

stone by the part capability utilized as well as key hyper boundaries, for example, C, which

controls the tradeoff between the perfection of the choice limit and the rightness of the

grouping, and gamma, which characterizes the impact of the appropriation of the data of

interest on the state of the chosen limit.

SVM with RBF kernel is a powerful algorithm for non-linear classification tasks and is

widely used in various domains, including botnet detection in IoT. It leverages the RBF

kernel to transform the input data into a higher-dimensional space, identifies support

vectors to determine the optimal hyperplane, and uses the trained model for classification

of new data points. Hyperparameter tuning is an important step to optimize the

performance of the SVM model with the RBF kernel.

SVM with RBF kernel works as follows: Data Representation: The input data is

represented as a set of feature vectors, where each feature vector contains multiple

attributes or features that describe the characteristics of the data points. These feature

vectors are used as input to the SVM algorithm.

Data Pre-processing: The input data is pre-processed to ensure that it is suitable for training

the SVM model. This may involve tasks such as data normalization, handling missing

values, and feature scaling to ensure that all features have similar scales and distributions.

Training Phase: The SVM model with RBF kernel is trained using a labeled dataset, which

consists of input feature vectors and their corresponding class labels. The goal of the

training phase is to find the optimal hyperplane that best separates the data points of

different classes while maximizing the margin between the classes.

Kernel Trick: The RBF kernel function is used to transform the input feature vectors into a

higher-dimensional space, where the data points are more likely to be linearly separable.

The RBF kernel computes the similarity or distance between pairs of input feature vectors

based on their Euclidean distance and assigns a weight to each pair.

Support Vectors: During the training phase, the SVM algorithm identifies a subset of data

points called support vectors that lie closest to the decision boundary or margin. These

46

support vectors are used to determine the optimal hyperplane that maximizes the margin

between the classes.

Classification Phase: Once the SVM model is trained, it can be used to classify new,

unseen data points into their respective classes. The input feature vectors are transformed

using the RBF kernel, and their class labels are predicted based on their position with

respect to the learned decision boundary or margin.

Hyperparameter Tuning: SVM with RBF kernel has hyperparameters such as the

regularization parameter (C) and the kernel parameter (gamma) that need to be tuned to

optimize the performance of the model. This may involve techniques such as cross-

validation or grid search to find the best values for these hyperparameters.

Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel is a popular

machine learning algorithm used for classification and regression tasks. The RBF kernel is

a type of kernel function that maps the input data into a higher-dimensional space to allow

for non-linear separation of data points.

Fig 3.3 SVM with Non-Linear Kernel

47

Naive Bayes with Gaussian Probability

A probabilistic classifier that utilizes the Bayes hypothesis and expects restrictive freedom

between the dataset's numerous qualities In view of the preparation set, NB computes the

class likelihood. The Gaussian Naive Bayes algorithm assumes that the feature values in

the dataset are normally distributed (i.e., they follow a Gaussian distribution), and it uses

the Gaussian probability density function to model the distribution of each feature in each

class. The algorithm is called "naive" because it makes the assumption that the features are

conditionally independent given the class label, which means that the presence of one

feature does not affect the presence of another feature.

Here are the main steps of the Gaussian Naive Bayes algorithm:

Data Preparation: The dataset is divided into features (predictor variables) and a target

variable (class label). The feature values are assumed to be normally distributed.

Training Phase:

a. Calculate Class Prior Probabilities: The algorithm calculates the prior probabilities of

each class by counting the frequency of each class label in the training dataset.

b. Estimate Mean and Variance: For each feature in each class, the algorithm estimates

the mean and variance of the feature values using the training dataset. This is done

separately for each class.

c. Calculate Gaussian Probability: The algorithm uses the estimated mean and variance

of each feature in each class to calculate the Gaussian probability density function,

which gives the probability of a given feature value belonging to a certain class.

Prediction Phase:

a. Calculate Class Posterior Probabilities: Given a new instance with feature values, the

algorithm calculates the posterior probabilities of each class using the Gaussian

probability density function for each feature in each class, along with the prior

probabilities of each class.

b. Select Class Label: The algorithm selects the class label with the highest posterior

probability as the predicted class label for the new instance.

48

Model Evaluation: The performance of the Gaussian Naive Bayes model is evaluated using

appropriate evaluation metrics, such as accuracy, precision, recall, and F1-score, on a

separate test dataset.

The Gaussian Naive Bayes algorithm is simple and computationally efficient, making it

suitable for large datasets. However, its assumption of feature independence and the

assumption of a Gaussian distribution for feature values may not always hold true in real-

world datasets, which can affect its performance. Nevertheless, it can be a useful algorithm

for classification tasks when these assumptions are reasonable, and it can be used in

various domains, including text classification, spam detection, and medical diagnosis.

Fig 3.4 A simple Gaussian Naive Bayesian Plot

Convolutional Neural Network

CNN is a deep learning technique that is utilized to make a compelling picture

characterization framework. Notwithstanding, the CNN model can likewise help with the

development of effective safety efforts. The CNN strategy is similar to a customary brain

network in that it has four essential layers: the information layer, convolutional layer,

pooling layer, and completely associated layer. CNNs are designed to automatically learn

features from raw pixel values in an image, without relying on handcrafted features. The

key components of a CNN include convolutional layers, pooling layers, and fully

connected layers.

Here are the main steps of the CNN algorithm:

49

Data Preparation: The input data consists of images, which are usually represented as

matrices of pixel values. The dataset is divided into training, validation, and testing sets.

Convolutional Layers:

a. Convolution: Convolutional layers apply filters (also known as kernels) to the

input image to extract local features such as edges, corners, and textures. This is done

by sliding the filters over the input image and performing element-wise

multiplication and summation.

b. Activation Function: An activation function is applied to the output of the

convolution operation to introduce non-linearity into the model, allowing it to learn

complex patterns.

Pooling Layers:

a. Pooling: Pooling layers downsample the feature maps generated by the

convolutional layers, reducing the spatial dimensions and reducing the computational

complexity of the model. Common pooling operations include max pooling and

average pooling.

Fully Connected Layers:

a. Flattening: The feature maps from the convolutional and pooling layers are

flattened into a 1D vector.

b. Fully Connected Layers: Fully connected layers are traditional artificial neural

network layers where each neuron is connected to every neuron in the previous and

next layers. These layers learn the high-level features and make predictions based on

the learned features.

Output Layer: The final fully connected layer is connected to the output layer, which

produces the predicted class probabilities using an appropriate activation function, such as

softmax for multi-class classification.

Training Phase:

50

a. Forward Propagation: The input images are fed into the network, and the output is

calculated through forward propagation.

b. Loss Calculation: The difference between the predicted class probabilities and the

true labels is calculated using a suitable loss function, such as cross-entropy.

c. Backpropagation: The gradients of the loss with respect to the network parameters

are computed and used to update the weights through backpropagation.

d. Optimization: An optimization algorithm, such as stochastic gradient descent

(SGD) or Adam, is used to update the weights and minimize the loss.

Prediction Phase: The trained CNN is used to make predictions on new, unseen images by

passing them through the trained network and selecting the class with the highest predicted

probability as the final output.

Model Evaluation: The performance of the CNN model is evaluated using appropriate

evaluation metrics, such as accuracy, precision, recall, and F1-score, on the validation or

test dataset.

CNNs are powerful algorithms for image recognition tasks due to their ability to

automatically learn features from raw pixel values. However, they can be computationally

expensive and require a large amount of data for training.

Fig 3.5 Architecture of a Convolutional Neural Network

51

CHAPTER 4: EXPERIMENTS AND RESULT ANALYSIS

4.1 System Developed and Experiments Performed

Let's analyze the structure of the model, there are various stages in the model. Let's get

through each one briefly.

1. Data Extraction

The IoT-23 dataset is made up of 23 distinct IoT network traffic recordings (called

scenarios). These scenarios are separated into 20 network captures (pcap files) from

infected IoT devices (each scenario will contain the name of the malware sample

run) and three network grabs of legitimate IoT device data traffic. On each harmful

scenario, we ran a particular malware sample on a Raspberry Pi, which utilized

multiple protocols and did various activities. This dataset additionally includes

labels to explain the relationship between flows connected to harmful or potentially

malicious activity in order to give more specific information to network malware

researchers and analysts.

Attack: An attack can be defined as a flow that is attempted to damage a

vulnerable device by behavior analysis. This label is for indicating that a device is

been infected by an attack.

Benign: This label is an indicator of the safe environment of a device. No

suspicious activity was detected in the network.

C&C: Indicates a link between a C&C server and attacked device. The C&C

activity was discovered during the network malware capture examination because

connections to the suspicious server are made on a regular basis, or our bot is

extracting binaries from it, or some IRC-like or decoded orders are arriving and

departing from it.

DDoS: Indicates that the attacked device is carrying a Distributed Denial of Service

assault. Because of the high amount of IoT network traffic routed to the same

Internet Protocol address, these flows of traffic are spotted as part of a DDoS

assault.

52

FileDownload: The label suggests that we are downloading a file to our infected

device.

HeartBeat: This label describes that packets received during this connection are

utilized by the C&C server to keep track of the attacked device.

Mirai: The label indicates that the bonds have Mirai botnet attributes. At the point

when the streams have tantamount examples to the most predominant realized

Mirai attacks, this mark is affixed.

Okiru: The mark denotes that the connections are part of the Okiru type of botnet.

PartOfAHorizontalPortScan: This mark demonstrates that the associations are

used to do an even port output to accumulate data for future assaults.

Torii: this label denotes that the links are part of a Torii botnet.

Fig 4.1 The IoT-23 Dataset

2. Data Cleaning and Preprocessing

53

Data cleaning and preprocessing are essential steps in the data analysis and

machine learning pipeline. They involve the identification, correction, and

transformation of data to ensure that it is accurate, consistent, and suitable for

analysis. Data cleaning and preprocessing are crucial in order to address issues such

as missing values, inconsistencies, errors, and outliers that may be present in the

raw data.

The data cleaning and preprocessing help us normalize the data. This means any

such value or data that is unfit for the model or could affect its performance is

removed or filled in with an average value. These values could be null values or an

outlier, which is taken care of in this step.

Data cleaning typically involves- Removing or filling in missing values: Missing

values in the data can distort analysis and modeling results. Common techniques

for handling missing values include imputation (i.e., filling in missing values with

estimated values based on other data), deletion of rows or columns with missing

values, or using algorithms that can handle missing data directly. Handling

inconsistencies and errors: Inconsistent or erroneous data can lead to inaccurate

analysis results. This may involve identifying and correcting inconsistencies in data

values, resolving conflicting data, or removing duplicate data. Handling outliers:

Outliers are data points that deviate significantly from the rest of the data and can

skew analysis results. Identifying and handling outliers may involve removing

them, transforming them, or imputing them based on domain knowledge.

Data pre-processing, on the other hand, involves transforming the data into a format

that is suitable for analysis or modeling. This may include tasks such as- Data

normalization or scaling: Data from different sources or with different units may

need to be scaled or normalized to ensure that they are on the same scale and can be

properly compared or combined. Encoding categorical variables: Categorical

variables, such as gender or categorical labels, may need to be encoded into

numerical values to be used in machine learning algorithms. Feature extraction:

Extracting relevant features or variables from the raw data that are important for the

analysis or modeling task at hand. Data integration: Combining data from multiple

sources, resolving inconsistencies, and merging datasets to create a unified dataset

for analysis or modeling.

54

Fig 4.2 Dataset after data pre-processing

Fig 4.3 Dataset after data cleaning

3. Feature Engineering and Dimensionality Reduction

Our dataset is very heavy and has a load of features. We have to keep only those

features that determine the model’s work and performance. All those features that

have either no or negligible effect on the model’s accuracy are removed. In this

project, it's very crucial to identify the important features so that our model could

work perfectly and is not loaded much.

Feature engineering and dimensionality reduction are important techniques in data

analysis and machine learning that involve transforming and reducing the number

of features or variables in a dataset to improve the performance and interpretability

of machine learning models.

55

Feature engineering refers to the process of creating new features or variables from

the existing raw data to improve the performance of machine learning algorithms.

This may involve tasks such as: Feature extraction, Feature transformation, and

Feature selection.

Next, Dimensionality reduction, on the other hand, involves reducing the number of

features or variables in a dataset while retaining as much relevant information as

possible. This can help to mitigate the "curse of dimensionality," which refers to the

challenges and limitations associated with high-dimensional data. Dimensionality

reduction techniques may include: Principal Component Analysis (PCA), Linear

Discriminant Analysis (LDA), Feature selection techniques like Recursive Feature

Elimination (RFE), L1 regularization (Lasso), or Tree-based methods.

Feature engineering and dimensionality reduction are important techniques in data

analysis and machine learning that can help to improve model performance,

interpretability, and efficiency by reducing noise, removing irrelevant features, and

mitigating the challenges of high-dimensional data.

Fig 4.4 Going through feature-engineering

56

Fig 4.5 Dataset after dimensionality reduction

4. Training & Testing Split

Training and testing split, also known as data partitioning, is a critical step in

machine learning model development. It involves dividing the available dataset into

separate subsets for training and testing the machine learning model.

The training set is used to train the machine learning model, while the testing set is

used to evaluate the performance of the trained model. The training set typically

constitutes a larger portion of the dataset, typically around 70-80% of the data,

while the testing set constitutes the remaining portion, typically around 20-30% of

the data.

Here, we are parting the preparation and testing data into a proportion of 80:20. The

preparation dataset is dependably bigger in proportion so the model is prepared for

pretty much every conceivable situation. Then, at that point, it is tried on testing

information to assess the exhibition of the model.

The main purpose of the training and testing split is to evaluate the generalization

performance of the machine learning model. By training the model on a separate

subset of data and testing it on another independent subset of data, we can assess

how well the model is likely to perform on unseen data in real-world scenarios.

57

The training set is used to train the model by feeding the input features to the

model, allowing it to learn the underlying patterns and relationships in the data. The

model then uses this learned knowledge to make predictions on the testing set, and

the performance of the model is evaluated based on how well it predicts the target

variable on the testing set. This evaluation helps to estimate the model's accuracy,

precision, recall, F1-score, and other performance metrics.

Training and testing split is a crucial step in the machine learning model

development process as it helps to assess the model's performance on unseen data,

estimate its generalization performance, and ensure its reliability and accuracy in

real-world scenarios.

Fig 4.6 Training & Testing Split

5. Execution of Classifiers

Decision Tree is a popular algorithm used for classification tasks. It works by

recursively splitting the data based on feature values to create a tree-like structure

that can be used for making decisions. To execute a Decision Tree classifier in

botnet detection, the pre-processed dataset with labeled samples (i.e., botnet or non-

botnet) is used to train the Decision Tree model. Once the model is trained, it can

be used to classify unseen data samples as botnet or non-botnet based on the

learned decision rules.

SVM is a powerful algorithm used for both classification and regression tasks. It

works by finding the optimal hyperplane that best separates the data points of

different classes. In botnet detection, SVM can be executed by training the model

on the pre-processed dataset with labeled samples. The SVM model learns the

optimal hyperplane that best separates the botnet and non-botnet samples in the

58

feature space, and can then be used to classify new data samples as botnet or non-

botnet based on their position relative to the learned hyperplane.

Naive Bayes is a probabilistic algorithm used for classification tasks. It works

based on the assumption of independence between the features, which allows for

efficient and fast classification. In botnet detection, Naive Bayes can be executed

by training the model on the pre-processed dataset with labeled samples. The Naive

Bayes model learns the conditional probabilities of the features given the class

labels (botnet or non-botnet), and it can be used to make predictions on new data

samples based on these probabilities.

CNN is a deep learning algorithm specifically designed for image recognition tasks.

In botnet detection, CNN can be used to analyze network traffic data, such as

packet headers or payload information, as images. The CNN model is trained on

the pre-processed dataset with labeled samples, and it learns the hierarchical

features from the network traffic data to make predictions about whether a given

traffic flow is indicative of a botnet activity.

Fig 4.7 Classification report of Decision Tree Classifier

59

Fig 4.8 Classification report of SVM Classifier

Fig 4.9 Classification report of Gaussian Naive Bayes Classifier

60

Fig 4.10 Classification report of Convolutional Neural Network

6. Comparison & Result

Let's compare the results we got from different classifiers' execution on the model.

Starting with a comparison of accuracy:

Decision Tree: 73%, SVM: 69%, Naive Bayes: 30%, CNN: 69.34%

Graph 4.1 Accuracy trends according to classifiers

61

Next, let us look at the Precision of the model with reference to different classifiers

and Labels.

Precision of the model measures the ability to classify positive samples in the

model.

p_dt represents the precision trend for the Decision Tree.

p_svm represents the precision trend for SVM.

p_nb represents the precision trend for Naive Bayes.

Graph 4.2 Precision wrt Classifier and Labels

Next, let's see the Recall of the model with reference to different classifiers and

Labels.

Recall of the model measures how many positive samples were correctly classified

by the ML model.

r_dt represents the recall trend for the Decision Tree.

r_svm represents the recall trend for SVM.

r_nb represents the recall trend for Naive Bayes.

62

Graph 4.3 Recall wrt Classifier and Labels

Finally, let’s examine the F-1 Score of the model with reference to different

classifiers and Labels.

F-1 Score of a model is the harmonic mean of precision and recall.

f_dt represents the precision trend for the Decision Tree.

f_svm represents the precision trend for SVM.

f_nb represents the precision trend for Naive Bayes.

Graph 4.4 F-1 Score wrt Classifier and Labels

63

4.2 Comparison of Results with Previous Theories

● In (Alshamkhany et al., 2020) the dataset used was the UNSW-NB15 dataset and

its results were as follows:

Table.6 Comparison of UNSW-NB15 and IoT-23 evaluation metrics

The comparison of results in our project revealed that the accuracy of our model is

lower compared to the performance reported in the referenced journal (Alshamkhany et

al., 2020). However, it is worth mentioning that the UNSW-NB15 dataset used in our

project specifically focuses on DDoS and DoS attacks, which may explain the relatively

lower accuracy compared to the journal that might have used a different dataset with a

broader range of attack types.

Despite the lower accuracy, our project suggests that further improvements could be

made by exploring combinations of classifiers to enhance the performance of the model.

64

This aligns with the future work or limitation highlighted in the referenced journal

(Alshamkhany et al., 2020) where a better dataset, more relevant to real-world

scenarios, could potentially lead to improved model performance.

It is important to consider the context of the dataset used in the project, and how it may

impact the model's performance. While the UNSW-NB15 dataset is widely used in the

field of network security, it may not cover all possible attack scenarios, and using a

dataset that includes a wider variety of attacks could potentially yield different results.

Therefore, future research could involve exploring other datasets or real-world data to

further validate and enhance the performance of the model.

In conclusion, while our model's accuracy may be lower compared to the referenced

journal, it provides valuable insights into the limitations and potential areas of

improvement for future research. By considering different classifiers and datasets, and

addressing the specific challenges of the project, the model's performance could be

further enhanced to better detect botnet attacks in real-world scenarios.

● In (Alkahtani & Aldhyani et al., 2021), the dataset used in the N-BaIoT dataset and

the result comparison is as follows:

Table.7 Comparison of N-BaIoT and IoT-23

 CNN

Accuracy in N-BaIoT 80%

Accuracy in IoT-23 69.34%

Upon comparing our model with the CNN-LSTM model developed by Alkahtani and

Aldhyani et al. (2021), it is evident that their model exhibits higher accuracy. However, it

is important to note that the complexity of a CNN or LSTM model alone is quite

significant, and the combination of both can present a formidable task.

65

One of the challenges with Deep Learning models, including CNNs and LSTMs, is that the

research in this area is still evolving, and our understanding of these models is constantly

evolving. As mentioned in the literature survey, a CNN model typically comprises multiple

layers, making it impractical to retrain the model every time a modification is made. This

poses difficulties in using Deep Neural Networks in real-life scenarios where changes

occur frequently, as retraining such a large network can be time-consuming and resource-

intensive.

While the accuracy and performance of the CNN-LSTM model may surpass our model, it

is important to consider the practical challenges associated with using such complex

models in dynamic environments. As the field of Deep Learning continues to advance,

further research and developments may be required to fully leverage the potential of these

models in real-world scenarios where changes occur frequently.

In conclusion, while the CNN-LSTM model may demonstrate superior accuracy, the

practical challenges associated with the complexity of these models, including the need for

frequent retraining, may pose limitations in their real-world application. Continued

research and advancements in Deep Learning are necessary to fully harness the capabilities

of these models in dynamic environments.

66

CHAPTER 5: CONCLUSION

5.1 Conclusion

The proliferation of Internet of Things (IoT) devices is projected to increase exponentially

in the near future, making it crucial to ensure their security against cyber attacks such as

Botnet Attacks. In this study, we have delved into the concept of IoT, explained the

workings of Botnet Attacks in real-life scenarios, and highlighted the global impact of such

attacks. We have also reviewed existing techniques for Botnet Attack detection and

prevention, and identified their limitations and potential areas for improvement in future

research. To address these limitations, we have proposed a machine learning-based model

that employs classifiers to detect and classify botnets.

One of the key strengths of our study is the unique dataset we have utilized. Published as a

universal dataset for botnet detection and study in 2020, it has not been processed

previously and contains the best features required for accurate prediction of botnet attacks.

The dataset also includes labels that indicate the type of botnet attack detected on the

device, providing valuable information for effective mitigation measures.

We have employed four different machine learning classifiers for botnet detection in IoT

devices: Decision Tree Classifier, Support Vector Machine with radial basis function

(Non-linear kernel), Naive Bayes with Gaussian Probability, and Convolutional Neural

Network. Through our experiments, we have found that the Decision Tree model exhibits

the best performance with an accuracy of 73%, surpassing the other models. Theoretically,

with the dataset used, our model can be leveraged to detect various types of malware

activities.

As we move forward, our future work will focus on further improving the performance of

our model on the dataset by exploring different classifiers and algorithms. We also plan to

continually update and expand our dataset with new data to ensure its relevance and

effectiveness in real-life scenarios. Additionally, we aim to validate the performance of our

model on larger datasets, including the entire IoT-23 dataset, and compare its results with

other universal datasets to assess its versatility and generalizability. Through these efforts,

we aim to contribute to the advancement of botnet detection techniques and enhance the

security of IoT devices against cyber attacks.

67

5.2 Future Scope

As we look towards our future work, there are several avenues for improvement and

expansion of our model. Our immediate focus is on enhancing the performance of our

model on the newly designed dataset. We plan to explore the use of different classifiers

and combine them to create a new algorithm that may potentially yield higher accuracy in

botnet detection.

To keep our dataset up-to-date and more robust, we plan to continuously improve it with

new data as it becomes available. We also aim to validate the performance of our model on

the entire IoT-23 dataset, which would provide a more comprehensive evaluation of its

effectiveness. Additionally, we may consider incorporating other universal datasets to

increase the variability in our dataset, thus making our model more adaptable to real-life

scenarios.

In addition to the classifiers we have already used, such as Decision Tree, SVM, Naive

Bayes, and CNN, we plan to explore the use of other classifiers such as Random Forest,

kNN, and other supervised, unsupervised, and ensemble methods of machine learning. By

comparing their results, we can identify the most effective classifiers and potentially create

a new algorithm that leverages the strengths of multiple classifiers for improved

performance.

Furthermore, we aim to test our machine learning model in real-time environments to

evaluate its accuracy outside of controlled laboratory experiments. This will help us

understand how well our model performs in real-world scenarios and how effectively it

handles different types of threats, including both identified and unidentified ones.

In conclusion, our future work will focus on improving the performance of our model on

the dataset, validating its effectiveness on larger datasets, exploring additional classifiers,

and testing its performance in real-time environments. These efforts will contribute to the

ongoing refinement and advancement of our botnet detection model for enhanced accuracy

and practical applicability.

68

References

A) Book

[1] Elisan, C. C. (2012). Malware, Rootkits & Botnets: A Beginner's Guide.

McGraw Hill LLC.

[2] Harley, D., Evron, G., Schiller, C., & Binkley, J. R. (2007). Botnets: The Killer

Web Applications. Elsevier Science.

[3] Lee, W., Wang, C., & Dagon, D. (Eds.). (2007). Botnet Detection-Countering

the Largest Security Threat (1st ed.). Springer New York, NY.

https://doi.org/10.1007/978-0-387-68768-1

B) Journal

1. Afrifa, S., Varadarjan, V., Appiahene, P., Zhang, T., & Domfeh, E. A. (2023,

February 16). Ensemble Machine Learning Techniques for Accurate and Efficient

Detection of Botnet Attacks in Connected Computers. MDPI Journal of

Engineering, 2023, 4(1), 15. https://doi.org/ 10.6084/m9.figshare.21769658.v1.

10.3390/eng4010039

2. Alkahtani, H., & Aldhyani, T. H. H. (2021). Botnet Attack Detection by Using

CNN-LSTM Model for Internet of Things Applications. Hindawi Security and

Communication Networks, 1-23. N-BaIoT.

3. Alshamkhany, M., Alshamkhany, W., Mansour, M., Dhou, S., & Aloul, F. A.

(2020, November). Botnet Attack Detection Using Machine Learning. IEEE

International Conference on Innovations in Information Technology. UNSW-

NB15. 10.1109/IIT50501.2020.9299061

69

4. Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D.,

& Elovici, Y. (2018). N-BaIoT—Network-Based Detection of IoT Botnet Attacks

Using Deep Autoencoders. IEEE Pervasive Computing, 17(3), 12-22. N-BaIoT.

5. Nguyen, H.-T., Ngo, Q.-D., Nguyen, D.-H., & Le, V.-H. (2020). PSI-rooted

subgraph: A novel feature for IoT botnet detection using classifier algorithms. ICT

Express, 6(2), 128-138.

6. Peng, J., Guo, Z., Fu, J., Cheng, Y., & Chen, C. (2019). Botnet Detection Model

Based on Artificial Intelligence. 2019 IEEE Fourth International Conference on

Data Science in Cyberspace (DSC), 7. 10.1109/dsc.2019.00080

70

Appendices

1. Dataset

The dataset used was “Aposemat IoT-23”. It is a labeled dataset of

malicious and benign activity in IoT network traffic.

This dataset contains sub-datasets of malware activities: Malicious IoT

network traffic scenario and Benign IoT traffic scenario.

Fig.32 Summarised malicious IoT-23 scenario

71

Fig.33 Application layer breakdown of the Malicious Scenarios

72

Fig.34 Summarised Benign scenario

Fig.35 Application layer breakdown of the Benign scenario

Table.8 Label configuration file

73

Link to the dataset files:

https://mcfp.felk.cvut.cz/publicDatasets/IoT-23-

Dataset/IndividualScenarios/CTU-IoT-Malware-Capture-34-1/

2. Code Snippets

Fig.36 Imported Libraries

Fig.37 Used dataset

https://mcfp.felk.cvut.cz/publicDatasets/IoT-23-Dataset/IndividualScenarios/CTU-IoT-Malware-Capture-34-1/
https://mcfp.felk.cvut.cz/publicDatasets/IoT-23-Dataset/IndividualScenarios/CTU-IoT-Malware-Capture-34-1/

74

Fig.38 Dataset Pre-processing

 Fig.39 Total labeled malicious attack Fig.40 Label count for Decision Tree

75

Fig.41 Decision Tree Classifier visualization

76

Fig.42 Label count for GNaive Bayes Fig.43 Model score for GNaive Bayes

Fig.44 Data-preprocessing for GNaive Bayes

77

 Fig.45 Label count for SVM Fig.46 Model score for SVM

Fig.47 Label count for CNN

78

Fig.48 Scaling & Normalization for CNN

Fig.49 Model summary of CNN

