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ABSTRACT 

 

 

The Internet of Things (IoT) has changed the traditional approach to living our lives 

and replaced it with a lifestyle where technologies are part of our lives, sometimes 

even more than human beings. Everything we touch, see or feel is related to 

technology. Smartphones, smart cities, smart energy saving, smart homes, smart 

trains, etc are life-transforming changes that happened due to IoT. The technologies 

are enhancing with every passing second, but still, the full potential of IoT is yet to 

be achieved. 

But with growing technology, threats related to them. The problem of compromised 

networks and malfunctioned systems are increasing rapidly. With the enhancement 

of technologies, these threats are also evolving at a fast pace and are more refined. 

These threats in computer language are called Bots. 

Prevention and identification of these bots are becoming more important day-to-

day. Several technologies and techniques have been designed for this purpose of 

prevention- Antivirus Software, Network sniffers for prevention, secure passwords, 

and periodic system check; for detection- Anti Botnet software, Honeypots & 

honeynets, Signature-based detection techniques, Anomaly-based detection 

techniques, etc. Though there are existing methodologies to deal with botnet threats 

yet there’s always a chance for improvisation.  

That’s why we came up with this project where we are using the hot-pot technology 

of Machine Learning to detect Botnet attacks on your system. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

The phrase "Internet of Things", proposed by Kevin Ashton, in 1999 to highlight how data 

collecting via sensor technologies had limitless possibilities. By 2023, there will be more 

than 20 times as many smart devices as current IT positions due to the IoT inclusion in 

Gartner’s Top 10 Strategic Technology Trends. The Gartner report predicts that the IoT 

will be increasingly used in the utility, healthcare, government, physical security, and 

automobile sectors. 

Internet of Things (IoT) consists of a network of objects, called “things”, that connect to  

other devices and systems over the internet through sensors, software, and other 

technologies. These gadgets vary from common domestic items to complex industrial 

machines. Because the IoT idea is still in its early stages, it lacks a comprehensive security 

infrastructure/mechanism, putting critical data at risk. To keep IoT entities, businesses, and 

individuals secure, modern security measures must be used on the IoT network. The most 

serious security issue in IoT is botnet-based DDoS attacks, in which hackers infect devices 

with scripts. 

Botnets (abbreviations for "robot networks") are networks of compromised machines 

controlled by a centralized assailant, or "bot-herder." A bot is any machine under the 

herder's control. Combined illegal operations can be carried out by all devices in the botnet 

under the direction of one entity. Intruders are able to carry out large-scale operations with 

malware by taking advantage of botnets (many of which are made up of millions of bots). 

Because botnets are still controlled by foreign attackers, infected devices can be upgraded 

and modified on the fly. Therefore, bot herders can frequently rent access to segments of 

their botnets on the black market in exchange for substantial financial gains. The attacker, 

sometimes known as the Botmaster, spreads Trojans, malware, or both, increasing the 

number of bots on the network.  
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Fig 1.1 A Typical Botnet Attack Structure 

Some common real-life botnet attacks include  

Email spam- Spam botnets are among the largest in size, despite email being viewed as an 

outdated attack channel. In most cases, bots are used to send millions of spam messages, 

usually containing malware. 

DDoS attacks use the enormous size of the botnet to flood a target network or server with 

requests, making it inaccessible to intended users. DDoS attacks target companies for 

personal or political reasons, or to extort money to stop the attack. 

Financial attacks include botnets explicitly designed to steal cash from businesses and 

credit card information. Financial botnets, such as the ZeuS botnet, have been responsible 

for attacks that have stolen millions of dollars from multiple companies in a matter of 

minutes. 

Botnets are distinguishable from other malware due to their distributed architecture. 

Botnets, like worms, may spread over millions of devices. In contrast to worms, zombie 

nodes in a botnet may collaborate and be managed by a central server. Botnets cannot be 

categorized as other forms of malware due to their dispersed architecture. Many 

publications attempt to summarize botnet phylogeny. The topology of the C&C 

infrastructure employed, the propagation mechanism, the exploitation approach, and the 

accessible set of operations used by the attacker are the key categorization areas of botnets. 
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C&C topology 

"Command and Control" (C&C) servers are centralized systems that can send commands 

and receive output from a botnet. If an intruder wants to launch a DDoS attack, they can 

send specific commands to their botnet's command and control servers to instruct them to 

launch an attack against a specific target, and all packet sniffers interacting with the 

contacted C&C server would then launch a coordinated attack. Botnet C&C servers are 

often organized in one of four architectures, each of which has advantages and 

disadvantages: star, multiple servers, hierarchical and random. 

The C&C server acts as the brain of the botnet, providing instructions to the bots on what 

actions to take, such as launching DDoS attacks, spreading malware, or conducting other 

malicious activities. The bots typically communicate with the C&C server using various 

communication protocols, such as HTTP, IRC, or P2P, to receive commands and report 

their status. This allows the botnet operator, also known as the botmaster, to remotely 

control and manipulate the bots for their nefarious purposes. 

The C&C server is typically designed to be resilient and resistant to takedown efforts by 

law enforcement or security researchers. Botmasters often use sophisticated techniques to 

hide the location and identity of the C&C server, such as using proxy servers, domain 

name generation algorithms (DGA), and encryption to obfuscate communications. This 

makes the detection and disruption of the C&C server a challenging task. 

Detecting and disrupting the C&C server is a critical step in mitigating botnet attacks. By 

identifying and blocking the communication between the bots and the C&C server, the bots 

lose their ability to receive commands and effectively neutralize the botnet. This requires 

advanced techniques, such as machine learning-based anomaly detection, network traffic 

analysis, and behavior-based heuristics, to identify patterns and characteristics associated 

with C&C communications and distinguish them from legitimate traffic. 

In conclusion, the Command and Control (C&C) server is a critical element in botnet 

attacks, serving as the central hub for controlling and coordinating the activities of 

compromised devices. Detecting and disrupting the C&C server is crucial in mitigating 

botnet attacks and requires advanced techniques and collaboration among stakeholders. 

Efforts to combat botnet attacks continue to evolve as attackers employ sophisticated 
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tactics, highlighting the need for constant research and innovation in the field of botnet 

detection and mitigation. 

 

 

Fig 1.2 C&C Architecture 

P2P topology 

Peer-to-peer botnets differ from centralized command and control botnets in that they 

emphasize robustness through the deployment of a peer-to-peer network. In most other 

ways, peer-to-peer botnets are identical to centralized botnets. A peer-to-peer (P2P) 

network is a network in which devices are connected and share resources without delay 

instead of going via a server or authority that manages centralized resources. File-sharing 

is becoming a popular usage of P2P networks, also several P2P file-sharing apps are 

available. Some are eMule, uTorrent, and Deriv P2P. P2P networks are categorized based 

on their centralization and structure. 

In a P2P botnet, bots communicate with each other using various communication 

protocols, such as TCP/IP, UDP, or HTTP, to exchange commands, updates, and other 

information. This allows the botnet to operate without a single point of failure, as the bots 

can dynamically switch between acting as clients and servers, making it challenging to 

disrupt the botnet by taking down a central C&C server. 
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P2P topology provides several advantages to botmasters. Firstly, it makes the botnet more 

resilient to takedown efforts, as there is no single point of failure that can be targeted for 

disruption. Even if some bots are taken down, the remaining bots can continue to 

communicate with each other and receive commands, making the botnet operational. 

Secondly, P2P botnets are more difficult to detect, as the communication patterns can 

resemble legitimate P2P traffic, making it harder to distinguish botnet traffic from 

legitimate traffic. 

Detecting and mitigating P2P botnet attacks requires advanced techniques, such as 

machine learning-based anomaly detection, behavior-based heuristics, and network traffic 

analysis. These techniques involve monitoring and analyzing network traffic for patterns 

and characteristics associated with botnet communications, such as unusual 

communication patterns, high volumes of traffic to suspicious IP addresses or domains, 

and known botnet signatures. Additionally, efforts to disrupt P2P botnets may involve 

identifying and blocking known botnet domains or IP addresses, as well as collaborating 

with ISPs and other stakeholders to block or take down the botnet nodes. 

As botnet attacks continue to evolve, constant research and innovation are needed to 

effectively combat this persistent and evolving threat. 

 

 

Fig 1.3 P2P Architecture 



6 

 

But the question is why IoT devices became vulnerable to such botnet attacks? 

Hackers look for flaws in IoT devices or systems. If a hacker discovers a flaw, he or she 

will employ malware to infect machines and establish botnets, or he or she may organize 

assaults such as phishing to infect target devices with bot malware. With millions of 

unsecured IoT devices, we are exposed to a catastrophic attack that may significantly 

disrupt internet infrastructure and potentially bring it to a halt. By targeting known 

vulnerabilities in household equipment such as Wi-Fi routers, security cameras, and smart 

TVs, a hacker may proliferate bot servers. Assailants may use these vulnerable devices to 

provide a flood of traffic to certain sites, causing their servers to fail. Individuals whose 

devices are utilized in botnets are likewise at risk from these assaults. Many botnet victims 

are unaware that their devices are being utilized in this manner, exposing them to identity 

theft and even physical damage. 

➔ Lack of security measures: Many IoT devices are designed and manufactured with 

a primary focus on functionality and cost, often neglecting proper security 

measures. This can include weak or default passwords, lack of regular security 

updates and patches, and limited or no encryption of data transmitted or stored on 

the device. These security weaknesses make it easier for botnet attackers to 

compromise IoT devices and gain control over them. 

➔ Proliferation of IoT devices: The rapid proliferation of IoT devices in various 

industries and households has led to a significant increase in the attack surface for 

botnet attackers. With billions of IoT devices connected to the internet, including 

smart home devices, industrial control systems, healthcare devices, and more, the 

sheer volume and diversity of devices provide ample opportunities for attackers to 

find and exploit vulnerabilities. 

➔ Lack of user awareness: Many IoT device users may not be aware of the potential 

security risks associated with these devices, and may not take necessary precautions 

to secure them. Users may not change default passwords, update firmware, or apply 

security patches, leaving their devices vulnerable to botnet attacks. Additionally, 

some IoT devices may lack user-friendly interfaces or instructions for securing the 

devices, further exacerbating the issue. 
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➔ Legacy and outdated devices: IoT devices often have a long lifespan, and many 

older devices may still be in use without receiving regular security updates or 

support from manufacturers. These legacy and outdated devices are more 

vulnerable to botnet attacks, as they may have known vulnerabilities that have not 

been patched or fixed, making them easy targets for attackers. 

➔ Complexity of IoT ecosystem: The IoT ecosystem is complex, with multiple 

components such as sensors, gateways, communication protocols, and cloud 

services working together. This complexity can make it challenging to implement 

and maintain robust security measures across the entire ecosystem. Vulnerabilities 

in one component can potentially compromise the entire ecosystem and provide an 

entry point for botnet attacks. 

➔ Economic and resource constraints: Some IoT devices, particularly those used in 

low-cost applications or in developing countries, may have limited computational 

resources, storage, or bandwidth, which may limit the implementation of robust 

security measures. Additionally, manufacturers of IoT devices may face economic 

constraints in investing in strong security measures due to cost considerations or 

lack of regulatory requirements. 

Addressing these challenges requires a multi-faceted approach, including improved 

security measures in IoT device design and manufacturing, user education and awareness, 

regular updates and patches, and industry-wide standards and regulations to ensure the 

security of IoT devices and protect against botnet attacks. 

There are various Botnet prevention techniques that exist. Botnets attack computers via 

worms or viruses that install the bot, or when users visit a malicious or untrustworthy 

website that exploits a software flaw and installs it. 

➔ Periodic updates in OS 

➔ Avoid downloading attachments from suspicious emails. 

➔ Avoid P2P file sharing. 

➔ Avoid malicious and suspicious links. 

➔ Get Antivirus Software. 

➔ Create secure passwords and keep updating them. 

➔ Periodic system security check. 
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➔ Be aware of third-party applications. 

➔ Network Intrusion Detection Systems (NIDS) 

➔ Rootkit detection. 

➔ Network sniffers. 

Botnets are hard to spot since they employ little computational resources, making it 

difficult to detect. Botnet identification and tracking have been a key study area for 

network security experts in recent years. Various solutions have been presented, which 

may be divided into two categories. The first method is to use honeypots and honeynets, 

which can be considered active analysis. Focusing on passive network processing and 

assessment, the second strategy can be characterized as signature-based, DNS-based, 

anomaly-based, or mining-based. 

Honeypots and Honeynets 

A honeypot is described as "an environment in which vulnerabilities have been 

purposefully established in order to observe assaults and intrusions" (Pouget & Dacier, 

2004). Honeynets of various sizes form a large-scale network. Honeynets based on Linux 

operating systems are typically selected due to their ability diversity and toolset features. 

A honeypot is a single decoy system that is intentionally exposed to attackers, including 

botnets, to lure them into engaging with the system. The honeypot appears to be a 

legitimate system, but it is isolated from the main network and carefully monitored to 

detect any suspicious activities. For example, a honeypot may simulate a vulnerable IoT 

device, such as a smart camera or a smart thermostat, and expose it to the internet with 

known vulnerabilities. When a botnet attempts to exploit the vulnerabilities and infiltrate 

the honeypot, the security team can detect the attack and take appropriate actions to 

prevent further damage. 

On the other hand, a honeynet is a network of decoy systems that mimics a complete 

network environment, including various types of devices and services. The honeynet is 

designed to attract and detect botnets that attempt to infiltrate the network and gain 

unauthorized access. The honeynet can simulate a small network or even an entire 

enterprise network, with different types of devices, operating systems, and services. When 

a botnet infiltrates the honeynet and attempts to propagate or communicate with command-
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and-control servers, the security team can detect the activities and gather valuable 

information about the botnet's behavior and characteristics. 

Honeypots and honeynets are effective in detecting botnet attacks because they provide a 

controlled environment for studying botnet behavior without posing any risk to the actual 

production systems or networks. They allow security experts to gather valuable 

intelligence on botnets, including their attack patterns, propagation techniques, and 

communication methods. This information can be used to develop effective 

countermeasures to prevent and mitigate botnet attacks in real production environments. 

For example, a security team may set up a honeynet that mimics a smart home network 

with various IoT devices, such as smart cameras, smart thermostats, and smart speakers. 

When a botnet attempts to infiltrate the honeynet by exploiting vulnerabilities in these IoT 

devices, the honeynet can detect the attack and provide insights into the botnet's behavior, 

such as the types of devices it targets, the communication protocols it uses, and the 

commands it sends to the compromised devices. This information can then be used to 

develop patches, updates, or other preventive measures to protect real smart home 

networks from similar botnet attacks. 

Fig 1.4 Potential Honeypot Traps  
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Signature-based Detection Technique 

Malware signatures are commonly employed in malware detection and classification. 

Signatures of identified malware offer enormous power when it comes to classifying 

executables executing on a system. Snort and other rule-based intrusion detection systems 

identify established signatures of malware. They scan IoT traffic for signs of infiltration. 

The malware signature that is executable or the suspicious signatures of IoT device traffic 

created by malware can be used to identify malware. The botnets that are known to the 

world can also be detected using Signature-based detection. The consequences of this 

method are useless for unidentified bots. 

Signature-based detection can be effective in detecting known botnet attacks that use well-

known patterns or behaviors. However, it has limitations, as it relies on a database of 

known signatures, and may not be effective in detecting new or unknown botnets that do 

not match any existing signatures. Botnet operators can also evade signature-based 

detection by using encryption, obfuscation, or other techniques to hide their activities from 

signature-based detection mechanisms. 

Furthermore, signature-based detection may also result in false positives or false negatives. 

False positives occur when legitimate network traffic or system behaviors are wrongly 

flagged as botnet activities, leading to unnecessary blockage or disruption. False negatives 

occur when botnet activities do not match any known signatures, and hence go undetected. 

While signature-based detection can be a useful technique in detecting known botnet 

attacks, it has limitations and should be used in conjunction with other detection techniques 

to provide comprehensive botnet detection and prevention. Regular updates of the 

signature databases, combined with other advanced techniques such as behavior-based 

analysis, anomaly detection, and machine learning, can enhance the accuracy and 

effectiveness of botnet detection and mitigation efforts. 

One example of signature-based detection is the use of antivirus software to detect and 

block botnets. Antivirus software maintains a database of signatures of known malware, 

including botnet-related malware, and scans files or network traffic for these signatures. 

When a file or network traffic matches a known botnet signature, the antivirus software 

can block the activity, quarantine the infected file, or alert the user or system administrator. 

 



11 

 

Fig 1.5 Signature-based and anomaly-based Detection 

 

Anomaly-based Detection Technique 

Botnet researchers spend a lot of time researching novel botnet detection algorithms based 

on network activity. Botnet detection based on network behavior anomalies attempts to 

detect bot activities based on network behavior anomalies such as unusual network 

latencies, netflow on unconventional and unoccupied ports, a high percentage of traffic for 

a semi-network, or strange structure behaviors that could reveal the presence of 

unauthorized entities in the network (Feily et al., 2009). 

Anomaly-based detection is particularly effective in detecting unknown or zero-day botnet 

attacks that do not match any known signatures or patterns. It can also detect botnets that 

use sophisticated evasion techniques, such as encryption, obfuscation, or dynamic behavior 

changes, as anomalies in behaviors can still be detected even if the attack methods are 

changing. 

However, anomaly-based detection also has limitations. It can generate false positives, as 

legitimate variations in network traffic or system behaviors may trigger alerts. For 

example, a sudden increase in network traffic due to legitimate activities such as a software 

update or a surge in user activity may be flagged as an anomaly. Fine-tuning the anomaly 

detection algorithms and establishing appropriate thresholds can help reduce false 

positives. 
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Anomaly-based detection is a valuable technique in detecting botnet attacks that do not 

match known patterns or signatures. It can provide an additional layer of defense against 

botnet attacks and can be used in conjunction with other detection techniques for 

comprehensive botnet detection and prevention. Regular monitoring, updating of baseline 

statistics, and tuning of anomaly detection algorithms can enhance the accuracy and 

effectiveness of this technique in detecting botnet attacks. 

One example of anomaly-based detection is the use of statistical analysis to establish 

normal network traffic patterns. By analyzing historical data and establishing baseline 

statistics such as average traffic volume, protocol distribution, or packet size distribution, 

an anomaly detection system can then compare real-time network traffic against these 

baseline statistics. Any significant deviations from the established baseline can trigger an 

alert, indicating a potential botnet attack. 

 

Fig 1.6 Anomaly-Based Detection System 

 

DNS-based Detection Technique 

DNS-based detection techniques are unobtrusively comparable to other anomaly-based 

detection algorithms. They are frequently predicated on the identification of abnormal 

DNS network traffic generated by bot machines. Thus, botnet DNS traffic may be detected 

by monitoring DNS operations and identifying irregular or unexpected DNS queries. 
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Kim et al. (Inhwan, Choi, & Lee, 2008) developed an approach for security counselors and 

administrators to detect botnets by giving significant visual information. The suggested 

approach is based on DNS traffic, which accounts for a little portion of overall network 

traffic. As a result, this approach is also suitable for real-time analysis. 

DNS-based detection can also involve the use of threat intelligence feeds, which are 

databases of known malicious domain names or IP addresses associated with botnets. DNS 

traffic can be compared against these threat intelligence feeds to identify matches, 

indicating potential botnet activities. DNS-based detection can also involve the use of 

machine learning algorithms that analyze DNS traffic for patterns or behaviors that may 

indicate botnet activities. For example, machine learning algorithms can be trained on large 

datasets of normal DNS traffic and then used to identify deviations from the learned 

normal behaviors, such as unusual query patterns, domain names, or IP addresses 

associated with botnets. 

However, DNS-based detection also has limitations. Botnets can employ various 

techniques to evade DNS-based detection, such as using encryption, domain generation 

algorithms (DGA) to generate random domain names, or hiding C&C communications 

within legitimate DNS traffic. DNS-based detection can also generate false positives, as 

legitimate activities such as legitimate DNS queries from misconfigured devices or 

legitimate use of CDNs (Content Delivery Networks) may exhibit similar patterns to botnet 

activities. 

DNS-based detection is a valuable technique in detecting botnet attacks that rely on DNS 

for C&C communications. It can provide an additional layer of defense against botnet 

attacks and can be used in conjunction with other detection techniques for comprehensive 

botnet detection and prevention. Regular updates of threat intelligence feeds, fine-tuning of 

DNS analysis algorithms, and incorporating machine learning techniques can enhance the 

accuracy and effectiveness of DNS-based detection in detecting botnet attacks. 

One example of DNS-based detection is the analysis of DNS query patterns. Botnets often 

generate a large number of DNS queries to communicate with their C&C servers, which 

may exhibit specific patterns such as high frequency, unusual domain names, or repetitive 

queries. DNS-based detection systems can analyze DNS query traffic and identify patterns 

that deviate from normal or expected DNS query behavior, and flag them as potentially 

indicative of a botnet attack. 
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Fig 1.7 Botnet detection approach based on DNS 

 

Mining-based Detection Technique 

It is often difficult to distinguish C&C attacks in normal traffic activity. In this regard, 

machine learning-based data mining algorithms which help in the recognition of patterns 

are quite beneficial for detecting unexpected network patterns. Davis & Clark present an 

overview of existing pre-processing tasks for anomaly and mining-based intrusion 

detection algorithms. Strayer proposed a technique for detecting botnet C&C activity via a 

passive study of network flow data. Strayer’s methodology works on the flow of 

characteristics such as duration, bytes/packet, bits/sec, and others. A new and effective 

solution for detecting bots through the structured graph is BotGrep developed by Nagaraja 

and his mates. Because of the decentralized C&C design of contemporary bot structures, 

identifying sub-graph networks is a highly valuable and convenient method of intrusion 

detection. 

However, mining-based detection also has limitations. Botnets can employ various 

techniques to evade mining-based detection, such as using encryption, obfuscation, or 

polymorphic malware to disguise their activities. Additionally, mining-based detection 

may generate false positives or false negatives, as legitimate activities or legitimate 

software may exhibit similar patterns or behaviors to botnet activities. 
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Mining-based detection is a powerful technique in detecting botnet attacks that leverage 

data mining and machine learning algorithms to identify patterns, behaviors, or anomalies 

associated with botnet activities. It can provide valuable insights into botnet activities that 

may not be easily detectable by traditional methods. Regular updates of training data, fine-

tuning of mining algorithms, and incorporating multiple detection techniques can enhance 

the accuracy and effectiveness of mining-based detection in detecting botnet attacks. 

One example of mining-based detection is the analysis of network traffic for unusual 

patterns or behaviors. Botnets often generate a significant amount of network traffic for 

communication between infected devices and their command and control (C&C) servers. 

Mining-based detection techniques can analyze network traffic data, such as packet 

headers, payload content, or flow data, to identify patterns such as communication with 

suspicious IP addresses, use of non-standard ports, or abnormal data transfer rates, which 

may indicate botnet activities. 

 

Fig 1.8 Botnet detection using Data Mining 

Machine learning techniques & data-mining can be simply applied to network traffic data. 

Flow data is organized and connected, therefore it does not need extensive preparation. 

Furthermore, flow data suggests trends inside, making data mining techniques simple and 

effective for study. Consequently, flow-based approaches are more convincing since it just 

attends to discovering network flow information, which may be thought of as network flow 

meta-information without contents. 

1.2 Problem Statement 
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Security dangers are emerging at a rapid rate as computers and technology progress. 

Botnets are one such security problem that demands much investigation and commitment 

to eradicate. The hacker numbers are growing rapidly exploiting gaps and defaults in 

corporate security systems and obtaining access to confidential files and data, increasing 

the threat of compromising cybersecurity. Cloud computing services are quickly 

expanding, allowing them to access data storage with no data overhead. However, botnet 

assaults include the server targeting information, resulting in faulty connections and denial 

of service. These assaults have become more polished and are still evolving. As a result, 

identifying and encountering them has become challenging. 

The problem statement for this project is to develop an effective and efficient approach to 

detect botnet attacks in IoT environments using machine learning algorithms. This involves 

designing and implementing a solution that can analyze and process large amounts of data 

generated by IoT devices, such as network traffic, system logs, and device behavior, to 

identify patterns, behaviors, or anomalies that may indicate the presence of botnet 

activities. The solution should leverage machine learning algorithms, such as supervised or 

unsupervised learning, to train and deploy models that can accurately detect botnet attacks 

in real-time, while minimizing false positives and false negatives. 

Some of the key challenges associated with this problem statement include dealing with 

the diverse characteristics of IoT devices, such as heterogeneous data formats, limited 

computational resources, and dynamic network environments. Another challenge is the 

dynamic nature of botnet attacks, as botnets continuously evolve and adapt to evade 

detection. Additionally, ensuring the privacy and security of IoT data during the detection 

process is crucial, as IoT devices may contain sensitive information. 

The successful completion of this project will contribute to the field of cybersecurity by 

providing a proactive approach to detect and mitigate botnet attacks in IoT environments 

using machine learning algorithms. The developed solution can be integrated into existing 

IoT security frameworks to enhance the overall security posture of IoT deployments and 

protect against botnet attacks. Additionally, the project findings can serve as a foundation 

for further research and development in the area of botnet detection in IoT using machine 

learning and can be applied in various IoT domains, such as smart homes, industrial IoT, 

healthcare, and transportation, to safeguard IoT devices and data from malicious activities. 

1.3 Objective 
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The purpose of this project is to find whether the device is under Botnet attack or not and 

can categorize it under different malware. The primary objective of the project is to 

develop an effective and efficient approach for detecting botnet attacks in IoT 

environments. This involves leveraging machine learning algorithms to analyze and 

process large amounts of data generated by IoT devices, such as network traffic, system 

logs, and device behavior, to identify patterns, behaviors, or anomalies that may indicate 

the presence of botnet activities. Specifically, the objectives of the project may include: 

Designing and implementing a system for collecting and preprocessing IoT data: This may 

involve setting up data collection mechanisms to capture network traffic, system logs, and 

other relevant data from IoT devices, and preprocessing the data to prepare it for analysis. 

Developing and training machine learning models: This may involve selecting appropriate 

machine learning algorithms, such as supervised or unsupervised learning, and training 

them using labeled or unlabeled data to build models that can accurately detect botnet 

attacks in IoT environments. 

Evaluating the performance of the developed models: This may involve conducting 

experiments and evaluations to measure the accuracy, precision, recall, and other 

performance metrics of the developed models in detecting botnet attacks, and comparing 

the results against existing techniques or benchmarks. 

Optimizing the models for real-time detection: This may involve optimizing the trained 

models for real-time or near real-time detection of botnet attacks, considering the resource-

constrained nature of IoT devices and the need for timely response to cyber threats. 

The successful achievement of these objectives will contribute to the advancement of the 

field of cybersecurity and IoT security, providing valuable insights and solutions for 

detecting and mitigating botnet attacks in IoT environments using machine learning 

algorithms. 

In this project, we are using data mining and machine learning techniques, it is the most 

accurate detection technique to this date. But different machine learning techniques have 

different approaches for detecting a botnet attack. So here we are going to discuss various 

Machine learning techniques to get an alert for a Botnet Attack on a device. And also 

compare the accuracy of each model and classifier used to get a comparative and statistical 
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result so that we can have the best out of them to be used in the future for the same 

purpose.  

 

1.4 Methodology 

The methodology we are using in this project is Machine Learning and its classifying 

models.  

Going through previous research on this topic, we found out that every thesis or journal has 

either chosen different datasets or they have been focusing on a particular type of Botnet 

and working on its detection through Machine Learning Algorithms. This made us think 

about what if a universal dataset could complete the requirements of all we need in just one 

place. 

So the dataset we are using in this underlying research is “Aposematic IoT-23: A labeled 

dataset with malicious and benign IoT network traffic (Version 1.0.0)”, which first 

became public in January 2020. This dataset was developed by capturing 20 malware and 3 

benign executed in  IoT devices traffic, which makes it a total of 23 captures(scenarios) of 

different traffic. 

The purpose of this data set is to provide the community with two types of data sets: 

malware IoT traffic and secure IoT traffic. Added two additional columns for labels that 

describe network behavior for the flow of both malicious & benign traffic. This dataset 

additionally contains labels that describe the relationship between flows related to 

malicious or potentially harmful activity. This is how malware analysts and researchers are 

provided with such a piece of specific information. 

Let us look at the libraries and platforms we have used for creating our project. 

 

 

 

1.4.1 Python 
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Fig 1.9 Python logo 

Python is a general-purpose, highly interactive, HLL-supported, and object-oriented 

programming language. Dynamically typed language, Python is also a garbage-collecting 

programming language. Guido van Rossum designed it around 1985-90. With source 

coding alike Perl, Python is available under the GNU GPL. Python is an enticing 

programming language for application development because it is simple to learn while 

being robust and adaptable. 

Because of its syntax, dynamic typing, and nature as an interpreted language, Python is the 

finest language for scripting and rapid application development. Python supports a wide 

range of programming styles, including imperative, functional, and object-oriented. Python 

is not intended to be used for a specific goal, such as frontend web programming. It is 

recognized as a flexible programming language since it can be used with web, corporate, 

3D CAD, and other applications. Because the variables are dynamically typed, we may 

assign an integer value by just writing a=10. 

1.4.2 Jupyter Notebook 

The platform that is used for generating the notebook corresponding to the project is 

Jupyter Notebook. The Jupyter Notebook is proposed under Project Jupyter. Providing an 

open-source platform, Project Jupyter is an interactive computing service for a handful of 

languages for programming. In 2014, Fernando Pérez and Brian Granger forked it out from 

IPython. 

 

Fig 1.10 Jupyter Notebook logo 



20 

Creation and sharing of live code documents, equations, visualizations, etc, open-source 

Jupyter Notebook is free for everyone to use. The Jupyter project team is responsible for 

maintaining Jupyter Notebooks. 

The IPython project had its own IPython notebook project, which gave birth to the Jupyter 

notebook. Supporting some primary coding languages such as Python, Julia, and R, it got 

the name Jupyter. Over 100 additional cores are currently available. Jupyter can be 

programmed in Python even if it comes from the kernel of IPython. 

The Jupyter Notebook Application, a server-client software, allows notebook papers to be 

modified and launched from an internet browser. The Jupyter Notebook Application may 

be installed on distant servers and made available via the internet, or it can be used locally 

on a machine without requiring an online connection. 

In addition to viewing, editing, and running notebook docs, the Jupyter Notebook 

Application has a "Dashboard", and a "control panel" accessing local files and allowing 

them to access notebook works or interrupted their kernels.  

The NumPy and Pandas libraries are used for data processing in the initial stages. 

1.4.3 NumPy 

To handle arrays, the Python module NumPy is utilized. It also includes matrices, the 

Fourier transform, and routines for working with matrix multiplication. NumPy was 

created by Travis Oliphant in 2005. Because it is an open-source tool, you can use it for 

free. NumPy is an abbreviated form for Numerical Python. 

  

Fig 1.11 NumPy Logo 

NumPy extends Python with the computational capabilities of languages such as C and 

FORTRAN. Using Python's NumPy module, you may work with multidimensional arrays 

and matrices. It is useful for scientific or mathematical operations because of its efficiency 

and speed. NumPy also includes functionality for linear algebra and signal processing. As 
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a result, if you need to do mathematical operations on your data, NumPy is the library to 

use. 

There exist some differences between arrays of Numpy & lists of Python. To begin, unlike 

Python lists, NumPy arrays contain several dimensions. Second, unlike Python lists, 

NumPy arrays are homogeneous. This means arrays of NumPy must all have similar type. 

Third, in terms of efficiency, NumPy arrays exceed Python lists. NumPy arrays may be 

created in a variety of ways. One way is to create an array from a Python list. After it has 

been formed, a NumPy array can be modified in a variety of ways. You can, for example, 

change the shape of an array or index into it to access its elements. NumPy arrays may also 

be used to perform arithmetic operations such as addition, multiplication, and division. 

1.4.4 Pandas 

 

Fig 1.12 Pandas Logo 

Pandas is Python-based data analysis software. Wes McKinney founded Pandas in 2008 in 

response to a demand for a powerful and adaptable tool for mathematical modeling. Pandas 

is currently one of the most popular Python packages. It has a vibrant developer 

community. It is based on two essential Python libraries: NumPy for numerical operations 

and Matplotlib for qualitative data analysis. Pandas simplify access to numerous matplotlib 

and NumPy methods by acting as a wrapper for these libraries. For example, the 

pandas.plot() function combines numerous matplotlib routines into a single method, 

allowing you to plot a chart with minimal code. 

The goal of pandas was to handle 2-D data. The pandas library has an in-built 2-

dimensional data structure, DataFrame, which is similar to how the NumPy library consists 

of an in-built data structure known as an array with unique features & functionalities. This 

tool is where your data resides. To learn about data, you can clean, modify, and analyze it 

with pandas. In addition to being an important component of the data science toolkit, the 

pandas library is used in conjunction with other libraries in that collection. 
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1.4.5 Sklearn 

Sklearn is a powerful and dependable Python machine-learning tool (Skit-Learn). It 

provides a number of powerful tools for statistical modeling and machine learning via a 

Python consistency interface, including classification, regression, clustering, and 

dimensionality reduction. This library is mostly written in Python and is based on NumPy, 

SciPy, and Matplotlib. 

 

Fig 1.13 Sklearn Logo 

It supports virtually all machine learning methods, including linear regression, logistic 

regression, k-means clustering, decision trees, and random forests. It is an open-source 

library that is provided commercially under the BSD license. 

Getting towards the structure of the project, here we have 7 stages: 

○ Data Extraction 

○ Data Cleaning and Preprocessing 

○ Feature Engineering 

○ Dimensionality Reduction 

○ Train & Testing Split 

○ Execution of Classifiers 

○ Comparison & Result 

The first stage is about extraction of the dataset from the local server to Jupyter’s server. 

Then further we use the data that we want results on. 

The second stage is probably the backbone of every data analytics project. The data 

cleaning and preprocessing help us normalize the data. This means any such value or data 

that is unfit for the model or could affect its performance is removed or filled in with an 

average value. These values could be null values or an outlier, which is taken care of in 

this step. 
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The third step of feature engineering is the most important step of all. As our dataset is 

very heavy and has a load of features we have to keep only those features that determine 

the model’s work and performance. All those features that have either no or negligible 

effect on the model’s accuracy are removed. In this project, it's very crucial to identify the 

important features so that our model could work perfectly and is not loaded much. 

The fourth step is Dimensionality reduction. This is a process involved in Exploratory Data 

Analysis. Here we cut out some dimensions from the dataset that is not of much use. This 

step helps us in decreasing the vast dataset to only the precise dimension required. 

The fifth step is very common in any Machine Learning project. The splitting of training 

and testing data should be done correctly for the model to behave properly. Usually, the 

training and testing dataset split equation is 80:20. The model is trained on the training 

dataset and its performance is evaluated from the testing dataset. 

After this, comes the main step of the project, the Execution of Machine Learning 

classifiers. For this model, we are going to use a Decision Tree Classification Algorithm,  

Support Vector Machine aka SVM Classifier, Gaussian Naive Bayes, and lastly CNN 

(Convolutional Neural Network). We will get to know about these classifiers later in the 

report. 

These classifiers have their own accuracy and precision in this model. And so to find the 

best-performing classifier we will compare their results using graph analysis. Graph and 

visual analysis are done with help of two main libraries of Python: Seaborn and Matplotlib.  

Matplotlib is a well-known graph charting package written in Python that is used for data 

science and machine learning tasks. Seaborn is a library that utilizes matplotlib as a basic 

library for plotting graphs but adds some more features to make the graphs more appealing 

and user pleasant. 

 

Fig 1.14 Matplotlib Logo 
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Fig 1.15 Seaborn Logo 

1.5 Organization 

In this chapter we got through the overview of the project: what actually is a botnet attack; 

how and why it happens; the existing detection & prevention techniques; why it is needed 

for them to end or at least stop; and how are we gonna do that using current day 

technologies of Machine Learning. The organization of the report goes as follows. 

In Chapter 2 - Literature Survey, there’s gonna be a comparison and contrast of some 

existing research papers on this topic and see what different and better we are applying 

here. 

In Chapter 3 - System Development, we are gonna study the design of our model, its 

development, how it is implemented, and last, we will analyze it. 

In Chapter 4 -Performance Analysis, we have to go through the performance statistics of 

our implemented model, the results, and the output we got at various stages. We will also 

compare these results with the previously built theories and models. 

In Chapter 5 - Conclusion, the project will be summarized, with whatever limitations or 

future scope we will have during or after the implementation of our model.
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CHAPTER 2: LITERATURE SURVEY 

 

Botnet attacks in the Internet of Things (IoT) have emerged as a significant cybersecurity 

challenge due to the proliferation of IoT devices and their vulnerabilities. Detecting botnet 

attacks in IoT is crucial to safeguarding the integrity, availability, and confidentiality of 

IoT systems and data. Machine learning algorithms have shown promising capabilities in 

detecting botnet attacks in IoT data, as they can learn from patterns and anomalies in the 

data to identify malicious activities. In this literature survey, we review the existing 

research on the detection of botnet attacks in IoT using machine learning algorithms. 

 

Several studies have proposed various machine learning techniques for botnet detection in 

IoT. Wang et al. (2018) proposed a botnet detection framework for IoT devices using 

machine learning algorithms, including decision tree, random forest, and gradient-boosting 

classifiers. The authors used features such as packet size, protocol type, and port number 

from network traffic data to train the classifiers and achieved high detection accuracy. 

Raza et al. (2019) proposed an ensemble-based botnet detection approach using machine 

learning algorithms, including support vector machine, k-nearest neighbors, and logistic 

regression, along with feature selection techniques to identify malicious activities in IoT 

data. Their approach demonstrated improved detection performance compared to 

individual classifiers. 

 

Deep learning algorithms, such as convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), have also been used for botnet detection in IoT. Tan et al. (2020) 

proposed a CNN-based approach for detecting botnet attacks in IoT by analyzing network 

traffic patterns. The authors achieved high accuracy in detecting botnet attacks by using the 

learned features from the CNN model. Singh et al. (2021) proposed an RNN-based 

approach for botnet detection in IoT by analyzing the behavior of IoT devices. The authors 

used sequential data from IoT devices' activities and achieved high accuracy in detecting 

botnet attacks using RNNs. 

 

Ensemble learning techniques, such as stacking, bagging, and boosting, have also been 

employed for botnet detection in IoT. Yin et al. (2019) proposed a stacking-based 

ensemble approach for botnet detection in IoT using multiple base classifiers, including 
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decision tree, k-nearest neighbors, and support vector machine. The authors combined the 

outputs of the base classifiers to make the final decision and achieved improved detection 

performance compared to individual classifiers. Wang et al. (2020) proposed a boosting-

based ensemble approach for botnet detection in IoT using multiple decision tree 

classifiers. The authors used adaptive boosting to combine the outputs of the decision tree 

classifiers and achieved high detection accuracy. 

 

Feature selection and dimensionality reduction techniques have been widely used in botnet 

detection in IoT to reduce the complexity and improve the efficiency of machine learning 

algorithms. Yang et al. (2018) proposed a feature selection approach using information 

gain and recursive feature elimination to select the most relevant features for botnet 

detection in IoT. The authors achieved improved detection performance by reducing the 

feature space and improving the model's interpretability. Peng et al. (2019) proposed a 

principal component analysis (PCA)-based approach for dimensionality reduction in botnet 

detection in IoT. The authors used PCA to reduce the dimensionality of the feature space 

and achieved improved detection performance by capturing the most informative features. 

 

The literature survey highlights that machine learning algorithms have been widely used 

for the detection of botnet attacks in IoT. Various techniques, including decision trees, 

support vector machines, neural networks, and ensemble learning methods, have been 

employed to detect botnet attacks in IoT data. Feature selection and dimensionality 

reduction techniques have been used to reduce the complexity and improve the efficiency 

of the detection models. Deep learning algorithms, such as CNNs and RNNs, have also 

shown promising capabilities in detecting 
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1. A novel feature for IoT botnet detection using classifier algorithms (Nguyen et al. 10) 

 

Overview: This article improves on existing classification methods, is quick, detects 

IoT botnet families, for example, Mirai and Bashlite, and has a low FPR when 

benign files are exposed. The following are the main contributions of this paper: 

First, they introduced a unique PSI-rooted with a high-level subgraph-based feature 

for detecting IoT device botnets using a mix of processing deep learning and 

machine learning models. Second, they created a minimal number of characteristics 

with detailed behavioral descriptions, which take up less space and demand less 

processing time. Finally, they conducted comprehensive trials on various datasets. 

The assessment findings demonstrate the usefulness and resilience of PSI-rooted 

subgraph-based features for several machine algorithms, with a detection rate of 

more than 97%. 

 

Fig 2.1 Overview of proposed model 

 

Proposed Model and Methodology: They proposed an IoT botnet detection 

technique that uses PSI-rooted subgraphs as features to combine deep learning and 

machine learning. As shown in Fig.14, the suggested technique comprises four major 
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phases. First, extract the PSI graph from the ELF files. The PSI graphs are then 

traversed using a traversing technique to yield PSI-rooted subgraphs. Prior to the 

classification job, the raw data of PSI-rooted subgraphs is preprocessed so that 

machine learning algorithms can learn the data quickly. This process is divided into 

three stages: feature extraction to vectorize our data, normalization, and feature 

selection to improve the performance of learning algorithms. Finally, pick the best 

classifiers for identifying IoT botnet samples by applying different classifiers to the 

produced dataset. 

The authors propose a methodology that involves the following stages: 

Feature Engineering: The authors introduce a new feature called "IoT Botnet 

Feature" (IoTBF) that incorporates information related to IoT-specific characteristics, 

such as the number of connected devices, the type of devices, and the frequency of 

communication between devices. This feature is designed to capture the unique 

patterns of botnet attacks in IoT systems. 

Classifier Algorithms: The authors use various machine learning algorithms, such as 

decision trees, support vector machines, and random forests, to train and test their 

model using the IoTBF feature. These classifiers are used to classify the data into a 

botnet or non-botnet traffic based on the patterns captured by the IoTBF feature. 

Output: The proposed methodology involves several stages, including feature 

engineering and the use of machine learning classifiers. Feature engineering is a 

process of selecting and extracting relevant features from raw data to improve the 

accuracy of machine learning algorithms. The researchers have used novel feature 

engineering techniques to capture the unique characteristics of botnet traffic. The use 

of machine learning classifiers allows the system to learn from data and make 

accurate predictions. 
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Table 1. Comparison of processing time of different ML & DL classifiers 

 

 

Table 2. Comparison of accuracy for traditional ML classifiers on IoT malware 

 

 

     

Limitation/Future Scope: The authors acknowledge some limitations of their 

proposed methodology, such as the potential for false positives or false negatives in 

the detection results, the need for further validation on diverse datasets, and the 

potential for evolving botnet attack techniques that may require updates to the IoTBF 

feature. Future scope of research can involve exploring the combination of the IoTBF 

feature with other features or techniques for enhanced detection accuracy, evaluating 

the performance of the proposed methodology in real-world IoT environments, and 

considering the integration of anomaly-based or behavior-based detection methods 

for comprehensive botnet attack detection. 

 

 

2. Botnet Attack Detection Using Machine Learning (Alshamkhany et al., 2020) 
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Overview: Security dangers are emerging at a rapid rate as computers and 

technology progress. Botnets are one such security problem that demands much 

investigation and commitment to eradicate. We employ machine learning to detect 

Botnet assaults in this study. Using the Bot-IoT and University of New South Wales 

(UNSW) datasets, 4 ML models based on 4 ML algorithms are created: Naive Bayes, 

K-Nearest Neighbor, Support Vector Machine, and Decision Trees. The decision 

trees model exhibited the greatest overall results in recognizing botnet invasions 

using 82,000 data from the UNSW-NB15 dataset, with 99.89% testing accuracy, 

100% precision, 100% recall, and 100% F-score. 

 

Proposed Model and Methodology: Among several available datasets this paper 

focused on the UNSW-NB15 dataset (43 features with DDos, Dos, as well as 

Reconnaissance, Backdoor, Worm, and Fuzzers labeled attacks). Data Extraction: 

The authors suggest collecting data from IoT devices, such as network traffic data or 

sensor data, to analyze botnet attacks. Data Cleaning and Preprocessing: The 

collected data is cleaned and pre-processed to remove noise, handle missing values, 

and normalize the data. Feature Engineering: Relevant features are extracted from the 

pre-processed data, which can include packet size, protocol type, port number, and 

other network traffic or sensor-related features. Dimensionality Reduction: To reduce 

the complexity of the data and improve the efficiency of the machine learning 

algorithms, dimensionality reduction techniques such as principal component 

analysis (PCA) or feature selection methods may be applied. Train and Testing Split: 

The pre-processed data is divided into training and testing datasets to train the 

machine learning models and evaluate their performance. Execution of Classifiers: 

Machine learning algorithms, such as decision trees, support vector machines, or 

neural networks, are trained on the training dataset and then used to predict the 

presence of botnet attacks in the testing dataset. Comparison of Results: The 

performance of different machine learning algorithms is compared based on metrics 

such as accuracy, precision, recall, and F1-score to determine the effectiveness of the 

proposed approach.  

Dimensionality reduction and feature engineering were applied to this large dataset 

to reduce complexity and the preservation of variance in the data. For dimensionality 
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reduction, PCA was applied. In this work, the classifier takes the feature with the 

largest variance as input to ensure the selection of relevant features is in the best with 

the computational efficiency of the model.  

This paper uses different classifiers of Python. For the purpose of evaluation of the 

best algorithm, confusion matrix, F-Score, Accuracy, and Precision are calculated. 

Classifiers used were: Gaussian Naive Bayes, kNN, SVM, and DT. 

The dataset was split into training and testing parts before using these classifiers. The 

classifiers were trained using the training data. The classifiers were then evaluated to 

predict the labels using the testing dataset. 

 

Output: 

Table.3 Result of PCA 

  

 

Table.4 Accuracy of different classifiers 

 

 

 

Table.5 Performance comparison of classifiers 
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Limitation/Future Scope: The authors acknowledge some limitations of the 

proposed methodology, such as the potential imbalance in the dataset, the need for 

continuous updates and retraining of the machine learning models to adapt to 

evolving botnet attacks, and the potential for false positives or false negatives in the 

detection results. The future scope of research can involve exploring more advanced 

machine learning techniques, such as deep learning algorithms or ensemble methods, 

integrating additional data sources for more accurate detection, and considering the 

real-time or dynamic analysis of IoT data for more effective botnet attack detection. 
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3. Botnet Attack Detection by Using CNN-LSTM Model for Internet of Things Applications 

(Alkahtani and Aldhyani et al., 2021, 23) 

 

Overview: This paper offered a deep learning-based strategy for mitigating the risks 

posed by DDoS attacks on IoT devices. Early identification of DDoS attacks can 

improve network security by accelerating attempts to unplug most IoT devices from 

Internet connections, preventing and limiting the growth of botnet attacks. We 

utilized the N-BaIoT dataset in this work, which was constructed from nine 

commercial IoT devices, including Danmini, Ennio, Ecobee, and Philips B120N/10, 

and was injected by two notable IoT attacks, BASHLITE and Mirai botnet attacks. 

The eBASHLITE attack has TCP flood, Junk, Scan, UDP flood, and COMBO sub-

attacks, whereas the Mirai attack has ACK, SYN, Plain UDP, UDP flood, and Scan. 

 

Fig 2.2 Setup for collecting botnet attack 

 

Proposed Model and Methodology: Five tests were carried out on various IoT 

platforms to analyze and examine the suggested solution. Using a network dataset 

taken from an IoT setup, machine learning, and deep learning techniques (CNN and 

LSTM) were used to identify botnet assaults. The datasets were separated into 20% 

testing data and 70% training data to validate.  
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The first experiment was on Doorbell Devices (Danminin and Ennio). For Danminin, 

precision, recall, and F-1 Score metrics are 93%, 91%, and 88% respectively. For 

Ennio, precision, recall, and F-1 Score metrics are 91%, 89%, and 85% respectively.  

The second experiment was on Thermostat Devices. The evaluation metrics for a 

thermostat device were 94%, 89%, and 85% for precision, recall, and F-1 Score 

respectively.  The accuracy of the CNN-LSTM proposed model increased from 80% 

to 88.53% with 20 epochs. 

The third experiment occurred on Security WebCams. The weighted average of 

evaluation metrics for WebCams was 94% precision, 88% recall, and 84% F-1 Score.  

The performance of the model increased from 78% to 88%, while the training model 

loss is reduced from 20.0 to 0.16. 

 

Output:  

 

Graph 2.1 Confusion matrix for CNN_LSTM model on thermostat 
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Graph 2.2 Model Accuracy for CNN-LSTM 

 

Graph 2.3 Model Loss for CNN-LSTM 

 

Limitation/Future Scope: The authors acknowledge some limitations of their 

proposed methodology, such as the need for a large labeled dataset for training the 

CNN-LSTM model, the potential for overfitting due to the complexity of deep 

learning models, and the need for further evaluation on diverse IoT environments. 

The future scope of research can involve exploring the use of other deep learning 

techniques, such as attention mechanisms or transformers, for improved detection 

accuracy, incorporating multi-modal data sources for enhanced feature extraction, 

and evaluating the performance of the proposed methodology in real-world IoT 

applications with different types of botnet attacks and IoT devices. 
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4. N-BaIoT: Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders 

(Meidan et al., 2018, 10) 

 

Overview: The author introduces & evaluates a novel network-based anomaly 

detection approach that takes network activity snapshots and employs deep 

autoencoders to detect unusual network traffic flowing from exploited IoT devices in 

this research. To test this system, Mirai and BASHLITE, two of the most notable 

IoT-based botnets, went after nine business IoT gadgets. The assessment results 

exhibited our proposed strategy's capacity to identify assaults started by 

compromised IoT gadgets that were essential for a botnet. 

 

Proposed Model and Methodology: Deep autoencoders for every gadget, prepared 

on measurable qualities taken from harmless traffic information, are utilized in the 

proposed strategy for distinguishing IoT botnet attacks. When applied to new 

(possibly contaminated) IoT gadget information, distinguished irregularities might 

demonstrate that the gadget has been hacked. The vital stages of this procedure are as 

per the following: (1) information assortment, (2) highlight extraction, (3) preparing 

an inconsistency locator, and (4) consistent checking.  

Each autoencoder has an info layer with a similar aspect as the quantity of elements 

in the dataset. Autoencoders effectively do dimensionality decrease inside, with the 

end goal that the code layer between the encoder(s) and decoder(s) packs and mirrors 

the information layer's significant properties. The examinations utilized four secret 

layers of encoders with diminishing sizes of 75%, half, 33%, and 25% of the element 

of the information layer. The following layers were decoders, which had a similar 

size as the encoders however in climbing requests (starting at 33%). We used some 

very similar (harmless) information to prepare three distinct calculations commonly 

utilized for irregularity recognizable proof during the autoencoder preparation and 

improvement stages: Neighborhood Exception Variable (LOF), One-Class SVM, and 

Disconnection Woods. Then, very much like the autoencoders, their hyperparameters 

were upgraded. At last, they did each of the former attacks all the while utilizing 

Mirai and BASHLITE's C&C servers. The qualities were then recovered from the 

unsafe information. Each harmless piece of DStst was connected to the related 
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malevolent piece of DStat, bringing about a solitary test dataset per IoT gadget with 

both harmless and vindictive occurrences. 

Output: 

 

Graph 2.4 Accuracy of model 

 

Graph 2.5 Computational time of model 
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Graph 2.6 Average FOR by traffic 

 

Graph 2.7 Detection time by traffic 

 

Limitation/Future Scope: The authors acknowledge some limitations of their 

proposed methodology, such as the need for a large labeled dataset for training the 

deep autoencoder, the potential for false positives or false negatives in the anomaly 

detection step, and the need for further evaluation on different types of botnet attacks 

and IoT environments. The future scope of research can involve exploring the use of 

other deep learning models or ensembles of models for improved detection accuracy, 

incorporating additional features or data sources for enhanced detection performance, 

and evaluating the performance of the proposed methodology in real-world IoT 

networks with diverse IoT devices and network configurations. 
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5. Botnet Detection Model Based on Artificial Intelligence (Peng et al., 2019, 7) 

 

Overview: The study focuses on the development of a botnet detection model based 

on artificial intelligence (AI) techniques. Botnets are networks of compromised 

devices that are used by malicious actors to conduct various types of cyber attacks. 

Detecting botnet attacks is a critical task in ensuring the security of computer 

networks and protecting against potential cyber threats. 

The overview of the study likely involves a brief introduction to the concept of 

botnets and their potential impact on cybersecurity. It may also highlight the 

limitations of traditional detection methods and the need for advanced techniques, 

such as AI, to effectively detect and mitigate botnet attacks. The overview may 

provide an overview of the proposed model, which could involve the use of machine 

learning algorithms, deep learning techniques, or other AI-based approaches for 

botnet detection. It may also discuss the motivation behind the selection of the 

proposed methodology and highlight the potential advantages of using AI techniques 

in botnet detection, such as improved accuracy, faster detection, and adaptability to 

new and emerging botnet threats. 

Table.8 Top Ten TLDs Results

 



40 

Proposed Methodology: The proposed methodology in the study involves the use of 

AI techniques for botnet detection. This could include the use of machine learning 

algorithms, deep learning techniques, or a combination of both. The methodology 

may involve the following steps: 

Data Collection: The researchers may collect a large dataset of network traffic data 

or other relevant data to train and test their botnet detection model. This dataset may 

include both benign and malicious traffic data. 

Feature Extraction: The researchers may extract relevant features from the collected 

data, such as packet attributes, flow characteristics, or behavior patterns, to represent 

the data in a format suitable for machine learning or deep learning algorithms. 

Model Training: The researchers may use the collected data and extracted features to 

train their AI-based botnet detection model. This could involve the use of supervised 

or unsupervised learning algorithms, where the model learns from labeled or 

unlabeled data, respectively. 

Model Evaluation: The researchers may evaluate the performance of their botnet 

detection model using various metrics, such as accuracy, precision, recall, and F1-

score, to assess its effectiveness in detecting botnet attacks. 

 

Output: The output of the proposed botnet detection model could be a binary 

classification result, where the model classifies network traffic as either benign or 

malicious. The model may generate alerts or notifications when it detects potential 

botnet attacks, allowing network administrators to take appropriate actions to 

mitigate the threats. 
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Table.9 Cross Validation Result 

 

 

Limitation/ Future Scope: The study may discuss the limitations of the proposed 

botnet detection model, which could include challenges such as false positives, false 

negatives, scalability, and adaptability to new and evolving botnet threats. The 

researchers may also highlight the need for further research and development in the 

field of AI-based botnet detection, such as exploring new algorithms, incorporating 

additional data sources, or enhancing the model's performance in real-time or 

dynamic environments. The future scope of the study may also involve potential 

applications of the proposed model in practical scenarios, such as deployment in real-

world networks, integration with existing security systems, or extension to other 

domains beyond IoT or connected computers.
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CHAPTER 3: SYSTEM DESIGN AND DEVELOPMENT 

 

3.1 Model Analysis and Design 

As we already mentioned, the rapidly increasing advancement of IoT devices and their 

usage, all across the globe are increasing threats related to them. These cyber threats are of 

a lot more concern than any of us could have thought and even bigger threats for the world.  

So, if cyber criminals are enhancing their attacking technologies for harming us, we should 

also be ready with whatever latest and best technology we have got. Without any question, 

that savior has to be Machine Learning and its powerful algorithms. 

Here we are going to use the latest dataset created by Avast Software AIC Laboratory from 

network traffic experienced by IoT devices. They gave two datasets, a full IoT-23 dataset 

of 21 GB and a lighter version of IoT-23 of 8.8 GB. In this work, we are using the light 

version of the IoT-23 dataset. This dataset captures readings ranging from 2018 to 2019.  

Using this dataset makes it unique and somewhat better than every other study and 

research previously done. This is a universal dataset with a combination of all important 

features from other used datasets. 

The dataset is then pre-processed and cleaned, removing any useless value present in it 

such as null value or outliers, that could affect the performance of the model. 

The feature selection is the most important here. Though it is a universal dataset for Botnet 

Attacks in IoT devices, its large size makes it difficult to compute as a whole. So we need 

to select the best features among them. 

After that, normalization and dimensionality reduction will again help us to make the 

dataset handier. 

Then we will be splitting the dataset into training and testing. The model is trained on the 

larger ratio of the training dataset and evaluated on the testing model. 

The evaluation of the model depends upon the performance of various classifiers and their 

accuracy in the detection of the botnet and their classification.  
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Fig 3.1 Flow of Model 

3.2 Algorithm 

Let's study the classifiers and the algorithm we have used in our model. 

Decision Tree 

A classification model is a tree in which every hub characterizes a test on a solitary 

component and each branch dropping from that hub compares to one of the likely qualities 

for that element. The decision Tree algorithm is a versatile and interpretable machine-

learning technique for classification and regression tasks. 

Working of Decision Tree Algorithm: Feature Selection: The algorithm selects the most 

important feature from the input features based on criteria like information gain, Gini 

impurity, or entropy. This is done by evaluating the impurity or randomness of the data at 

each feature and selecting the one that yields the maximum information gain. 

Tree Building: The selected feature is used to split the data into subsets at each internal 

node of the tree. This process is repeated recursively until a stopping condition is met, such 

as reaching a maximum depth, having a minimum number of samples at a node, or 

achieving pure class labels at the leaf nodes. 

Prediction: Once the tree is built, it can be used for prediction. New data is fed into the 

tree, and it follows the path of decision nodes based on the feature values until it reaches a 

leaf node, which represents the predicted outcome or class label for that data point. 

Advantages of Decision Tree Algorithm: Interpretability: Decision Trees are easy to 

understand and interpret, making them suitable for explaining the decision-making process 

to stakeholders or non-technical users. 
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Handle Missing Values: Decision Trees can handle missing values in the input features by 

making decisions based on the available data. 

Feature Importance: Decision Trees can provide information about the importance of 

different features in making accurate predictions, which can be useful for feature selection 

or feature engineering. 

Non-linear Relationships: Decision Trees can capture nonlinear relationships between 

input features and the target variable, making them suitable for complex datasets. 

Limitations of Decision Tree Algorithm: Overfitting- Decision Trees can be prone to 

overfitting, especially when the tree becomes too deep or when the dataset has noisy or 

irrelevant features. This can result in poor generalization performance on unseen data. 

Lack of Robustness- Decision Trees can be sensitive to small changes in the input data, 

leading to different tree structures or predictions for slightly different datasets. 

Decision Boundary- Decision Trees can create axis-parallel decision boundaries, which 

may not capture complex patterns in the data that require more flexible decision 

boundaries. 

Class Imbalance- Decision Trees can have biased predictions when dealing with 

imbalanced datasets, as they tend to favor the majority class due to impurity-based splitting 

criteria. 

 

Fig 3.2 Decision tree Classifier 
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Support Vector Machine 

It is using a nonlinear kernel, specifically, the radial basis function (RBF), to create a 

choice limit in light of tests from particular classes. The state of the choice is not set in 

stone by the part capability utilized as well as key hyper boundaries, for example, C, which 

controls the tradeoff between the perfection of the choice limit and the rightness of the 

grouping, and gamma, which characterizes the impact of the appropriation of the data of 

interest on the state of the chosen limit.  

SVM with RBF kernel is a powerful algorithm for non-linear classification tasks and is 

widely used in various domains, including botnet detection in IoT. It leverages the RBF 

kernel to transform the input data into a higher-dimensional space, identifies support 

vectors to determine the optimal hyperplane, and uses the trained model for classification 

of new data points. Hyperparameter tuning is an important step to optimize the 

performance of the SVM model with the RBF kernel.  

SVM with RBF kernel works as follows: Data Representation: The input data is 

represented as a set of feature vectors, where each feature vector contains multiple 

attributes or features that describe the characteristics of the data points. These feature 

vectors are used as input to the SVM algorithm. 

Data Pre-processing: The input data is pre-processed to ensure that it is suitable for training 

the SVM model. This may involve tasks such as data normalization, handling missing 

values, and feature scaling to ensure that all features have similar scales and distributions. 

Training Phase: The SVM model with RBF kernel is trained using a labeled dataset, which 

consists of input feature vectors and their corresponding class labels. The goal of the 

training phase is to find the optimal hyperplane that best separates the data points of 

different classes while maximizing the margin between the classes. 

Kernel Trick: The RBF kernel function is used to transform the input feature vectors into a 

higher-dimensional space, where the data points are more likely to be linearly separable. 

The RBF kernel computes the similarity or distance between pairs of input feature vectors 

based on their Euclidean distance and assigns a weight to each pair. 

Support Vectors: During the training phase, the SVM algorithm identifies a subset of data 

points called support vectors that lie closest to the decision boundary or margin. These 
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support vectors are used to determine the optimal hyperplane that maximizes the margin 

between the classes. 

Classification Phase: Once the SVM model is trained, it can be used to classify new, 

unseen data points into their respective classes. The input feature vectors are transformed 

using the RBF kernel, and their class labels are predicted based on their position with 

respect to the learned decision boundary or margin. 

Hyperparameter Tuning: SVM with RBF kernel has hyperparameters such as the 

regularization parameter (C) and the kernel parameter (gamma) that need to be tuned to 

optimize the performance of the model. This may involve techniques such as cross-

validation or grid search to find the best values for these hyperparameters. 

Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel is a popular 

machine learning algorithm used for classification and regression tasks. The RBF kernel is 

a type of kernel function that maps the input data into a higher-dimensional space to allow 

for non-linear separation of data points.  

 

 

Fig 3.3 SVM with Non-Linear Kernel 
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Naive Bayes with Gaussian Probability 

A probabilistic classifier that utilizes the Bayes hypothesis and expects restrictive freedom 

between the dataset's numerous qualities In view of the preparation set, NB computes the 

class likelihood. The Gaussian Naive Bayes algorithm assumes that the feature values in 

the dataset are normally distributed (i.e., they follow a Gaussian distribution), and it uses 

the Gaussian probability density function to model the distribution of each feature in each 

class. The algorithm is called "naive" because it makes the assumption that the features are 

conditionally independent given the class label, which means that the presence of one 

feature does not affect the presence of another feature. 

Here are the main steps of the Gaussian Naive Bayes algorithm: 

Data Preparation: The dataset is divided into features (predictor variables) and a target 

variable (class label). The feature values are assumed to be normally distributed. 

Training Phase: 

a. Calculate Class Prior Probabilities: The algorithm calculates the prior probabilities of 

each class by counting the frequency of each class label in the training dataset. 

b. Estimate Mean and Variance: For each feature in each class, the algorithm estimates 

the mean and variance of the feature values using the training dataset. This is done 

separately for each class. 

c. Calculate Gaussian Probability: The algorithm uses the estimated mean and variance 

of each feature in each class to calculate the Gaussian probability density function, 

which gives the probability of a given feature value belonging to a certain class. 

Prediction Phase: 

a. Calculate Class Posterior Probabilities: Given a new instance with feature values, the 

algorithm calculates the posterior probabilities of each class using the Gaussian 

probability density function for each feature in each class, along with the prior 

probabilities of each class. 

b. Select Class Label: The algorithm selects the class label with the highest posterior 

probability as the predicted class label for the new instance. 
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Model Evaluation: The performance of the Gaussian Naive Bayes model is evaluated using 

appropriate evaluation metrics, such as accuracy, precision, recall, and F1-score, on a 

separate test dataset. 

The Gaussian Naive Bayes algorithm is simple and computationally efficient, making it 

suitable for large datasets. However, its assumption of feature independence and the 

assumption of a Gaussian distribution for feature values may not always hold true in real-

world datasets, which can affect its performance. Nevertheless, it can be a useful algorithm 

for classification tasks when these assumptions are reasonable, and it can be used in 

various domains, including text classification, spam detection, and medical diagnosis. 

 

Fig 3.4 A simple Gaussian Naive Bayesian Plot 

 

Convolutional Neural Network 

CNN is a deep learning technique that is utilized to make a compelling picture 

characterization framework. Notwithstanding, the CNN model can likewise help with the 

development of effective safety efforts. The CNN strategy is similar to a customary brain 

network in that it has four essential layers: the information layer, convolutional layer, 

pooling layer, and completely associated layer. CNNs are designed to automatically learn 

features from raw pixel values in an image, without relying on handcrafted features. The 

key components of a CNN include convolutional layers, pooling layers, and fully 

connected layers. 

Here are the main steps of the CNN algorithm: 
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Data Preparation: The input data consists of images, which are usually represented as 

matrices of pixel values. The dataset is divided into training, validation, and testing sets. 

Convolutional Layers: 

a. Convolution: Convolutional layers apply filters (also known as kernels) to the 

input image to extract local features such as edges, corners, and textures. This is done 

by sliding the filters over the input image and performing element-wise 

multiplication and summation. 

b. Activation Function: An activation function is applied to the output of the 

convolution operation to introduce non-linearity into the model, allowing it to learn 

complex patterns. 

Pooling Layers: 

a. Pooling: Pooling layers downsample the feature maps generated by the 

convolutional layers, reducing the spatial dimensions and reducing the computational 

complexity of the model. Common pooling operations include max pooling and 

average pooling. 

Fully Connected Layers: 

a. Flattening: The feature maps from the convolutional and pooling layers are 

flattened into a 1D vector. 

b. Fully Connected Layers: Fully connected layers are traditional artificial neural 

network layers where each neuron is connected to every neuron in the previous and 

next layers. These layers learn the high-level features and make predictions based on 

the learned features. 

Output Layer: The final fully connected layer is connected to the output layer, which 

produces the predicted class probabilities using an appropriate activation function, such as 

softmax for multi-class classification. 

 

 

Training Phase: 
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a. Forward Propagation: The input images are fed into the network, and the output is 

calculated through forward propagation. 

b. Loss Calculation: The difference between the predicted class probabilities and the 

true labels is calculated using a suitable loss function, such as cross-entropy. 

c. Backpropagation: The gradients of the loss with respect to the network parameters 

are computed and used to update the weights through backpropagation. 

d. Optimization: An optimization algorithm, such as stochastic gradient descent 

(SGD) or Adam, is used to update the weights and minimize the loss. 

Prediction Phase: The trained CNN is used to make predictions on new, unseen images by 

passing them through the trained network and selecting the class with the highest predicted 

probability as the final output. 

Model Evaluation: The performance of the CNN model is evaluated using appropriate 

evaluation metrics, such as accuracy, precision, recall, and F1-score, on the validation or 

test dataset. 

CNNs are powerful algorithms for image recognition tasks due to their ability to 

automatically learn features from raw pixel values. However, they can be computationally 

expensive and require a large amount of data for training. 

 

Fig 3.5 Architecture of a Convolutional Neural Network 
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CHAPTER 4: EXPERIMENTS AND RESULT ANALYSIS 

 

4.1 System Developed and Experiments Performed 

 

Let's analyze the structure of the model, there are various stages in the model. Let's get 

through each one briefly. 

1. Data Extraction 

The IoT-23 dataset is made up of 23 distinct IoT network traffic recordings (called 

scenarios). These scenarios are separated into 20 network captures (pcap files) from 

infected IoT devices (each scenario will contain the name of the malware sample 

run) and three network grabs of legitimate IoT device data traffic. On each harmful 

scenario, we ran a particular malware sample on a Raspberry Pi, which utilized 

multiple protocols and did various activities. This dataset additionally includes 

labels to explain the relationship between flows connected to harmful or potentially 

malicious activity in order to give more specific information to network malware 

researchers and analysts. 

Attack: An attack can be defined as a flow that is attempted to damage a 

vulnerable device by behavior analysis. This label is for indicating that a device is 

been infected by an attack. 

Benign: This label is an indicator of the safe environment of a device. No 

suspicious activity was detected in the network. 

C&C: Indicates a link between a C&C server and attacked device. The C&C 

activity was discovered during the network malware capture examination because 

connections to the suspicious server are made on a regular basis, or our bot is 

extracting binaries from it, or some IRC-like or decoded orders are arriving and 

departing from it. 

DDoS: Indicates that the attacked device is carrying a Distributed Denial of Service 

assault. Because of the high amount of IoT network traffic routed to the same 

Internet Protocol address, these flows of traffic are spotted as part of a DDoS 

assault. 
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FileDownload: The label suggests that we are downloading a file to our infected 

device. 

HeartBeat: This label describes that packets received during this connection are 

utilized by the C&C server to keep track of the attacked device. 

Mirai: The label indicates that the bonds have Mirai botnet attributes. At the point 

when the streams have tantamount examples to the most predominant realized 

Mirai attacks, this mark is affixed. 

Okiru: The mark denotes that the connections are part of the Okiru type of botnet. 

PartOfAHorizontalPortScan: This mark demonstrates that the associations are 

used to do an even port output to accumulate data for future assaults. 

Torii: this label denotes that the links are part of a Torii botnet. 

 

Fig 4.1 The IoT-23 Dataset 

 

 

2. Data Cleaning and Preprocessing 
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Data cleaning and preprocessing are essential steps in the data analysis and 

machine learning pipeline. They involve the identification, correction, and 

transformation of data to ensure that it is accurate, consistent, and suitable for 

analysis. Data cleaning and preprocessing are crucial in order to address issues such 

as missing values, inconsistencies, errors, and outliers that may be present in the 

raw data. 

The data cleaning and preprocessing help us normalize the data. This means any 

such value or data that is unfit for the model or could affect its performance is 

removed or filled in with an average value. These values could be null values or an 

outlier, which is taken care of in this step. 

Data cleaning typically involves- Removing or filling in missing values: Missing 

values in the data can distort analysis and modeling results. Common techniques 

for handling missing values include imputation (i.e., filling in missing values with 

estimated values based on other data), deletion of rows or columns with missing 

values, or using algorithms that can handle missing data directly. Handling 

inconsistencies and errors: Inconsistent or erroneous data can lead to inaccurate 

analysis results. This may involve identifying and correcting inconsistencies in data 

values, resolving conflicting data, or removing duplicate data. Handling outliers: 

Outliers are data points that deviate significantly from the rest of the data and can 

skew analysis results. Identifying and handling outliers may involve removing 

them, transforming them, or imputing them based on domain knowledge.  

Data pre-processing, on the other hand, involves transforming the data into a format 

that is suitable for analysis or modeling. This may include tasks such as- Data 

normalization or scaling: Data from different sources or with different units may 

need to be scaled or normalized to ensure that they are on the same scale and can be 

properly compared or combined. Encoding categorical variables: Categorical 

variables, such as gender or categorical labels, may need to be encoded into 

numerical values to be used in machine learning algorithms. Feature extraction: 

Extracting relevant features or variables from the raw data that are important for the 

analysis or modeling task at hand. Data integration: Combining data from multiple 

sources, resolving inconsistencies, and merging datasets to create a unified dataset 

for analysis or modeling. 
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Fig 4.2 Dataset after data pre-processing 

 

Fig 4.3 Dataset after data cleaning 

3. Feature Engineering and Dimensionality Reduction 

Our dataset is very heavy and has a load of features. We have to keep only those 

features that determine the model’s work and performance. All those features that 

have either no or negligible effect on the model’s accuracy are removed. In this 

project, it's very crucial to identify the important features so that our model could 

work perfectly and is not loaded much. 

Feature engineering and dimensionality reduction are important techniques in data 

analysis and machine learning that involve transforming and reducing the number 

of features or variables in a dataset to improve the performance and interpretability 

of machine learning models.  
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Feature engineering refers to the process of creating new features or variables from 

the existing raw data to improve the performance of machine learning algorithms. 

This may involve tasks such as: Feature extraction, Feature transformation, and 

Feature selection.  

Next, Dimensionality reduction, on the other hand, involves reducing the number of 

features or variables in a dataset while retaining as much relevant information as 

possible. This can help to mitigate the "curse of dimensionality," which refers to the 

challenges and limitations associated with high-dimensional data. Dimensionality 

reduction techniques may include: Principal Component Analysis (PCA), Linear 

Discriminant Analysis (LDA), Feature selection techniques like Recursive Feature 

Elimination (RFE), L1 regularization (Lasso), or Tree-based methods. 

Feature engineering and dimensionality reduction are important techniques in data 

analysis and machine learning that can help to improve model performance, 

interpretability, and efficiency by reducing noise, removing irrelevant features, and 

mitigating the challenges of high-dimensional data. 

 

Fig 4.4 Going through feature-engineering 



56 

 

Fig 4.5 Dataset after dimensionality reduction 

 

4. Training & Testing Split 

Training and testing split, also known as data partitioning, is a critical step in 

machine learning model development. It involves dividing the available dataset into 

separate subsets for training and testing the machine learning model. 

The training set is used to train the machine learning model, while the testing set is 

used to evaluate the performance of the trained model. The training set typically 

constitutes a larger portion of the dataset, typically around 70-80% of the data, 

while the testing set constitutes the remaining portion, typically around 20-30% of 

the data. 

Here, we are parting the preparation and testing data into a proportion of 80:20. The 

preparation dataset is dependably bigger in proportion so the model is prepared for 

pretty much every conceivable situation. Then, at that point, it is tried on testing 

information to assess the exhibition of the model. 

The main purpose of the training and testing split is to evaluate the generalization 

performance of the machine learning model. By training the model on a separate 

subset of data and testing it on another independent subset of data, we can assess 

how well the model is likely to perform on unseen data in real-world scenarios. 
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The training set is used to train the model by feeding the input features to the 

model, allowing it to learn the underlying patterns and relationships in the data. The 

model then uses this learned knowledge to make predictions on the testing set, and 

the performance of the model is evaluated based on how well it predicts the target 

variable on the testing set. This evaluation helps to estimate the model's accuracy, 

precision, recall, F1-score, and other performance metrics. 

Training and testing split is a crucial step in the machine learning model 

development process as it helps to assess the model's performance on unseen data, 

estimate its generalization performance, and ensure its reliability and accuracy in 

real-world scenarios. 

 

Fig 4.6 Training & Testing Split 

 

5. Execution of Classifiers 

Decision Tree is a popular algorithm used for classification tasks. It works by 

recursively splitting the data based on feature values to create a tree-like structure 

that can be used for making decisions. To execute a Decision Tree classifier in 

botnet detection, the pre-processed dataset with labeled samples (i.e., botnet or non-

botnet) is used to train the Decision Tree model. Once the model is trained, it can 

be used to classify unseen data samples as botnet or non-botnet based on the 

learned decision rules. 

SVM is a powerful algorithm used for both classification and regression tasks. It 

works by finding the optimal hyperplane that best separates the data points of 

different classes. In botnet detection, SVM can be executed by training the model 

on the pre-processed dataset with labeled samples. The SVM model learns the 

optimal hyperplane that best separates the botnet and non-botnet samples in the 
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feature space, and can then be used to classify new data samples as botnet or non-

botnet based on their position relative to the learned hyperplane. 

Naive Bayes is a probabilistic algorithm used for classification tasks. It works 

based on the assumption of independence between the features, which allows for 

efficient and fast classification. In botnet detection, Naive Bayes can be executed 

by training the model on the pre-processed dataset with labeled samples. The Naive 

Bayes model learns the conditional probabilities of the features given the class 

labels (botnet or non-botnet), and it can be used to make predictions on new data 

samples based on these probabilities. 

CNN is a deep learning algorithm specifically designed for image recognition tasks. 

In botnet detection, CNN can be used to analyze network traffic data, such as 

packet headers or payload information, as images. The CNN model is trained on 

the pre-processed dataset with labeled samples, and it learns the hierarchical 

features from the network traffic data to make predictions about whether a given 

traffic flow is indicative of a botnet activity. 

 

Fig 4.7 Classification report of Decision Tree Classifier 
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Fig 4.8 Classification report of SVM Classifier 

 

Fig 4.9 Classification report of Gaussian Naive Bayes Classifier 
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Fig 4.10 Classification report of Convolutional Neural Network 

 

6. Comparison & Result 

Let's compare the results we got from different classifiers' execution on the model. 

Starting with a comparison of accuracy:  

Decision Tree: 73%, SVM: 69%, Naive Bayes: 30%, CNN: 69.34% 

 

Graph 4.1 Accuracy trends according to classifiers 
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Next, let us look at the Precision of the model with reference to different classifiers 

and Labels. 

Precision of the model measures the ability to classify positive samples in the 

model. 

p_dt represents the precision trend for the Decision Tree. 

p_svm represents the precision trend for SVM. 

p_nb represents the precision trend for Naive Bayes. 

 

Graph 4.2 Precision wrt Classifier and Labels 

Next, let's see the Recall of the model with reference to different classifiers and 

Labels. 

Recall of the model measures how many positive samples were correctly classified 

by the ML model. 

r_dt represents the recall trend for the Decision Tree. 

r_svm represents the recall trend for SVM. 

r_nb represents the recall trend for Naive Bayes. 
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Graph 4.3 Recall wrt Classifier and Labels 

Finally, let’s examine the F-1 Score of the model with reference to different 

classifiers and Labels. 

F-1 Score of a model is the harmonic mean of precision and recall. 

f_dt represents the precision trend for the Decision Tree. 

f_svm represents the precision trend for SVM. 

f_nb represents the precision trend for Naive Bayes. 

 

Graph 4.4 F-1 Score wrt Classifier and Labels 
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4.2 Comparison of Results with Previous Theories 

 

● In (Alshamkhany et al., 2020) the dataset used was the UNSW-NB15 dataset and 

its results were as follows: 

 

Table.6 Comparison of UNSW-NB15 and IoT-23 evaluation metrics 

 

 

The comparison of results in our project revealed that the accuracy of our model is 

lower compared to the performance reported in the referenced journal (Alshamkhany et 

al., 2020). However, it is worth mentioning that the UNSW-NB15 dataset used in our 

project specifically focuses on DDoS and DoS attacks, which may explain the relatively 

lower accuracy compared to the journal that might have used a different dataset with a 

broader range of attack types. 

 

Despite the lower accuracy, our project suggests that further improvements could be 

made by exploring combinations of classifiers to enhance the performance of the model. 
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This aligns with the future work or limitation highlighted in the referenced journal 

(Alshamkhany et al., 2020) where a better dataset, more relevant to real-world 

scenarios, could potentially lead to improved model performance. 

 

It is important to consider the context of the dataset used in the project, and how it may 

impact the model's performance. While the UNSW-NB15 dataset is widely used in the 

field of network security, it may not cover all possible attack scenarios, and using a 

dataset that includes a wider variety of attacks could potentially yield different results. 

Therefore, future research could involve exploring other datasets or real-world data to 

further validate and enhance the performance of the model. 

In conclusion, while our model's accuracy may be lower compared to the referenced 

journal, it provides valuable insights into the limitations and potential areas of 

improvement for future research. By considering different classifiers and datasets, and 

addressing the specific challenges of the project, the model's performance could be 

further enhanced to better detect botnet attacks in real-world scenarios. 

 

● In (Alkahtani & Aldhyani et al., 2021), the dataset used in the N-BaIoT dataset and 

the result comparison is as follows: 

 

Table.7 Comparison of N-BaIoT and IoT-23 

 CNN 

Accuracy in N-BaIoT 80% 

Accuracy in IoT-23 69.34% 

 

Upon comparing our model with the CNN-LSTM model developed by Alkahtani and 

Aldhyani et al. (2021), it is evident that their model exhibits higher accuracy. However, it 

is important to note that the complexity of a CNN or LSTM model alone is quite 

significant, and the combination of both can present a formidable task. 
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One of the challenges with Deep Learning models, including CNNs and LSTMs, is that the 

research in this area is still evolving, and our understanding of these models is constantly 

evolving. As mentioned in the literature survey, a CNN model typically comprises multiple 

layers, making it impractical to retrain the model every time a modification is made. This 

poses difficulties in using Deep Neural Networks in real-life scenarios where changes 

occur frequently, as retraining such a large network can be time-consuming and resource-

intensive. 

While the accuracy and performance of the CNN-LSTM model may surpass our model, it 

is important to consider the practical challenges associated with using such complex 

models in dynamic environments. As the field of Deep Learning continues to advance, 

further research and developments may be required to fully leverage the potential of these 

models in real-world scenarios where changes occur frequently. 

In conclusion, while the CNN-LSTM model may demonstrate superior accuracy, the 

practical challenges associated with the complexity of these models, including the need for 

frequent retraining, may pose limitations in their real-world application. Continued 

research and advancements in Deep Learning are necessary to fully harness the capabilities 

of these models in dynamic environments. 
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CHAPTER 5: CONCLUSION 

 

5.1 Conclusion 

The proliferation of Internet of Things (IoT) devices is projected to increase exponentially 

in the near future, making it crucial to ensure their security against cyber attacks such as 

Botnet Attacks. In this study, we have delved into the concept of IoT, explained the 

workings of Botnet Attacks in real-life scenarios, and highlighted the global impact of such 

attacks. We have also reviewed existing techniques for Botnet Attack detection and 

prevention, and identified their limitations and potential areas for improvement in future 

research. To address these limitations, we have proposed a machine learning-based model 

that employs classifiers to detect and classify botnets. 

One of the key strengths of our study is the unique dataset we have utilized. Published as a 

universal dataset for botnet detection and study in 2020, it has not been processed 

previously and contains the best features required for accurate prediction of botnet attacks. 

The dataset also includes labels that indicate the type of botnet attack detected on the 

device, providing valuable information for effective mitigation measures. 

We have employed four different machine learning classifiers for botnet detection in IoT 

devices: Decision Tree Classifier, Support Vector Machine with radial basis function 

(Non-linear kernel), Naive Bayes with Gaussian Probability, and Convolutional Neural 

Network. Through our experiments, we have found that the Decision Tree model exhibits 

the best performance with an accuracy of 73%, surpassing the other models. Theoretically, 

with the dataset used, our model can be leveraged to detect various types of malware 

activities. 

As we move forward, our future work will focus on further improving the performance of 

our model on the dataset by exploring different classifiers and algorithms. We also plan to 

continually update and expand our dataset with new data to ensure its relevance and 

effectiveness in real-life scenarios. Additionally, we aim to validate the performance of our 

model on larger datasets, including the entire IoT-23 dataset, and compare its results with 

other universal datasets to assess its versatility and generalizability. Through these efforts, 

we aim to contribute to the advancement of botnet detection techniques and enhance the 

security of IoT devices against cyber attacks. 
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5.2 Future Scope 

As we look towards our future work, there are several avenues for improvement and 

expansion of our model. Our immediate focus is on enhancing the performance of our 

model on the newly designed dataset. We plan to explore the use of different classifiers 

and combine them to create a new algorithm that may potentially yield higher accuracy in 

botnet detection. 

 

To keep our dataset up-to-date and more robust, we plan to continuously improve it with 

new data as it becomes available. We also aim to validate the performance of our model on 

the entire IoT-23 dataset, which would provide a more comprehensive evaluation of its 

effectiveness. Additionally, we may consider incorporating other universal datasets to 

increase the variability in our dataset, thus making our model more adaptable to real-life 

scenarios. 

In addition to the classifiers we have already used, such as Decision Tree, SVM, Naive 

Bayes, and CNN, we plan to explore the use of other classifiers such as Random Forest, 

kNN, and other supervised, unsupervised, and ensemble methods of machine learning. By 

comparing their results, we can identify the most effective classifiers and potentially create 

a new algorithm that leverages the strengths of multiple classifiers for improved 

performance. 

Furthermore, we aim to test our machine learning model in real-time environments to 

evaluate its accuracy outside of controlled laboratory experiments. This will help us 

understand how well our model performs in real-world scenarios and how effectively it 

handles different types of threats, including both identified and unidentified ones. 

In conclusion, our future work will focus on improving the performance of our model on 

the dataset, validating its effectiveness on larger datasets, exploring additional classifiers, 

and testing its performance in real-time environments. These efforts will contribute to the 

ongoing refinement and advancement of our botnet detection model for enhanced accuracy 

and practical applicability. 
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Appendices 

 

1. Dataset 

The dataset used was “Aposemat IoT-23”. It is a labeled dataset of 

malicious and benign activity in IoT network traffic. 

This dataset contains sub-datasets of malware activities: Malicious IoT 

network traffic scenario and Benign IoT traffic scenario. 

 

Fig.32 Summarised malicious IoT-23 scenario 
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Fig.33 Application layer breakdown of the Malicious Scenarios  
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Fig.34 Summarised Benign scenario 

 

Fig.35 Application layer breakdown of the Benign scenario 

Table.8 Label configuration file 
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Link to the dataset files: 

https://mcfp.felk.cvut.cz/publicDatasets/IoT-23-

Dataset/IndividualScenarios/CTU-IoT-Malware-Capture-34-1/ 

2. Code Snippets 

 

Fig.36 Imported Libraries 

 

Fig.37 Used dataset 

https://mcfp.felk.cvut.cz/publicDatasets/IoT-23-Dataset/IndividualScenarios/CTU-IoT-Malware-Capture-34-1/
https://mcfp.felk.cvut.cz/publicDatasets/IoT-23-Dataset/IndividualScenarios/CTU-IoT-Malware-Capture-34-1/
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Fig.38 Dataset Pre-processing 

   

     Fig.39 Total labeled malicious attack         Fig.40 Label count for Decision Tree 



75 

 

Fig.41 Decision Tree Classifier visualization 

      



76 

Fig.42 Label count for GNaive Bayes      Fig.43 Model score for GNaive Bayes 

 

Fig.44 Data-preprocessing for GNaive Bayes 
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    Fig.45 Label count for SVM  Fig.46 Model score for SVM 

 

Fig.47 Label count for CNN 
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Fig.48 Scaling & Normalization for CNN 

 

Fig.49 Model summary of CNN 


