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Abstract

Due to growing competition for water and scarcity of water, effective water

utilization for agricultural uses is essential. Irrigation technology

advancements have aided in the development of irrigation planning

approaches that minimize water requirements while having little impact on

crop quality and yield, hence boosting food security. Crop water requirements

must be estimated while designing agricultural and irrigation activities. The

purpose of this study was to assess the water needs for wheat crops[10]. The

ET0 and crop coefficient-based crop water requirements, as well as the

corresponding irrigation water requirements, can be estimated by analyzing

the effective precipitation and crop water requirements. At the CoAgMet

station's daily data availability[9], reference evapotranspiration (ETo) was

computed using weather information from the maximum and minimum

temperatures, average temperature, humidity level, wind speed, solar

radiation, and precipitation. Furthermore, the actual evapotranspiration

ET(crop) of the wheat crops produced in the area was calculated by dividing

ETo by the crop coefficient (Kc) value. The irrigation water required for wheat

crops was then estimated at points on a grid in various places. This research

will help water management systems provide the optimal amount of water

required for agriculture while also enhancing irrigation management. The

proposed model's results were assessed using a variety of performance

metrics, including R2, MAE, MSE, RMSE, and MAPE. Using the

above-mentioned performance indicators, we compared the suggested model's

efficiency against those of the existing models and discovered a significant

improvement in performance.
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Chapter - 1 INTRODUCTION

1.1 Introduction

A crop's evapotranspiration is the quantity of water required by the crop for

normal growth. We must calculate evapotranspiration to determine how much

water a crop loses in a single day and then calculate how much water we must

supply to make up for that loss. Wheat is considered to be one of the world's

oldest and most extensively grown food crops, having been cultivated around

10,000 years ago in the Middle East's Fertile Crescent. It was domesticated

around the same time as rice but slightly before maize. Wheat, rice, and maize

are the three largest staples of the world, accounting for roughly fifty percent

of the world's food calories and two-fifths of its protein consumption[3].

Wheat alone contributes just over one fifth of all the world's dietary calories

and protein, making it particularly crucial for guaranteeing global

food/nutrition security. We will utilize machine learning techniques to forecast

the amount of water needed to compensate for water loss due to natural

phenomena such as transpiration and evaporation. Evaporation is the process

by which soil loses moisture in the form of water vapors, whereas

transpiration is the process by which moisture is lost from the surface of crop

leaves. In accordance with WaterAid India's 'Beneath the Surface: The State of

the World's Water 2019' study, one kilogramme (kg) of wheat requires 1,654

liters of water. Around 217 million hectares farmed annually, it is the most

frequently harvested crop in the world.

With sustained global population expansion and a growing demand for

wheat-based processed goods in the global South, increasing wheat

productivity is critical to ensuring global food security. Population expansion

is putting enormous strain on the world's scarce freshwater supplies. The

growing need for water coming from the private and industrial sectors is also a
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result of population growth. As a result, available water is becoming

increasingly scarce, necessitating efficient irrigation water utilization in

agriculture. With current water sources practically gone, there is an urgent

need to boost water output through effective irrigation. Typically, 15% of

given water gets wasted during transportation, another 15% is lost when

feeding fields via farm channels, 25% is lost owing to poor water

consumption, and only 45% of supplied water is used for farming and

agricultural labor. The timing, length, and method of irrigation utilized all

influence the effectiveness of irrigation water consumption. Efficient crop

irrigation management necessitates information from numerous sources,

including soil, crops, and the atmosphere. Evapotranspiration (ET) is the most

significant component of the hydrologic cycle, and correct forecasting of ET is

critical for a range of applications such as agricultural yield modeling, precise

demand for water, irrigation system design, and resource planning and

management. Accurate agricultural ET calculations will also be required to

improve irrigation system efficiency.

Penman-Monteith developed a formula in 1954 to quantify agricultural water

demand based on minimal meteorological circumstances including relative

humidity, wind speed, maximum and minimum temperatures, and

precipitation[11]. According to Penman, every crop has its crop coefficient,

which means we have different crop coefficients. So, in this project, we used

climatic data to perform machine learning forecasting of crop water demand.

Penman's formula was later applied in various projects involving complex IoT

systems, machine learning, and deep learning to forecast the future water

requirement of a specific crop.
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Fig 1.1 Process of evapotranspiration

When employing water balance techniques for irrigation management,

however, the effective values of inflows and outflows are always assumed to

be known. For instance, if the total amount of rainfall for a certain site has

been determined, the effective amount that's going to infiltrate the soil must be

computed. If the irrigation system is inefficient and irrigation is not supplied

directly at the area where soil moisture measurements are made, the fraction of

the overall irrigation amount which contributes to the soil's moisture

replenishment must be known. A portion of the applied water can flow off on

any particular day prior to infiltrating the soil profile, thanks to quick drainage

and surface sealing. Similarly, some water may be lost as deep percolation.

Water demand estimation can be divided into two approaches: conceptual

theory and system theory (Pulido-Calvo et al. 2009[10], Zhou 2002[5], Alvisi

2007[3]). Conceptual models forecast irrigation water requirements based on a

variety of factors including soil moisture, infiltration, and evaporation. These

criteria are used by irrigation managers for estimating the water needed for

irrigation for the whole season. Nevertheless, estimated water demand at the
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start of the watering season may not accurately reflect true water consumption

for a variety of reasons. The system theory technique is the second approach to

calculating water demand. In this method, the model undergoes training on

available data before being utilized to forecast future water demand.

System-theoretic approaches outperform conceptual approaches in terms of

efficiency and accuracy (Pulido-Calvo 2008)[9]. Furthermore, it is based

solely on publicly available data.

Evapotranspiration (commonly abbreviated ET) is the quantity of water lost

through plants and the ground as a result of meteorological conditions. ET is

calculated as the total of both transpiration and evaporation. Evaporation is the

transfer of water from the earth's surface to the atmosphere. Transpiration is

the loss of water from the plant's leaves and body to the air. The amount of

evapotranspiration is affected by temperature, humidity, wind, amount of

sunlight, and plant type. ET is measured in inches of water. ET refers to the

amount of water lost to the atmosphere; this water is replaced through

precipitation, rain, and irrigation. As a result, the places with most demand for

water for crops are those that are hot, dry, windy, and sunny. When it is chilly,

moist, and cloudy, with no or a slight breeze, the lowest readings are found. It

is obvious from the information provided above that a single crop cultivated in

different temperature zones will have variable water requirements. A given

kind of maize produced in a cold region, for example, will use a smaller

amount of water daily than an identical variety of maize planted in a warmer

climate. It is so useful to select a standard crop or reference crop to figure out

how much water that crop requires per day in various regions. The benchmark

or reference crop was chosen to be grass.

The efficiency of irrigation water consumption is determined by the time,

length, and technique of irrigation employed. To effectively manage crop

irrigation needs, information from numerous sources, such as soil, crop, and
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atmosphere is required. ETc estimation is also one of the key elements

employed in irrigation planning, design, and operation (Rowshon et al.,

2013)[17]. Jensen et al. (1990)[13] gives extensive assessments of commonly

employed methods for predicting plant water requirements and determining

transpiration. In our project we have collected the data CoAgmET, stands for

Colorado’s Mesonet, it is an organization of Colorado State University for

collecting daily data of different regions in Colorado[9]. We have worked on

the dataset of the winter wheat crop and this data is collected by Ault weather

station.

Table 1.1: Ault Weather Station Details

Station ID ALT01

Location 1 mi SE Ault.

Latitude 40.5690

Longitude -104.7200

Elevation 4910 ft.

1.2 Problem Statement

People utilize incorrect irrigation methods due to a lack of information about

water management and forecasts. This wastes readily available fresh water.

Farmers are also not getting a good yield. In this age of overcrowding, we

must use scarce freshwater resources responsibly. To optimize water

management and irrigation systems, one should understand agricultural water

demand, or how much water a crop requires during its growth phase.
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There are various types of irrigation systems available today, but one must

determine which irrigation system to use to get a good crop yield by

efficiently using fresh groundwater and rainwater, such as drip systems,

center-pivot irrigation, sub-irrigation, spray irrigation, and so on. To select the

appropriate irrigation system, we must first understand the local climate. After

we have this climate-related dataset, we use machine learning algorithms to

effectively forecast the water requirements of a specific crop (ET crop).

Understanding of (ET crop) will offer us the greatest notion of which

irrigation system we should use in our location to produce the highest yield of

crops while utilizing the least amount of fresh water. The paucity of pure water

supplies around the world has created a demand for their best use.

1.3 Objectives

Our project's main goal is to anticipate crop water demand (ET crop) based on

minimal provided meteorological variables such as the highest and lowest

temperatures, humidity, solar radiation, wind speed, gust speed, and

precipitation of a certain region. Crop water need refers to the efficient water

supply required for the highest possible yield during the development phase.

Following data visualization and standardization, several machine learning

algorithms are implemented on the collected dataset, and the best four models

developed using machine learning out of all implemented models are

ensembled to forecast the result and provide the best prediction of ET crop.

The more precise our forecasting, the more effectively and methodically

planning for agriculture can be carried out. Water needs can be utilized to

determine which irrigation method an individual should use for higher crop

yield while using fresh water more efficiently and properly. The proposed
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method employs stacking-based ensemble learning to increase classifier

diversity. The suggested framework's performance is compared to current

literature using the coefficient of determination (R2 score), mean absolute

error (MAE), mean square error (MSE), and root mean square error (RMSE).

1.4 Methodology

In this section, we will go over the project methodology step by step. I noticed

relationships between other factors after deleting outliers and thoroughly

analyzing the data. The data was then divided into two parts. 70% of the data

is training data, and 30% is testing data. I incorporated all of the models listed

above in the background and preliminary part, and after examining all

predefined models, we discovered that these models helped enhance overall

accuracy. Given the literature study on agricultural water demand prediction,

the suggested ensemble framework naturally incorporated the majority of

authors who achieved substantial accuracy in their machine learning models.

The experimental location (40.5690°N, -104.7200°E) is in Ault, Colorado,

USA, at the ALT01 weather station[9]. First, we measured how multiple

parameters affect crop water requirements. We only evaluated relative

humidity, precipitation, solar radiation, maximum temperature, minimum

temperature, and wind speed. Crop factors such as crop density, kind, crop

height, and leaf breadth have also been excluded. We collected winter wheat

data from March to December for three consecutive years, from 2020 to 2022.

We began with the first phase in machine learning, which was data collecting

and processing. We gathered information on the winter wheat crop and

meteorological conditions. Three years of data were not available at the exact
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same time. So we gathered information for three years in a row and compiled

it. Table 3.1 displays a list of all the variable names and types of input

variables, together with their measuring units, that are taken into account

throughout the prediction process. According to this data, ET crop is our

expected target variable. We processed our dataset after obtaining the

necessary data. We calculate the total number of fields with null values for this

purpose. After counting the null values we filled the null values with the

average value of that column.

Following preprocessing, the following step we carried out was feature

selection, which involved determining the right correlation between various

variables. We used heat map visualizations to identify the relationship among

different variables and visualization techniques to comprehend how some of

the features are purposefully affecting our target variable, ET crop, but others

are all independent and no short-term immediate impact of that variable can be

observed. These visualization results showed us how some of the variables

ought to be removed before running regression models on our dataset.

Crops' ideal growing conditions depend heavily on climate when it comes to

their irrigation needs; that is, how much water they require to thrive: In hot,

sunny environments, crops will need more frequent watering compared to

cooler, cloudier settings. Crops like rice or sugarcane need more water

compared to beans or wheat. Crops that are fully developed require more

water compared to recently planted crops. Crops can receive the required

water amount through a combination of irrigation and rainfall. Rainwater is

usually supplemented or complemented by irrigation water. All the water that

crops require must be supplied by irrigation only in desert or dry areas or

during times of drought.
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The irrigation water needed is the difference between the crop water

requirement and the amount of rainfall that the crops can use (effective

rainfall). The computation of irrigation water requirements serves as the

foundation for developing an irrigation plan (often by an agronomic) and

constructing an irrigation scheme, such as channel dimensions (typically by

engineers). The following phase was model selection. We used the decision

tree regressor, random forest regressor, extra tree regressor, gradient boosting

regressor, KNN (k - closest neighbor), and linear regression models. We chose

the best four models and then combined them to build a proposed model for

more accurately predicting crop water requirements.

The supervised learning technique includes the well-known Random Forest

machine learning algorithm. It applies to both ML classification and

regression issues. The concept of ensemble learning is utilized, where

multiple classifiers are combined to address complex problems and enhance

model accuracy. By using multiple decision trees taken from diverse parts

within an inputted dataset, rather than just one tree alone, a random forest

classifier can improve overall prediction accuracy—hence its name. The

prediction of final output by Random Forest depends on the majority vote of

predictions from each tree.[15].

AutoML tools are used to train Extra Trees, which is a supervised machine

learning method based on decision trees and also known as Extremely

Randomized Trees. It may be faster than Random Forest, but it is

comparable. The Extra-Trees technique generates fewer decision trees than

the Random Forests algorithm, however, each tree uses random samples

without any permutation[15]. A special sample data set is produced for each

tree. A specific number of features are randomly chosen from the entire set of
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features for each tree. Extra Trees' most significant and distinctive aspect is the

random selection of feature split values. Instead of computing the locally best

value for splitting the data using Gini or entropy, the algorithm randomly

selects a split value. Because of this, the tree is diverse and uncorrelated.

Gradient Boosting is a technique that builds models in a sequential manner

while attempting to minimize the error rate of the prior model.

Regression or classification can both be performed using decision trees. The

way it operates is by creating a tree-like division of the data into smaller parts.

When a set of features' output value is anticipated, the portion that contains the

set of features corresponds is taken into consideration. After assessing the

effectiveness of the model using the ensemble technique, various evaluators

are used to gauge its performance. To assess our models, we have employed

MSE, MAE, R2. With our suggested ensemble model, we have contrasted

various models[15].
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Chapter - 2 LITERATURE REVIEW

Water managers have a huge obligation to use the water effectively because

agricultural irrigation uses a lot of it. The fields lose a significant amount of

water through evaporation and transpiration. It is challenging to distinguish

between the two processes since transpiration and evaporation frequently

occur simultaneously. This section covered a variety of earlier research

projects and how they tackled the issue.

The integrated qualitative and quantitative approaches to comprehend

socio-cultural behavior and environmental elements influencing agricultural

water demand, quality, and crop sustainability were described by Mohamed

Ali Abunnour et al. in 2016[2].

The process by which water evaporates from the ground's surface by

evaporation as well as from the crop through transpiration together is known

as evapotranspiration. For bumper crop production in typical conditions, the

crops need a specific amount of water to make up for water losses through

evapotranspiration.

Several authors have put forth different methods for forecasting crop water

demands. In this case, a succinct analysis of a few significant contributions to

the body of literature is provided.

In their 2015 study, Shafika Sultan Abdullah et al.[4] used data from a region

in northern Iraq called Nineveh Governorate, with a total size of 37,323 km2

and a height of 222.6 m above sea level. Weather data from the main

meteorological station in Mosul (Global Station Code 608), containing daily

averages of maximum air temperature, minimum air temperature, relative

humidity, radiation hours, and wind speed from 1980 to 2005, was analyzed
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using the quick and reliable extreme machine learning algorithm. As an

evaluation standard, the R2 and RMSE coefficients of determination were

applied.

In 2017, Siraj Sheko et al.[6] reviewed the Water Use Efficiency, Irrigation

Frequency, and Crop Water Requirement Estimates for the Production of

Cabbage. The Journal of Geoscience and Environment Protection discussed

the need to plan irrigation in order to efficiently utilize limited water resources

for crop production. He also gave a concise summary of how machine learning

can be used to predict plant water needs and how we can utilize it for better

water management.

In their article titled "Water demand forecasting using machine learning

methods: A case study of Beijing-Tianjin-Hebei Region of China," Qing

Shuang and Rui Xhao (2021)[7] used a variety of models, including statistical

models for linear regression, ridge regression, and bayesian ridge regression.

SVM, decision trees, and ML techniques were also employed by him. As part

of his ensemble approaches, he also suggested using random forests and

adaboost, as well as 10-fold cross validation for the data used for training to

avoid overfitting situations. Extreme water shortages exist in the

Beijing-Tianjin-Hebei region of China. Making more effective use of available

water resources can be accomplished with the use of water demand

forecasting.

P. Mohan et al. (2018)[8] from REVA University used a variety of data mining

techniques, including ANN, K-means, SVM, and others. Agriculture system

models employ robust estimate approaches such as SCG and (BFGS)

QuasiNewton, both of which are based on neural network algorithms. Predict

the soil moisture content using this algorithm to control farm irrigation. Data

12



mining and deep neural network methodologies were used. He also suggested

using a different layered model to forecast crops. Accuracy, precision, recall,

sensitivity, and specificity are some of the evaluation measures that are used.

The suggested approach is contrasted with the following approaches already in

use: SOM-DNN, SOM-KNN, weighted-SOM-KNN, Random Forests -

Multiple Linear Regressions, and SOMLearning Vector Quantization (LVQ).

This machine-learning technique was examined by J.H. Jeong, J.P. Resop,

N.D. Mueller, D.H. Fleisher, K. Yun, E.E. Butler, D.J. Timlin, K.M. Shim, J.S.

Gerber, V.R. Reddy, and S.H. Kim.

Studies that have already been done have predicted water demand using one or

more models. For the first time, this work provides a comprehensive

comparative analysis of multiple machine learning and statistical models

incorporated in IPS and EPS. The IPS uses training and test data from the

same time period, while the EPS constructs models using historical training

data and applies them to predict future water demand.

In their experimentation, Sidhu et al. (2020)[1] utilized seven distinct machine

learning algorithms, including SVM, decision tree, random forest regressor,

extra tree regressor, gradient boosting regressor, adaboost regressor, and neural

network, to obtain results. The most accurate model, he found, was the

adaboost regressor. Utilizing ten folds, we took it a step further in reducing

overfitting in our model, following his three-fold strategy that impacted our

study. He utilized R2, accuracy, and mean square error as a means of

evaluating performance.

Direct measuring methods are ineffective for determining evapotranspiration

across vast irrigated regions. They are mostly utilized for research by skilled

professionals. Evapotranspiration is widely assessed using an array of methods
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that need climatic parameter observations. Ravneet Kaur Sidhu evaluated the

effectiveness of several proposed models using MSE, MAE, R2, and explained

variance scores. The use of n-fold cross validation in Beijing-Tianjin (2021)

influenced our research effort, allowing us to remove model overfitting. Our

study advances crop water demand forecasting because we assembled the most

effective model for making more precise predictions.

Table 2.1 Existing approaches for crop water demand forecasting

S.
No.

Author Approach Dataset Used Performance
Parameters
used

1 Ravneet Kaur
Sidhu et al.
(2019)[1]

SVM, Decision
tree, Random
Forest

CSSRI Accuracy,
Recall

2 Qing Shuang et
al. (2021)[3]

Linear Regression,
SVM, Decision
tree, Random
forest, Adaboost

Annual water
resources
report, China
statistics
yearbook

R2, MAE

3 Abdullah et al.
(2015)[4]

Extreme learning
Machines, ANN

Weather
station in
Mosul (609)

R2 , MSPE

4 Abunnour et al.
(2016)[2]

K-NN, Decision
tree, Random
Forest

Accuracy,
ROC-AUC

5 Ravinder
Kumar et al.
(2019)[5]

LSTM neural
network

CSSRI TOPSIS

6 P. Mohan et
al.(2018)[6]

ANN, KNN ,
K-means

Raitamitra-K
arnataka
State
Department
of
Agriculture
(KSDA)

Accuracy,
recall,
precision,
sensitivity



7 Dean C. J. Rice
et al. (2017)[8]

Linear Regression,
Quotient Method,
Feed-Forward
Neural Network

Local
greenhouse
operation

RMSE,
NRMSE

8 Pulido-Calvo
et al.
(2008)[10]

Feed-Forward
CNN, Genetic
algorithm

- Accuracy

9 MA Khan et al.
(2011)[11]

Decision Tree CICL water
delivery
statements,
Weather
stations in
New South
Wales

Accuracy

10 Sara Sadri et
al. (2022)[13]

Random Forest
algorithm

SMAP
Level-3,
SMAP
Level-4,
MODIS,
MSWEP
V280

R2, RMSE,
KGE
indicators

11 RG Perea et al.
(2015)[14]

ANN Agroclimatic
station in
BMD,Andal
usia
(Southern
Spain)

R2, SEP

15



Chapter - 3 SYSTEM DESIGN AND DEVELOPMENT

3.1 Model Development

The development, design, and analysis of machine learning algorithms are

discussed in this section. With the help of CoAgMet, our data was prepared. A

network of agricultural weather stations is operated by CoAgMET throughout

the state of Colorado (USA)[9]. All the variables used in our experiment to

predict the (ET crop) are shown in Table 3.1. One can utilize the data

obtained from the weather station to compute the ET crop values and simulate

the water consumption of different crops.

The proposed framework for efficient forecasting of crop water demand is

depicted in Figure 4.2. After analyzing the data thoroughly and discovering

the relationship among the parameters, we removed all the outliers. After

partitioning the data, we have 70% of instances for training data and 30% for

testing data. The overall accuracy was increased with the help of the baseline

predefined machine learning models that we included. To evaluate their

models, the majority of other authors who have worked on a similar project

have taken into account R2, MSE, and MAE. A significant increase in

accuracy can be achieved using various bagging and boosting algorithms.

Apart from LightGBM and XGBoost, other algorithms such as gradient

boosting, decision trees, and random forests were also considered when

selecting models for a stacked ensemble-based regressor.

3.1.1 Experimental Analysis

The data was retrieved from CoAgMET which operates weather stations for

agricultural purposes around the state of Colorado[9]. The data from these
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stations are used to calculate and predict the Evapotranspiration (ET) values to

model the water use for various crops. The data that we have selected for our

experiment is taken from Ault station as shown in table 1.1. Table 3.1 shows

the variables in our dataset contains a total 12 number of input variables which

includes ETr, Hourly evapotranspiration, ET0, evapotranspiration of crop i.e.

ET(crop). In this project we are using these given parameters to predict the

value of evapotranspiration of winter wheat ET(crop) which depicts the

amount of water needed for the optimal growth of the crop. All these provided

variables play an important role to determine the ET(crop). So, ETcrop is our

target variable which we will be predicting with the help of other given

parameters.

Table 3.1 Input variables in our dataset

Attribute Description

Avg temp Average of all the daily temperatures recorded during the

observation period

Max temp Maximum temperature limit for optimal growth

Min temp Minimum temperature limit for optimal growth

RHmax Maximum relative humidity on a particular day

RHmin Minimum relative humidity on a particular day

Solar radiation Different solar radiation amounts

Precipitation Amount of water deposited in the atmosphere

Wind run Wind speed

Gust Measured brief increase in wind speed

ETr Relative evapotranspiration rate



ET0 Reference evapotranspiration rate

Hourly ET Hourly evapotranspiration rate

ETcrop Amount of water required for optimal growth

We have followed each step of the machine learning algorithm for

implementing all our baseline machine learning algorithms as shown in Figure

3.1. Figure represents the complete pipeline of machine learning. We have also

implemented our proposed stacked model using these steps as it is represented

in the given Figure 3.3.

Fig. 3.1 Machine learning pipeline for model building

Our proposed methodology, which is divided into three different phases, is

described by the algorithm below.
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Phase 1: Preprocessing phase

Phase 2: Training phase

Phase 3: Testing phase

Data mining is the responsibility of the preprocessing phase. To discover

various insights from the data and implement necessary modifications, data

visualization is performed. At this stage, data distortions and class imbalances

have been fixed and duplicate rows have been removed as an example. During

the training phase, the framework is built by finding the best accuracy-based

models and learning all the weights and parameters required for making

accurate predictions. Our proposed clustering framework is analyzed by

evaluating the parameters and weights obtained on unseen data during the

testing stage, which is the last stage.

Pseudo code : Phase 1

The chosen dataset is sourced from CoAgMET, which runs a network of

weather stations for agricultural weather in Colorado as Step 1.

In order to decrease bias in predictions, the dataset undergoes processing by

eliminating duplicate entries, as Step 2.

Using the mean value of the specific variable, fill all empty fields in the fields

with null values in Step 3.

The data that has been pre-processed is split into training and testing datasets

as step 4.

Figure 3.2 shows that in the preprocessing phase we have done some

visualization to understand the relation between the various parameters and

correlation between them. Further these correlations will help us in predicting

the Evapotranspiration more accurately.
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Fig. 3.2 Graph between ET(crop) and other variables.

Training Phase is responsible for training the dataset and judging the

algorithm. We have chosen 70% of data for the testing purpose. Different

models were trained on this data. The performance matrix can be of users

choice, in this project we have considered coefficient of determination as our

major performance matrix based on which we have made our model go

through.

ML algorithms with best performance were taken into consideration which

then were stacked together to create a better model for better prediction. As a

result, the model learns from the data to perform a set of tasks. Over time, with

training, the model gets better at predicting.

Pseudo Code : Phase 2

The first step involves training various machine learning algorithms. For

stacking purposes, the four most accurate models are chosen based on the

coefficient of determination (R2).

To perform stacking, the four most accurate models are stacked together in

step 2.
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Testing Phase: During the machine learning process's testing phase, the

stacked model parameters are tested on a 30% testing dataset. The accuracy is

first tested and then a regression report is generated. In the further sections of

the report, we discuss that our proposed algorithm has a R2(%) of 96.55%. The

baseline machine learning models were outperformed.

Pseudo Code : Phase 3

The weights and parameters are trained on an unseen dataset Y, and the

obtained results are based on the value of R2.

In addition to the coefficient of determination, various performance metrics

are utilized to compare our outcomes in step 2.

The depth or amount of water needed to compensate for water loss through

evapotranspiration is known as crop water demand (crop ET). The amount of

water required for optimal growth varies among different crops, in other

words. Crop water needs always pertain to a crop that is cultivated under ideal

circumstances, meaning a uniform crop that is actively growing, completely

covering the soil, free from diseases, and under favorable soil conditions

(which include fertility and water). In the given environment, the crop

achieves its maximum production potential.
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Fig. 3.3 Flow Diagram for the proposed methodology

The most popular strategy for estimating the crop is the Penman-Monteith

method. Determining the evapotranspiration reference (ET ref) is necessary

before determining the rate of evapotranspiration or plant water demand rate

for a specific crop. Then, we use the crop coefficient product (Kc) to calculate

the amount of evapotranspiration in order to determine what real crop water

demand is.

ETc = ETref * Kc

where,

ETc - Evapotranspiration rate ( crop water demand), unit : (inches/day)

ETref is alfalfa - reference evapotranspiration rate, unit : (inches/day)

Kc is crop coefficient
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The essential meteorological variables that are measured by a weather station

are used to produce ETref , or lucerne reference evapotranspiration

(inches/day).

Typically, the crop coefficient, known as Kc, is established through

experimentation for a specific crop. The Kc values reflect the combined

impact of alterations in crop characteristics such as leaf area, plant height, crop

development rate, irrigation method, crop planting date, degree of canopy

cover, canopy resistance, soil and climate conditions, and management

practices. For each agronomic crop, there exists a unique set of crop

coefficients that can be used to predict varying rates of water consumption

during different growth stages. Figure 3.4 shows a Kc curve example plotted

against days or weeks after planting.

In general, there are four key growth stages for crops: early, crop

development, midseason, and late season. Each of these phases has a different

duration, which is influenced by the temperature, latitude, height, planting

date, crop type, and cultural practices. The best way to determine crop growth

stage is by local field observations, thus modify the theoretical Kc values

accordingly.

During the crop germination and establishment phase at the start of the

growing season, the majority of evapotranspiration takes place through soil

surface evaporation. Evaporation from the soil surface decreases as the crop

canopy develops and covers the soil surface, leading to an increase in the

transpiration component of evapotranspiration. During the initial Kc stage,

when the plants are small, both the water consumption rate and Kc value are

low. However, as the plant develops, the crop ET rate increases, as shown in

Figure 3.4.
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The maximum ET rate for agronomic plants occurs when the crop is fully

developed (mid-season Kc). As the plant completes its growth phase and

attains physical maturity (Kc end of season), the rate of ET starts to fall once

more.

Fig. 3.4 Schematic representation of crop coefficients at different growth

stages

In this project various machine learning models are used in the proposed
framework. Some extra existing models are also trained and used to measure
the performance difference w.r.t. the proposed framework.

1. Random Forest Regressor[15]

The supervised learning approach includes the well-known machine learning

method random forest. It can be used to resolve classification and regression

ML issues. Its foundation is the concept of ensemble learning, that combines

different classifiers to handle complex problems and improve model

functionality.
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According to what its name implies, "a random forest is a classifier that takes

a set of decision trees over different subsets of a given dataset and averages

them to improve the prediction accuracy of that dataset." Instead of depending

on decision trees, Random Forest utilizes forecasts from each tree to estimate

the final outcome based on the forecasts' majority vote. The more trees in the

forest, the more accurate and less prone to overfitting problems the model is.

2. Extra Tree Regressor[15]

A decision tree-based ensemble supervised machine learning method called

Extra Trees, commonly referred to as Extremely Randomized Trees, is trained

using AutoML tools. It is comparable to Random Forest but perhaps faster.

The Random Forests algorithm produces more decision trees than the

Extra-Trees technique, but there is no permutation and the samples in each tree

are random. For each tree, this produces a special sample data set.

Additionally, a predetermined number of features from the whole collection of

features are randomly selected for each tree. The most important and

distinctive feature of Extra Trees is its random choice of feature split values.

Instead of determining the locally optimal value for separating the data using

Gini or entropy, the algorithm chooses a split value at random. The result is a

diversified and uncorrelated tree.

3. Gradient Boosting[15]

This algorithm's fundamental principle is to build models in a sequential

manner, each model attempting to lessen the error of the one before it. To

accomplish this, a new model is constructed using the residuals or errors from

the prior model.

Use the gradient boosting regressor if the target columns are continuous; if the
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classification is challenging, use the gradient boosting classifier. The "loss

function" represents the only distinction between the two. By using gradient

descent and weak learners, we want to reduce this loss function. Since it is

based on a loss function, classification and regression problems each have a

unique loss function, such as mean squared error (MSE).

4. Extreme Gradient Boosting[15]

Gradient Boosted decision trees are implemented using XGBoost technology.

In this method, decision trees are created in a sequential manner. Weights

matter a lot with XGBoost. Before being put into the decision tree that predicts

results, every variable that is independent is assigned a weight. Following that,

the variables are fed into the following decision tree with enhanced weights

for parameters that the tree misjudged. Then, a robust and precise model is

created by combining these various classifiers/predictors. It can be applied to

the resolution of issues with regression, classification, ranking, and

personalized prediction. Figure 3.5 depicts the application of XG boosting.

Fig. 3.5 Implementation of XG Boosting



5. Decision Tree Regressor[15]

Decision tree regression trains a model in the form of tree structure to forecast

data in the future and generate useful continuous output by observing the

properties of an item. Continuous output denotes the absence of discrete

output, i.e., output that is not only represented by a discrete, well-known

collection of numbers or values.

A weather forecasting model that forecasts whether it will rain or not on a

specific day is an example of a discrete output.

A profit forecasting system that estimates the likely profit that may be made

from selling of a product is an example of a continuous output.

6. AdaBoost Regressor[15]

The first truly successful boosting algorithm created for binary classification

was called AdaBoost. Multiple "weak classifiers" are combined into a single

"strong classifier" using the boosting technique known as "AdaBoost," which

stands for "Adaptive Boosting." Yoav Freund and Robert Schapire created it.

For their work, they were also awarded the 2003 Gödel Prize.

7. K Neighbours Regressor[15]

By averaging each observation in the same neighborhood, the nonparametric

KNN regression approach approximately measures the relationship among

independent variables and the continuous result. The analyst must decide on

the neighborhood's size, or cross-validation can be used to determine the size

that reduces mean-squared error.

8. Ensemble Learning[16]

Ensemble learning is learned by running the Basic Learner multiple times.
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Final votes are cast on hypotheses and final weights are placed on the

"metamodel". Different kinds of ensemble techniques include bagging and

boosting.
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Chapter - 4 EXPERIMENTS & RESULT ANALYSIS

In this section, I've compared many machine learning algorithms and

described the outcomes of our suggested ensemble model's performance

analysis when compared to earlier machine learning models. To enhance the

accuracy of agricultural water demand forecasting (ET crop), I combined

many machine learning algorithms into one. I've developed a number of

well-known baseline models, but for stacking, the best models were those with

the highest performance. The prediction becomes more diverse when multiple

models are combined.

In order to increase the effectiveness of forecasting crop water demand, I first

contrasted the performance of the various available models and then chose the

models with the highest performance. I then stacked these models in our

proposed ensemble model. We have measured the performance of our model

against other current models using R2, MSE, MAE, RMSE, and MAPE in

order to compare the effectiveness of other machine learning models.

Coefficient of determination (R2)[1]

A statistical indicator of how well a regression model fits the data is the

coefficient of determination. Its value, which ranges from 0 to 1, indicates

how well a model predicts a result. The model predicts the data better the

closer R2's value is to 1. A negative coefficient of determination (R2) indicates

that our model does not adequately account for the selected data. Formula for

calculating the value of coefficient of determination is given as :

R2 = SSR / SST = 1 - SSE / SST

30



where,

SST - sum of square total and

SSE - sum of square error.

Mean square error (MSE)[1]

The MSE can be used to assess how much a line of regression resembles a

collection of points. The "errors"—the distances among each point and the

regression line—are squared to achieve this. Figure 4.1's graphic

representation of the MSE error emphasizes the mismatch among the best-fit

line or regression line to the actual values. Mean squared error is calculated as

the average of the squared errors obtained from the function-related data.

While a lower MSE suggests the opposite, a larger MSE indicates a broader

range of the data points about the mean. Its formula comes from:

MSE = (1/n) * Σ(y - y’)2

Where,

n - Total observations

y - actual value of target variable

y’ - predicted value of predicted variable
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Fig. 4.1 Graphical representation of residual error

Mean absolute error (MAE)[1]

To determine how effectively our model is functioning, regression models also

employ mean absolute error as an evaluation metric. The mean absolute error

of the algorithm in regard to the test set is calculated as the average of the

absolute values of each forecasting error for each instance in the test set. Each

prediction mistake is represented as the discrepancy between the instance's

true value and its expected value. The formula for mean absolute error is given

by :

MAE = 𝑖=0

𝑛

∑ 𝑎𝑏𝑠(𝑦𝑖−λ(𝑥𝑖))

𝑛

where,

yi - true target value for xi,

xi - is the predicted value for xi

n - total test instances.
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Root mean square error (RMSE)[1]

RMSE is the term used to describe the residuals' standard deviation (mistakes

in the predictions). The residuals and RMSE both measure how far apart the

residuals are from the regression line, which is the separation between the data

points. To put it another way, it offers details on how closely the data are

grouped about the line of greatest fit. The RMSE is commonly used to validate

experimental findings in the fields of forecasting, regression analysis, and

weather research. The formula for RMSE is give as:

RMSE = (𝑓 − 𝑜)2

where,

f = predicted value for given input,

o = original value

In this project, I employed k-fold cross validation to get around our training

model's overfitting. In our project, we used k = 10 for several machine

learning models. Training and testing dataset was split into a 7:3 ratio.

1. Random Forest Regressor[15]

The supervised learning approach includes the well-known ML algorithm

random forest. It can be used to resolve classification and regression issues. Its

foundation is the concept of ensemble learning, which combines different

classifiers to handle complex problems and improve model functionality.

According to its name, "a random forest is a classifier that takes a set of

decision trees over different subsets of a given dataset and averages them to

improve the prediction accuracy of that dataset." Instead of depending on

decision trees, Random Forest employs forecasts from each tree to estimate
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the final outcome based on the forecasts' majority vote. The more trees in the

forest, the more accurate and less prone to overfitting problems the model is.

Table 4.1 shows the different performance metrics that are tested against our

random forest regressor model.

Table 4.1 Performance of Random Forest regressor against different

performance metrics

S. No. Performance metrics Performance measure value

1 MAE 0.3439

2 MSE 0.2243

3 RMSE 0.4681

4 R2 percentage 96.84

5 MAPE 0.2251

2. Extra Tree Regressor[15]

Extra Trees is a decision tree-based ensemble supervised machine learning

technique that is trained using AutoML tools. It is similar to Random Forest,

but maybe quicker. The Random Forests algorithm produces more decision

trees than the Extra-Trees technique, but there is no permutation and the

samples in each tree are random. This results in a distinctive sample data set

for every tree. Additionally, a predetermined number of features from the

whole collection of features are randomly selected for each tree. The most

important and distinctive feature of Extra Trees is the arbitrary choice of

feature split values. Instead of determining the locally optimal value for

separating the data using Gini or entropy, the algorithm chooses a split value at
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random. Because of this, the tree is diverse and uncorrelated. Table 4.2 shows

the different performance metrics that are tested against our extra tree

regressor model.

Table 4.2 Performance of Extra tree regressor against different performance

metrics

S. No. Performance metrics Performance measure value

1 MAE 0.3498

2 MSE 0.2291

3 RMSE 0.4718

4 R2 percentage 96.78

5 MAPE 0.1520

3. Extreme Gradient Boosting[15]

Gradient Boosted decision trees are embodied in XGBoost. In this method,

decision trees are produced in order. In XGBoost, weights matter a lot. Prior to

entering the decision tree that predicts outcomes, every variable that is

independent is given a weight. The following tree then receives the variables

with improved weights for the variables that the first tree misjudged. To create

a strong and reliable model, these many classifiers and predictors are then

combined. Regression, classification, ranking, and custom prediction are just a

few of the issues it can be used to solve. Table 4.3 shows the different

performance metrics that are tested against our XG boosting model.
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Table 4.3 Performance of XG boosting against different performance metrics

S. No. Performance metrics Performance measure value

1 MAE 0.3747

2 MSE 0.2707

3 RMSE 0.5128

4 R2 percentage 96.19

5 MAPE 0.2415

4. Gradient boosting regression[15]

By integrating weak learners or weak predictive models, the Gradient

Boosting technique creates an ensemble model. The various performance

indicators that are compared to our gradient boosting regression model are

shown in Table 4.4. Models can be trained using the gradient boosting

approach for both classification and regression issues. The approach for fitting

a model that forecasts a continuous value uses gradient boosting.

Table 4.4 Performance of Gradient boosting regressor against different

performance metrics

S. No. Performance metrics Performance measure value

1 MAE 0.3516

2 MSE 0.2308

3 RMSE 0.4728

4 R2 percentage 96.77

5 MAPE 0.2330



Proposed model[16]

In stacking, a sort of ensemble learning, predictions made by base learners are

based on those of the meta-learner and are achieved by the union of several

algorithms. The suggested approach selects the best models from each

algorithm and combines them to provide even greater accuracy. The data is

divided between 70% training data and 30% testing data, and it is acquired

from the CoAgMet weather station[9].

Fig. 4.2 The proposed ensemble framework for forecasting of crop

water demand

Figure 4.2 shows the working of the proposed ensemble framework for the

forecasting of crop water demand. Models with best performance were

selected for the proposed stack based ensemble learning.
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Table 4.5 Different performance metrics that are tested against our proposed

model.

S. No. Performance metrics Performance measure value

1 MAE 0.3421

2 MSE 0.2218

3 RMSE 0.4639

4 R2 percentage 96.89

5 MAPE 0.2261

Table 4.6 Comparison of the performance of various models with the

proposed model

S. No. Model R2

1 Extra Trees Regressor 0.9648

2 Random Forest Regressor 0.9608

3 Extreme Gradient Boosting 0.9606

4 Gradient Boosting Regressor 0.9624

5 Decision Tree Regressor 0.9412

6 K Neighbours Regressor 0.9082

7 Proposed Model 0.9655
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Table 4.6 shows the comparison of various pre-existing models with our

proposed model. It can be clearly seen that our proposed model has shown

slight increase in the overall performance.

Fig. 4.3 Measure of how well our proposed framework predicts the response
variable.
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Chapter - 5 CONCLUSION

5.1 Conclusions

This study offers a computational framework based on machine learning for

accurately forecasting crop water needs. The suggested framework was

successful in predicting plants' needs for water for the best possible growth.

Additionally, ensemble learning promotes diversity among foundational

learners, improving prediction accuracy. Utilize the coefficient of

determination (R2), mean square error (MSE), mean absolute error (MAE),

RMSE (Root mean square error), and mean absolute percentage error (MAPE)

to assess the effectiveness of each strategy. A single reference data set is used

for both training and testing all algorithms. When developing tools for

forecasting crop water demand, the majority of current strategies neglect the

importance of taking into consideration the diversity of data and skewed data.

I developed a number of baseline models, however for stacking reasons, the

most accurate models were selected since ensemble modeling increases the

variety of the forecasts. R2 is the metric I initially used to evaluate models.

Table 4.6 displays the coefficients for all the models that were used. To

provide even better predictions, the top four performing models - extreme

gradient boosting, random forest regressor, gradient boosting regressor, and

extra tree regressor are stacked. In addition, I evaluated the algorithm's

performance using a number of metrics, such as R2, MAE, MSE, RMSE, and

MAPE. The comparison of several machine learning algorithms with the

suggested approach is depicted visually in Figure 5.1. We used these models

of regression to achieve a 96.55% R2 percentage. For comparisons with other

algorithms, we also calculated MSE, MAE, and RMSE, as given in table 4.5.

We added diversity and multiplicity to our model with the aid of an ensemble
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model. Additionally, stacked-based models add assortment, which means there

is a chance that another model used in the ensemble will correctly determine

the same feature if an individual model makes an inaccurate prediction about

it. The evapotranspiration (ET) of crops could be predicted with the use of the

proposed framework. The ensemble learning increases the variety of the base

learners, which enhances prediction accuracy. Performance indicators such as

the R2, MSE, MAE, RMSE, and MAPE are used to evaluate the effectiveness

of each method. The bulk of other approaches do not employ stacking

techniques to ensemble numerous models to forecast agricultural water needs

while constructing prediction tools.

Fig. 5.1 Comparison of various existing models with our proposed model
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Fig. 5.2 Comparison of R2 values of the proposed model with the existing literature

5.2 Contributions

I've utilized 10-fold cross validation in this framework to get around the issue

of an overfitting training dataset. The other authors I've cited have all

employed a maximum of three folds.

The suggested methodology uses stacking-based ensemble learning to increase

the classifier's diversity. It improves the precision of crop water demand

predictions (ET crop).
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The proposed framework outperformed other authors who worked on similar

projects for predicting the crop water demand when performance was

contrasted with previous research on the foundation of R2 score, MAE, MSE,

and RMSE.
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Appendices

Fig. (i) Calculating total null values

Fig. (ii) Dataset information
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Fig. (iii) ET(crop) vs max. and min. temperature
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Fig. (iv) Proposed model

Fig. (v) Gradient boosting regression
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Fig. (vi) Random forest regressor

Fig. (vii) Extreme gradient boosting
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Fig. (viii) Extra tree regressor
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