
FOOD DELIVERY APPLICATION USING MERN STACK

Project report submitted in partial fulfilment of the requirement for
the degree of Bachelor of Technology

in

Computer Science and Engineering

by

Manan Mehta [191386]

under the supervision of

Dr Vipul Kumar Sharma

to

Department of Computer Science & Engineering
and Information Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

Certificate

Candidate’s Declaration

I hereby declare that the work presented in this report entitled Food Delivery Application

using MERN Stack in partial fulfilment of the requirements for the award of the degree of

Bachelor of Technology in Computer Science and Engineering/Information Technology

submitted in the Department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology, Waknaghat is an authentic

record of my work carried out over a period from July 2022 to May 2023 under the

supervision of Dr Vipul Kumar Sharma, Assistant Professor (Senior Grade).

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

(Student Signature)
Manan Mehta, 191386

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)
Dr Vipul Kumar Sharma
Assistant Professor (Senior Grade)
Computer Science & Engineering and Information Technology

Dated: 15 May 2023

I

Plagiarism Certificate

I

Acknowledgement

Firstly, I express my heartiest thanks and gratefulness to almighty God for his divine blessing

in making it possible to complete the project work successfully.

I am grateful and wish our profound indebtedness to Supervisor Dr Vipul Kumar Sharma,

Assistant Professor (Senior Grade), Department of Computer Science and Engineering,

Jaypee University of Information Technology, Solan. The deep knowledge & keen interest

of my supervisor in the field of ‘Web Development’ helped us to carry out this project. His

endless patience, scholarly guidance, continual encouragement, constant and energetic

supervision, constructive criticism, valuable advice, reading many inferior drafts and

correcting them at all stages have made it possible to complete this project.

I am also grateful to my mentors- Utkarsh Singhal (Software Developer), Shivani Premi

(Software Developer), Varun Kapoor (Full-Stack Lead), and Team Lead- Anand

Bhargava (VP Engineering and Product Strategy) at Paxcom India Pvt. Ltd - A

Paymentus Company, for their guidance, support and encouragement throughout our

development training period and for the successful completion of this project. I thank my

team members for assisting me and helping me in times when I got stuck and had no clue on

how to proceed during the development time.

I would also generously welcome each one of those individuals who have helped us

straightforwardly or in a roundabout way in making this project a win. In this unique

situation, I might want to thank the various staff individuals, both educating and

non-instructing, which have developed their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patience of our

parents.

Manan Mehta

[191386]

II

Table Of Contents

Title Page No.
Certificate I
Acknowledgement II
Table of Contents III
List of Figures IV
Abstract V
Chapter-1 Introduction 1-11
Chapter-2 Literature Survey 12-13
Chapter-3 System Development 14-43
Chapter-4 Performance Analysis 44-46
Chapter-5 Conclusion 47-48
References 49-51
Appendix 52-72

III

List of Figures

Figure Page No.
Figure 1: Integration of MERN
Stack

6

Figure 2: React
Component-based Development

18

Figure 3: React Hooks Flow 25
Figure 4: Node.js and Google’s
V8 Engine

27

Figure 5: HTTP Header 30
Figure 6: HTTP Status Codes 33
Figure 7: HTTP Methods 34
Figure 8: HTTP
Request/Response Cycle

35

Figure 9: REST APIs 36
Figure 10: CORS 40

IV

Abstract

This project report presents the development and implementation of a Food Delivery

Application utilizing the MERN stack (MongoDB, Express.js, React.js, and Node.js).

The purpose of this project was to create a user-friendly and efficient platform that

connects customers with the Pizza Restaurant, providing a convenient food ordering and

delivery experience.

The objectives of the project include designing an intuitive user interface, implementing a

robust backend system, and ensuring data security. The MERN stack was chosen for its

versatility, scalability, and ability to handle complex web applications.

The development process is detailed, starting with the database design using MongoDB

to store user information and order details. The backend system was built using Node.js

and Express.js, providing a RESTful API for handling various operations such as user

authentication and order processing.

The front-end development was accomplished using React.js, focusing on creating a

responsive and interactive user interface. Customers can view menus and place orders.

The report discusses the technical challenges faced during the development process and

the corresponding solutions implemented.

In conclusion, the Food Delivery Application developed using the MERN stack

demonstrates the successful implementation of a feature-rich platform that facilitates

seamless food ordering and delivery services. The utilization of modern web technologies

and robust development methodologies ensures a user-friendly experience while meeting

the demands of both customers and restaurant owners.

V

CHAPTER 1
INTRODUCTION

1.1 Introduction

Building modern and dynamic online apps now necessitates a strong grasp of web

development. The MERN stack is a well-known and powerful mix of technologies that

enables programmers to create extremely scalable and successful online applications. In this

introduction, the components of the MERN stack will be covered, as well as their

significance in web development.

The MERN stack is comprised of MongoDB, Express, React, and Node.js. Each component

is critical to the development process and aids in the overall operation and execution of the

web application.

1. MongoDB: MongoDB is a NoSQL database that employs an adaptive document-based

data model. It saves data as JSON-like documents, making it simple to integrate and alter

data within the application. Because of its scalability and ability to handle massive amounts

of data, MongoDB is the best solution for web applications that require dynamic data storage.

2. Express.js: Express.js is a simple and versatile Node.js web application framework. It

provides a comprehensive set of API and web app development tools and information.

Express.js makes it simpler to manage routes, process requests and responses, and build

middleware. It is extremely adaptable and effective for developing web apps due to its

lightweight and modular architecture.

3. React.js: React.js is a JavaScript library for developing user interfaces. It allows for the

design of reusable UI components as well as their effective updating and rendering in

response to data changes. React.js' component-based architecture promotes reuse, modularity,

and maintainability. It also has a virtual DOM (Document Object Model) for increased

performance and rendering.

1

4. Node.js: Node.js is a JavaScript server-side runtime environment that allows programmers

to run JavaScript code outside of a web browser. Its event-driven, non-blocking design makes

it exceptionally scalable and excellent at managing several requests at once. Because it

provides server-side scripting, file system operations, and network connectivity, Node.js is an

excellent choice for building the backend of websites.

Image 1: MERN stack

These technologies work together to create a comprehensive web development solution.

MongoDB handles the database layer, Express.js handles the backend and routing, React.js

handles the frontend user interface, and Node.js handles the server-side runtime environment.

The MERN stack provides various advantages to web developers. It provides a single

JavaScript-based development environment that allows frontend and backend components to

connect seamlessly. Components of React.js may be reused, which speeds up development

and increases maintainability. Furthermore, the scalability and adaptability of MongoDB with

Node.js enable for the efficient processing of enormous amounts of data and concurrent

queries.

Finally, the MERN stack offers a stable and fast platform for web development. It integrates

MongoDB, Express.js, React.js, and Node.js to develop full-stack, scalable online apps.

2

1.2 Problem Statement

A persistent need for effective and scalable technologies that allow for the construction of

contemporary and dynamic web applications exists in the field of web development. The

conventional method of using several technologies for various web development tasks

frequently results in complexity, inefficiency, and integration difficulties.

The issue at hand is the requirement for a thorough and coherent framework that simplifies

web development from front-end to back-end while guaranteeing great speed, scalability, and

maintainability. The absence of a cohesive approach frequently reduces developer

productivity, lengthens the development process, and limits their capacity to quickly adjust to

changing project needs.

Additionally, developers who need to migrate between several technologies frequently have

compatibility problems and a high learning curve as a result of the lack of a standardised

stack. In addition to raising development costs, this makes it more difficult to maintain and

update online applications over time.

The MERN stack, which consists of MongoDB, Express, React, and Node.js, offers a

potential remedy for these problems. By using the advantages of these technologies, the

problem of fragmented and inefficient web development may be resolved. However, it is vital

to recognise and comprehend the precise problems and challenges that developers deal with

while using conventional web development techniques.

Some of the key issues that need to be addressed include

1. Fragmented Development Environment: Developers frequently use many frameworks

and programming languages for various web development tasks, creating a confusing and

complex environment.

2. Integration Issues: Integrating several technologies, databases, and frameworks can be

difficult and time-consuming, which can cause compatibility problems and reduce the speed

of development.

3

3. Scalability and Performance Limitations: Conventional techniques to web development

could not offer the performance and scalability needed to handle massive volumes of data and

concurrent queries.

4. Lack of Reusability: Unreliable code reuse causes duplication of work during

development and raises the risk of mistakes and problems.

5. Steep Learning Curve: The requirement for developers to learn and adapt to a variety of

technologies, each with its syntax and conventions, can impede productivity and slow down

the development process.

By addressing these issues and creating a comprehensive solution utilising the MERN stack,

web development productivity will be much improved, developer cooperation will be

improved, and the process of creating contemporary, scalable, and high-performance online

apps will be streamlined.

4

1.3 Objectives

Objectives of Enhancing Web Development Efficiency using the MERN Stack:

1. To provide a complete framework that unifies all aspects of web development, from front

end to back end, and ensures excellent performance, scalability, and maintainability.

2. To provide a unified solution that makes use of the capabilities of MongoDB, Express.js,

React.js, and Node.js to address the problem of fragmented and inefficient web development.

3. To offer a standardised stack that streamlines development efforts, lessens integration

difficulties, and boosts developer productivity.

4. To increase the reuse of code by encouraging the usage of reusable React.js components,

which will cut down on duplicative development work and improve maintainability.

5. To offer a flexible and effective solution that can manage several concurrent requests and

big volumes of data, to satisfy the requirements of contemporary online applications.

6. To increase developer productivity and teamwork by offering a single programming

environment with standardised syntax and conventions, which will lower the learning curve

for developers.

7. To provide a long-term updateable and maintainable system that offers a sustainable and

forward-looking method for web development.

The overall goal of this project is to increase web development productivity and address the

difficulties that developers have while using conventional web development techniques. We

strive to offer a complete and scalable solution that streamlines the development process,

boosts productivity, and assures excellent performance and maintainability of contemporary

web applications by using the MERN stack.

5

1.4 Methodology

Methodology for Enhancing Web Development Efficiency using the MERN Stack:

● Needs analysis: Conduct a comprehensive requirements analysis to pinpoint the

particular difficulties and pain points that developers have while using conventional

web development techniques. This will assist in outlining the project's needs and

goals.

● Framework Design: Design a thorough and well-rounded framework that makes use

of the MERN stack to offer a combined frontend and backend development solution.

This framework will assure excellent performance, scalability, and maintainability

while addressing the highlighted pain areas.

● Development: Using the MERN stack, put the planned framework into use while

making sure best practices and standards are followed. Create reusable React.js

components to encourage the reuse of code and cut down on development time. To

guarantee great performance, scalability, and reliability, test the designed solution.

● Integration: To ensure compatibility and lessen integration issues, integrate the

generated solution with other pertinent technologies, databases, and frameworks.

Figure 1: Integration of MERN stack.

6

● Deployment: Put the designed solution into production, assuring scalability,

dependability, and security. Load-test the solution to ensure that it can handle big

volumes of data and concurrent requests.

● Training: Provide developers with training and assistance so that they can use the

generated solution efficiently. This will shorten the learning curve while increasing

developer productivity and cooperation.

● Maintenance and updates: Maintain and update the produced solution continuously

to ensure that it stays current and relevant. This will give a long-term and

forward-thinking approach to web development.

Overall, the goal of this technique is to provide a comprehensive and coherent solution that

streamlines web development, increases efficiency, and assures excellent performance and

maintainability of modern online applications utilising the MERN stack. To provide a

sustainable and future-proof approach to web development, the methodology emphasizes best

practices, adherence to standards, and continuing repairs and improvements.

7

1.5 Organisation

This project report is divided into five distinct chapters, each of which is explained below

Chapter 1: Chapter 1 presents an overview of our project, the issue statement that acts as the

foundation for our project, our primary project goals, and the approach or solution that was

executed. In this project, we intend to increase web development efficiency by leveraging the

MERN stack, a comprehensive and unified solution for modern web development. We seek to

address the fragmented and inefficient web development process, which can lead to poor

performance, scalability, and maintainability. Our objectives are to create a standardised and

scalable solution that avoids superfluous development efforts, increases productivity, and

delivers good performance and maintainability. Conducting a complete needs analysis,

building a comprehensive framework, developing the solution using best practices and

standards, integrating and delivering the solution, providing training and support, and

guaranteeing continuous maintenance and upgrades are all part of our approach. Overall, the

goal of this project is to create a sustainable and future-proof approach to web development

that tackles developer difficulties while improving efficiency, productivity, and cooperation.

Chapter 2: This literature study looks at several elements of developing a food delivery

application with the MERN stack. Because of its versatility, scalability, and ease of use, the

MERN stack, which includes MongoDB, Express, React, and Node.js, is a popular choice for

web application development. This research examines the literature to identify the essential

components and technologies utilised in a food delivery application developed with the

MERN stack, as well as best practices for their implementation.

The backend, which is responsible for managing user requests, data storage, and business

logic, is one of the most important components of a meal delivery programme. Node.js and

Express are common solutions for constructing the application's backend. Combining Node.js

and Express with MongoDB, according to the literature, leads to a reliable and scalable

backend architecture. Because Node.js enables non-blocking I/O, it is an excellent choice for

designing server-side applications. Express, on the other hand, is a lightweight and versatile

web application framework that makes creating RESTful APIs easy. Using MongoDB as the

database for the application allows for efficient and scalable data storage and retrieval.

8

In addition to the back-end, the front-end of the software is critical. React is a popular choice

for developing the application's front-end. React enables you to design reusable user interface

components declaratively and quickly. It also enables state management, making it easy to

manage application data and user interface state.

To control user input and data delivery, the literature suggests using HTTP methods and

REST APIs. HTTP methods such as GET, POST, PUT, and delete are frequently used to

retrieve, produce, update, and remove data. REST APIs standardise data access and

manipulation, making application design and maintenance easier.

In addition to the technologies indicated above, the literature suggests using a variety of other

libraries and frameworks to enhance the capabilities of the application. Body-parser is a

middleware that parses incoming request bodies, making it easier to manage form input and

JSON payloads. Cors is a middleware that enables the server to receive and respond to

requests from other domains by enabling cross-origin resource sharing. React Router is a

framework that provides React with routing capabilities, allowing for simple navigation

between application pages.

Overall, the study demonstrates that using the MERN stack to build a food delivery service

provides a scalable and customizable architecture. The usage of Node.js and Express on the

backend, React on the front-end, and MongoDB on the database allows for fast data storage,

retrieval, and processing.

Chapter 3: The chapter summarises the system development and architecture. The MERN

(MongoDB, Express.js, React.js, and Node.js) stack was used to create a web-based meal

delivery application. The application's goal is to allow users to purchase meals from a

restaurant and have them delivered to their preferred location.

The system is designed to be user-friendly and easy to use. The home page of the application

displays the website's landing page. Users may view the menu by selecting the Menu button

and then the things they want to order. After making their selections, customers can move to

the checkout page to complete their orders. Users can register and submit personal

information and preferences.

9

The backend of the application is built utilising Node.js and Express.js. It handles

communication between the front end and the MongoDB database. Menu items, users, and

orders are all stored in the database.

The front end of the application is built with React.js. It communicates with the backend via

HTTP requests and displays the information collected from the server understandably. The

user interface is designed to be responsive and usable on a variety of platforms, including

smartphones, tablets, and desktop computers.

Various software testing methodologies were used during the development process to ensure

that the application worked as expected. Test cases covered all aspects of the software,

including user authentication, order processing, and database interfaces.

Overall, the built system is a functioning and user-friendly meal delivery application that

allows users to order food from their favourite restaurants in a simple manner. The

application is created with the MERN stack in mind, with an emphasis on security,

responsiveness, and usability in mind. The programme, with its varied features and testing

methods, is well-equipped to suit the demands of both users and restaurant owners.

Chapter 4: By documenting the tests that were carried out and the results that were achieved

at different stages of the project, this chapter of the report gives a detailed picture of the

software's accuracy.

The purpose of the experiment was to evaluate how well the MERN stack-based food

delivery application worked. The test bed configuration included running the application on a

local server and carrying out various user operations including joining up, logging in, adding

items to the cart, and placing orders.

In the beginning, system analysis was done analytically, with the code being checked for

errors and inconsistencies. This technique made it easier to find and fix programming flaws

of a minor nature. The second method was experimental, involving a variety of user

behaviours with documented outcomes.

10

The results obtained at various stages of the experiment were contrasted with the behaviours

anticipated by the application. The result included successful registration and login, accurate

menu and restaurant information presentation, successful cart filling, and successful order

placement at various stages.

The program's features and elements underwent testing to ensure they functioned as intended.

This required putting the various API endpoints to the test and ensuring that the necessary

outcomes were obtained. To study how different components interacted and ensure that they

operated in concert, integration testing was done. This involved analysing the data flow

between the front-end and back-end parts of the application. The application was put through

acceptance testing to make sure it worked as intended and adhered to the design

requirements. This required evaluating the software from the user's point of view and making

sure that all user activities were effective.

The test findings demonstrated that, for the most part, the application was operating as

anticipated. However, certain problems were found during testing, including sluggish loading

times, sporadic server faults, and inaccurate order history display. These problems were

located, corrected, and the programme was tested again to make sure the improvements

worked.

Chapter 5: This chapter concludes and summarises the entire project. The MERN

stack-based food delivery solution is very efficient, scalable, and secure. Multiple testing

approaches, including software testing, experimental testing, and analytical testing, were used

to demonstrate the system's robustness. The app's future potential is tremendous, and it may

be enhanced with features like machine learning algorithms, real-time tracking of delivery

agents, and support for several languages and currencies. The use of the MERN stack by the

application proved to be a successful and efficient method of constructing a scalable and

robust system.

11

CHAPTER 2
LITERATURE SURVEY

The well-known MERN stack for web development consists of four technologies: MongoDB,

Express.js, React.js, and Node.js. This stack is well-known for its versatility, efficacy, and

usefulness. One of the primary advantages of utilising the MERN stack is that programmers

may construct full-stack web apps using only JavaScript. In this review of the literature, we'll

look at various facets of creating a web application with the MERN stack, such as setting up

the environment for development, sending data from React to Node.js, utilising middleware

like body-parser in Express.js, fetching data in React, handling post requests in Express.js,

and connecting to a MongoDB database.

Developers may use a variety of online instructions to build up the development environment

for a web application using the MERN stack. The procedures to link React and Node.js are

described in one such tutorial, available at codedamn.com. The usage of package.json to

manage dependencies and concurrently to execute the front end and back end simultaneously

are highlighted in this guide.

There are numerous ways to accomplish the frequent need of sending data from React to

Node.js in web development. One tutorial (tutsmake.com) explains how to use Axios to

transmit data from React to a Node.js server via an HTTP POST request. It also describes

how to parse the request body using the Express.js middleware body-parser.

Express.js's robust middleware capability enables developers to extend the server's

capabilities. The usage of the body-parser middleware in Express.js is described in one article

on Stack Overflow (stackoverflow.com). Before the handlers, this middleware is used to

process incoming request bodies.

To update the front-end with fresh data, it is usual practice in web development to retrieve

data from a server. One tutorial (developerway.com) describes how to utilise React's fetch

API to get data from a server. Additionally, it explains how asynchronous functions are used

and guarantees that the response data will be handled.

12

Express.js's post-request handling is a crucial component of server-side web development.

How to handle post requests in Express.js and deliver a response to the client is covered in

one article on Stack Overflow. This post also describes how to handle asynchronous activities

by using the async/await syntax.

Using the MERN stack to construct a website requires connecting to a MongoDB database.

The procedures to set up an Express.js server with a MongoDB database are described in one

tutorial at (mongodb.com). It also teaches how to build models for MongoDB collections

using the Mongoose library.

There are some tips and tactics for developers in addition to the technical elements of web

development utilising the MERN stack. How to duplicate a multidimensional array in

JavaScript is described in one article on Stack Overflow. The usage of Axios to send HTTP

requests in React is covered in another article on zetcode.com. On Telerik's website, there are

lessons on how to build dynamic forms.

Last but not least, there are some online resources you can utilise to learn more about React

Router, the tool used to manage navigation in a React application. Resources for upgrading to

React Router v6 are also available at reactrouter.com as well as React Router's ability to

transmit data across pages.

In conclusion, there are many online resources for learning how to utilise the MERN stack,

which is a potent technological stack for developing web applications.

13

CHAPTER 3
SYSTEM DEVELOPMENT

3.1 Analysis
An online platform that links businesses and customers, a meal delivery application enables

users to purchase food from the restaurant of their choice and have it delivered right to their

homes. The programme will primarily consist of three parts: a database, an API server, and a

web-based client. The application needs to be user-friendly, safe, and scalable.

3.2 Design
The MERN (MongoDB, Express, React, Node.js) stack, which offers a strong and adaptable

environment for developing scalable online applications, will be used to construct the

application. The database used to store restaurant and customer data will be MongoDB. The

backend API server, which manages requests and answers between the database and

front-end, will be constructed using Express. Customers will be able to explore and order

meals from the restaurant thanks to a responsive and user-friendly frontend that will be built

using React. The backend server will operate on Node.js.

3.3 Development
The application will have the following features:

1. User Authentication - Customers will be required to register and log in to access

the application.

2.Menu Management - Customers will be able to browse through the menu.

3. Cart and Checkout - Customers will be able to add items to the cart and checkout

using different payment methods.

4. Order Management - Restaurants will be able to view and manage orders and

their status.

14

3.4 Algorithm
The algorithm steps are as follows:

1. Create the database schema for the food delivery app.

2. Configure the Express server with the necessary middleware (body-parser and

CORS).

3. Use Express to create the server's endpoints for handling HTTP requests and

responses.

4. Integrate the MongoDB JS driver with the Express server to allow the application

to communicate with the database.

5. Implement the server-side logic for creating, reading, updating, and deleting data in

the database based on the HTTP requests.

6. Create a React application with the necessary components to display the food items

and allow users to place orders.

7. Use React Router DOM to create the routes for the different pages of the

application.

8. Use useState, useEffect, and useLocation hooks in React to handle state

management, data fetching, and navigation between pages.

9. Implement the logic for placing orders in the React application and sending the

order details to the server via HTTP requests.

10. Display the order confirmation and update the order status in the database using

the server-side logic.

11. Use JSON for data exchange between the client and server to ensure consistency

and compatibility.

12. Test the application thoroughly to ensure that it works as expected and handles

any potential errors or exceptions.

The main stages necessary to create a food delivery application utilising the MERN stack are

summarised in this algorithm. The database schema must be designed, the server and

endpoints must be configured, the database driver must be integrated, and the server-side and

client-side logic must be put into place. The construction of this application relies heavily on

the use of React, React Router DOM, useState, useEffect, useLocation, JSON, Express,

body-parser, CORS, and MongoDB JS driver.

15

3.5 Model Development

3.5.1 MongoDB

A common NoSQL database management system, MongoDB, is utilised in many

contemporary online apps, including those that serve meals. One of MongoDB's key benefits

is its capacity for document-based data storage, which makes it the perfect option for

applications requiring dynamic schema structures.

MongoDB may be used to store a variety of data types in the context of a meal delivery

application, including user profiles, orders, menus, and reviews. Each data item is represented

as a document, a data structure akin to JSON that supports many fields of various types and

values. As a result, sophisticated SQL queries and rigid schema structures are not a concern

for developers when storing and retrieving complex data items.

Image 2: MongoDB

Additionally, MongoDB has strong querying and indexing features that let developers easily

access data and run sophisticated searches with a simple syntax. MongoDB may be used by a

food delivery service, for instance, to discover all restaurants that provide a given cuisine or

to retrieve all orders placed by a single user.

Because of MongoDB's automatic sharding and replication features, flexibility, and querying

power, developers can easily scale their applications as data volume grows. Encryption,

access control, and authentication are just a few of the security capabilities that MongoDB

offers to help protect the data stored in the database.

16

Overall, MongoDB is a strong and adaptable database management system that is suitable for

cutting-edge online applications like those for food delivery. It is a popular option for

developers that need to create reliable and scalable applications because of its capacity to

store and retrieve complex data items in a flexible and scalable manner and its strong

searching and indexing capabilities.

3.5.2 React.js

A well-liked JavaScript library for creating user interfaces is React.js. It was created by

Facebook, and a sizable development community is now responsible for maintaining it. React

was used to develop the front-end of the application, which is the user-facing portion of the

programme, in the context of the food delivery application.

React offers a collection of components and features that make it simple to construct intricate

user experiences rapidly. It makes use of a component-based design, which implies that the

user interface is composed of simple, interchangeable parts that may be joined to produce

more intricate interfaces.

Image 3: React.js

17

To control the UI's state, React additionally makes use of a virtual DOM (Document Object

Model). Because of this, React can refresh the UI quickly when the state changes without

needing to reload the website.

Figure 2: React Component-based Development

The seamless user experience that React offers makes it one of the most advantageous

technologies to utilise in a food delivery service. React's component-based architecture

makes it simple to construct and reuse UI elements, and its virtual DOM enables quick and

effective UI modifications. This may lead to an application that is quicker and more

responsive and offers a better user experience.

In a food delivery app using the MERN stack, several components are essential to providing a

smooth user experience. These components include the home, menu, checkout, navigation,

pizza, and sign-up components.

● The user opens the app, and the first screen they see is the home screen. A list of the

app's features and a description of any highlighted goods and current promotions may

be included.

● The user's order summary is shown and the payment procedure is managed by the

checkout component. It may have supporting elements like a form for inputting

payment information, a form for choosing an address, and a confirmation page.

18

● The app's options are shown in the menu component. This element may be created

with search bars, filter choices, and sorting capabilities.

● The navigation feature, which offers connections to various sites and enables simple

navigation, is an essential aspect of the app's user experience. Links to the home page,

menu, and checkout may also be present, along with a logo.

● The pizza component is a reusable component that renders a pizza HTML div with the

options to add to the cart as well as the size, quantity, and price of the pizza. It enables

simple ordering and pizza customization and may be used in both the menu and

checkout sections.

● The registration feature also enables users to log in and establish an account. It may

also have supporting elements like a form for entering payment information, a form

for entering personal information, and a confirmation screen.

Developers may combine functional and class components with React hooks like useState,

useEffect, and useContext to build these components in React. For instance, the useState

hook and a functional component may be used to regulate the number and size of the pizza

component. When given props like the name, cost, and toppings of the pizza, the component

may utilise these to render the pizza div with the necessary information. A useContext hook

may be used to access the app's global state and update the user's cart to implement the

add-to-cart feature. The componentDidMount and componentDidUpdate lifecycle methods

may be used to manage form validation and submission when building the signup component,

which can also be generated using a class component. The component may conduct HTTP

queries to the app's backend and store user data in a database using a library like Axios. In

conclusion, leveraging the MERN stack to build components for a food delivery service

needs a blend of technical know-how, design proficiency, and user experience understanding.

A flawless and delightful user experience depends on the checkout, home, menu, navigation,

pizza, and registration features. Developers may design these components quickly and

effectively with the use of React's functional and class components, hooks, and libraries like

axios.

19

3.5.2.1 React Hooks

React Hooks are an essential part of modern React development, enabling developers to

manage state and lifecycle events in functional components.

In this section, we will discuss how to use React hooks in a food delivery app built using the

MERN stack:

❖ useState Hook: Utilising the useState hook, we can include the state in functional

components. It accepts an argument representing the initial state value and returns an

array containing the current state value and a function to update the state value. The

user's cart, menu items, and personal information can all be managed in the food

delivery app by using the useState hook.

Example:

import React, { useState } from 'react';

function Counter() {

const [count, setCount] = useState(0);

return (

<div>

<p>You clicked {count} times</p>

<button onClick={() => setCount(count + 1)}>

Click me

</button>

</div>

);

}

In this example, we're defining a functional element with the name Counter. We're

creating a state variable named count and a method called setCount to update it within

the component using the useState hook. Using the input (in this example, 0) supplied

to useState, we initialise the count to 0. After that, we provide back some JSX that

displays the count's current number and a button that, when clicked, runs setCount

20

with a new value (in this example, one) to update the count. React will re-render the

component with the modified state each time setCount is invoked. As a result, we may

create dynamic user interfaces that change in reaction to user inputs.

❖ useLocation Hook: The current location object, which includes details about the

current URL, is returned by the useLocation hook. It may be used to extract data from

the URL, including the current route, query arguments, and other details. The

useLocation hook may be used in the food delivery app to display the relevant

components based on the current route.

Example:

import { useLocation } from 'react-router-dom';

function MyComponent() {

const location = useLocation();

return (

<div>

<h2>Current Path: {location.pathname}</h2>

</div>

);

}

The useLocation hook is imported from the react-router-dom package in the

aforementioned example. The component's current position is then obtained using it.

The location path name is used to get the current path, which is subsequently shown

in the component. The component will re-render with the new route if the location

changes.

❖ useNavigate Hook:We can browse various app pages programmatically thanks to the

useNavigate hook. It produces a navigate function that we may call with the route we

want to travel to and takes no parameters. After the customer adds goods to their

basket in the food delivery app, we can use the useNavigate hook to browse to the

checkout page.

21

Example:

import { useNavigate } from 'react-router-dom';

function MyComponent() {

const navigate = useNavigate();

function handleClick() {

navigate('/some-route');

}

return (

<div>

<button onClick={handleClick}>Go to some route</button>

</div>

);

}

The useNavigate hook is imported from react-router-dom in this example. It is then

used to build a navigation function that can be used to browse different paths inside

the application. When the button is pressed, the navigate method is run within the

MyComponent function. The navigate function receives the '/some-route' parameter,

which specifies the path to take. When the button is pressed, the handleClick function

is invoked, which then invokes the navigate method with the chosen path. The user is

subsequently sent to the application's selected route. Overall, the useNavigate hook

makes it simple to switch between routes in a React application..

❖ useEffect Hook: The useEffect hook is used in functional components to manage side

effects such as obtaining data or changing the DOM. It accepts as an argument a

callback function and executes it after each render. We may also provide

dependencies, causing the effect to occur only when those dependencies change. We

can use the useEffect hook in the food delivery app to get menu items from the server

and update the DOM after the user adds goods to their basket.

22

Example:

import React, { useState, useEffect } from 'react';

const ExampleComponent = () => {

const [count, setCount] = useState(0);

useEffect(() => {

document.title = `Count is: ${count}`;

}, [count]);

const handleClick = () => {

setCount(count + 1);

};

return (

<div>

<h1>Count: {count}</h1>

<button onClick={handleClick}>Click me</button>

</div>

);

};

export default ExampleComponent;

In this illustration, a functional component creates a state variable named count by

using the useState hook. Every time the count state changes, we additionally update

the document title using the useEffect hook. To instruct useEffect to execute the effect

only when counting changes, we give [count] as the second argument. Every time the

button is clicked, the handleClick function modifies the count state, which causes the

useEffect hook to update the document title with the new count value. Overall, the

useEffect hook gives us the ability to carry out side effects in response to state

changes in our component, such as altering the document title.

23

An example illustrating the use of all hooks is given below:

import React, { useState, useEffect } from 'react';
import { useLocation, useNavigate } from 'react-router-dom';
import axios from 'axios';

function Menu() {
const [menuItems, setMenuItems] = useState([]);
const location = useLocation();
const navigate = useNavigate();

useEffect(() => {
axios.get('/api/menuItems')
.then(response => setMenuItems(response.data))
.catch(error => console.error(error));

}, []);

const handleAddToCart = (item) => {
// add item to cart
navigate('/cart');

};

return (
<div>
<h1>Menu</h1>
{menuItems.map(item => (
<div key={item.id}>
<h2>{item.name}</h2>
<p>{item.description}</p>
<p>Price: {item.price}</p>

<button onClick={() => handleAddToCart(item)}>Add to
Cart</button>

</div>
))}

</div>
);

}

export default Menu;

In the example above, we managed the state of the menu items array using the useState hook.

When the component mounts, we have retrieved menu items from the server using the

useEffect hook. Additionally, the useLocation hook and the useNavigate hook were used to

24

obtain the current path and, respectively, to go to the cart page once the user added items to

their cart.

Figure 3: React Hooks Flow

In conclusion, the front-end of the food delivery service was created using the potent

JavaScript package React.js. A crucial advantage for any application that requires dynamic

modifications to the UI is its ability to create a seamless user experience. Its

component-based design and virtual DOM make it simple to construct sophisticated user

interfaces fast and effectively.

3.5.3 Express.js

Express.js is a powerful Node.js web application framework that is used to build the backend

of web apps like the meal delivery service. It is a popular choice for designing APIs due to its

simplicity and adaptability. Express.js is a simple API that allows developers to create routes,

process HTTP requests and responses, and specify middleware.

In the food delivery business, Express.js is utilised to provide a RESTful API that

communicates with the front-end application built with React.js. The API handles client-side

requests, communicates with the database, and returns information to the front end. It allows

the programme to be scalable, efficient, and easy to maintain.

25

Image 4: Express.js

Express.js relies heavily on middleware. Middleware functions are those that execute

between the request and the response in an application's request-response cycle. They can be

used for a variety of purposes, such as logging, authentication, and error management. In the

food delivery application, middleware is used to manage authentication, validate input data,

and handle errors.

Another important aspect of Express.js is its ability to execute HTTP requests. It supports all

HTTP methods, including GET, POST, PUT, and DELETE, providing it with extensive

functionality. In the food delivery application, GET queries are used to retrieve data from the

database, POST requests are used to produce new data, PUT requests are used to update data,

and destroy requests are used to delete data.

Overall, Express.js is a strong and versatile online application framework that is excellent for

building the backend of web apps like the food delivery service. It is a popular choice among

developers because of its ease of use, scalability, and flexibility.

3.5.4 Node.js

A prominent server-side JavaScript runtime environment for building scalable and fast web

applications is Node.js. It is an open-source platform built on the V8 JavaScript engine found

in Google Chrome. Node.js's lightweight architecture and quick performance make it a

popular choice for building web apps.

26

Figure 4: Node.js and Google’s V8 Engine

The food delivery programme uses Node.js as the server-side runtime environment to handle

tasks including accepting and responding to HTTP requests, corresponding with the database,

and managing the general workflow of the service. For real-time applications that need high

concurrency and scalability, Node.js is the best choice.

Image 5: Node.js

27

The food delivery service uses Express.js, one of the many modules and frameworks found in

the Node.js ecosystem. Express.js is a web framework for Node.js that provides a

straightforward and flexible API for creating online apps and APIs. It contains several

capabilities that make it easier to construct scalable and modular applications, including

routing, middleware, and template engines.

One of the main advantages of using Node.js in the food delivery business is its ability to

handle several concurrent connections. Because Node.js uses event-driven, non-blocking I/O,

it can handle several requests concurrently without overloading the main event loop. It is

hence suitable for real-time applications that need high concurrency and low latency.

In conclusion, Node.js is a well-liked framework for creating performant and scalable internet

applications. It is a great choice for food delivery systems due to its speed, lightweight

design, and a wide ecosystem of libraries and frameworks. Due to its event-driven,

non-blocking I/O architecture, Node.js can support a large number of concurrent connections,

making it suitable for real-time applications.

3.5.5 Hyper Text Transfer Protocol

The application protocol known as HTTP, or Hypertext Transfer Protocol, is used to

communicate between web servers and clients. The World Wide Web's data transmission is

built on this basis. HTTP specifies the structure and transmission of messages as well as the

responses that web servers and browsers should provide to various requests.

An HTTP request typically consists of a client request and a server response. The server

receives an HTTP request from the client and sends back an HTTP response. Headers and a

message body are both parts of the request and response messages. The headers include

details about the request or response, including the kind of material being delivered and how

much of it there is. The actual data being communicated is included in the message body.

Because HTTP has a stateless client-server architecture, the server keeps no record of the

client's prior requests. Every request is handled separately, and the server answers each one

using just the details sent in that particular request.

28

There are various variations of HTTP, the most popular being HTTP/1.1 and HTTP/2. A

frequently used online communication protocol is HTTP/1.1. It employs a request/response

architecture and is a text-based protocol. The most recent version of HTTP, HTTP/2, is

intended to enhance the functionality of online applications. It supports multiplexed streams

and employs binary communication rather than text-based communication, enabling

simultaneous transmission and reception of numerous requests.

The widespread usage of HTTP, a crucial element of the contemporary internet, has

facilitated the creation of sophisticated online apps. Online shopping, social media, video

streaming, and web surfing are just a few of the many uses for it. HTTP is anticipated to

continue to be a crucial part of online communication and data transfer as the web develops.

3.5.5.1 HTTP vs HTTPS

Two protocols are used to transfer data over the internet: HTTP (Hypertext Transfer Protocol)

and HTTPS (HTTP Secure). The degree of security each offers is the main distinction

between them.

A common application protocol for sending data over the internet is HTTP. It establishes the

format and transmission of messages on top of the TCP/IP protocol. Since HTTP is an unsafe

protocol, data sent via it can be intercepted by hackers since it is not encrypted.

Contrarily, HTTPS is a more secure variation of HTTP. Data exchanged between a web

server and a client using HTTPS is encrypted using SSL/TLS (Secure Sockets

Layer/Transport Layer Security). Data in transit is encrypted using the SSL/TLS protocol,

making it more challenging for hackers to intercept and steal sensitive data.

The safe and private transmission of data between the client and the server is made possible

by the use of encryption in HTTPS. This is crucial when sending sensitive data like login

credentials, credit card numbers, or other private information.

The port that HTTP and HTTPS employ is another distinction between them. While HTTPS

uses port 443, HTTP uses port 80. Depending on whether a website utilises HTTP or HTTPS,

your browser will automatically add the proper protocol and port number when you enter a

URL.

29

Using HTTPS has security advantages, but it can also help a website's search engine results.

According to Google, HTTPS is a ranking element, and websites that utilise it can see a little

improvement in search engine ranks.

In conclusion, HTTPS is a safer variation of HTTP that use encryption to safeguard data

transferred between the client and the server. Although HTTP is still extensively used,

HTTPS is growing in popularity as websites try to increase security and safeguard private

data.

3.5.5.2 HTTP Header and Body

It is specified by the HTTP (Hypertext Transfer Protocol) protocol how information is sent

between a web server and a client, such as a web browser. Data is sent and received via the

HTTP protocol whenever a client asks a server for a resource.

The header and the body are the two fundamental components of the HTTP protocol. While

the actual data being communicated is included in the body, the header includes metadata

about the request or response.

● HTTP Header:

An HTTP request or response's initial component, the HTTP header, has several fields

that characterise the message being transmitted. Request headers and response

headers are the two categories into which headers may be separated.

Figure 5: HTTP Header

30

An HTTP request contains request headers, which include details about the submitted

request. typical request headers consist of

Host: Specifies the domain name of the server being accessed.

User-Agent: Identifies the browser or client software making the request.

Accept: Specifies the MIME types of data that the client can handle.

Authorization: Contains authentication credentials for the request.

An HTTP response contains response headers, which include details about the

transmitted response. Some typical response headers are:

Content-Type: Specifies the MIME type of the data being sent in the

response.

Content-Length: Indicates the size of the response body in bytes.

Cache-Control: Specifies whether the response can be cached and for how

long.

Set-Cookie: Used to send cookies to the client for storing client-side state.

● HTTP Body:

The actual data being transferred is included in the HTTP body, which is the second

component of an HTTP request or response. The MIME type mentioned in the

Content-Type header determines the format and organisation of the body.

For instance, the body will be structured as a JSON object if the Content-Type header

indicates that the body includes JSON data. The body will be structured as an HTML

document if the Content-Type header indicates that it includes HTML data.

Normally, data is sent to the server in the body of an HTTP request, and data is

normally sent back to the client in an HTTP response. The information input in a

form, for instance, is delivered in the body of an HTTP request when a user submits it

on a website. The client receives a response from the server when it has processed the

data, which may include a message or a link to another website.

In conclusion, the HTTP body and header are both crucial parts of the HTTP protocol.

While the actual data being communicated is included in the body, the header includes

31

metadata about the request or response. The proper usage of these components is

essential for creating and sustaining web applications.

3.5.5.3 HTTP Status Codes

A web server's three-digit answer to a client's request for a resource is known as an HTTP

status code. The state of the resource that has been sought as well as the accomplishment or

failure of the client's request are indicated by these codes.

There are five classes of HTTP status codes:

1. Informational 1xx: These codes are used to indicate that the server has received the

request and is continuing to process it.

2. Success 2xx: These codes are used to indicate that the server has successfully processed

the request and is returning the requested information.

3. Redirection 3xx: These codes are used to indicate that the requested resource has been

moved to a new location or that the client should use a different URL to access the resource.

4. Client Error 4xx: These codes are used to indicate that there was an error in the client's

request, such as a missing or invalid parameter.

5. Server Error 5xx: These codes are used to indicate that there was an error on the server

side, such as a database error or an internal server error.

32

Figure 6: HTTP Status Codes

Some commonly encountered HTTP status codes include:

- 200 OK: This code indicates that the request was successful and the server is returning the

requested information.

- 301 Moved Permanently: This code indicates that the requested resource has been

permanently moved to a new URL.

- 404 Not Found: This code indicates that the requested resource could not be found on the

server.

- 500 Internal Server Error: This code indicates that there was an error on the server side

that prevented the request from being completed.

HTTP status codes are important for web developers and server administrators to understand,

as they can help identify and troubleshoot issues with web applications and services.

3.5.5.4 HTTP Methods

HTTP methods, as used in the Food Delivery Application, are an important component of

web development. HTTP methods are used to define the type of request delivered to a server.

The following HTTP methods are used in the application:

33

1. GET: The GET technique is used to get information from a server. In the Food Delivery

Application, the GET method is used to get a list of restaurants, food goods, and order data.

2. POST: Use the POST method to provide data to the server. In the Food Delivery

Application, the POST method is used to generate new orders, add new restaurants, and add

new food products.

3. PUT: The PUT method is used to update data on an existing server. In the Food Delivery

Application, the PUT method is used to update current orders, restaurants, and food goods.

4. ERASE: Use the DELETE command to delete data from the server. In the Food Delivery

Application, the erase feature is used to delete orders, restaurants, and food goods.

5. PATCH: The PATCH method is used to merely change a piece of an existing data

collection. In the Food Delivery Application, the PATCH technique can only be used to

change the status of an order.

The use of these HTTP methods ensures that the Food Delivery Application follows RESTful

web service principles, which encourage the use of a consistent client-server interface.

Figure 7: HTTP Methods

34

3.5.5.5 HTTP Request / Response Cycle

HTTP methods, requests, and answers are used to communicate between the client and

server. HTTP stands for Hypertext Transport Protocol, a data transport protocol used on the

internet.

HTTP methods are used to define what type of request the client wants to submit. The most

often used methods are GET, POST, PUT, DELETE, PATCH, and OPTIONS. The GET

method obtains information from the server, the POST method adds information to the server,

the PUT method changes information on the server, and the DELETE method deletes

information from the server.

Figure 8: HTTP Request/Response Cycle

Requests are sent to the server by the client. The request contains information on the HTTP

method used, the URL requested, and any extra data sent with the request. Requests to the

server are performed to add, update, and retrieve data.

The server replies to the client. The response contains information on the status of the

request, any data given to the client, and any additional metadata about the answer. When a

request is made, the food delivery application uses responses to provide data back to the

client.

35

REST APIs (Representational State Transfer) are used to define how the client and server

communicate. A RESTful API uses HTTP methods to define the activities that may be

performed on a resource, and URLs to identify the objects being acted on. In the food

delivery application, RESTful APIs are used to express the activities that may be performed

on food goods, orders, and customers.

In summary, HTTP methods, requests, and responses are used in the food delivery application

to communicate between the client and server. RESTful APIs are used to define the actions

that may be done on the resources of the application.

3.5.6 REST APIs

REST APIs are used in the food delivery application to facilitate communication between the

client-side and server-side components. A web architecture called REST (Representational

State Transfer) takes advantage of the HTTP protocol to build online services that users may

use. Stateless and readily scaleable RESTful APIs are available.

Figure 9: REST APIs

The food delivery application's RESTful APIs are made to handle HTTP requests and

answers consistently. The server receives a request from the client with the necessary

parameters, processes it, and then provides the client with a response. The reply may come in

JSON, XML, or HTML format, among others.

36

The food delivery application's RESTful APIs are made to perform a variety of tasks,

including data fetching, data creation, data updating, and data deletion. The GET, POST,

PUT, and DELETE HTTP methods, among others, are all supported by these APIs.

3.5.7 Packages and Modules

3.5.7.1 Front-end Modules

❖ React Router Dom: A routing module for React applications called React Router

Dom v6 offers a declarative approach to move between various components based on

the URL. In comparison to earlier versions, it offers a simpler and more user-friendly

API.

We utilised React Router Dom v6 to manage the client-side application's routing in

our food delivery application. Routes and BrowserRouter are two components from

the package that let us map particular URLs to particular components.

The usage of the Routes component rather than the Switch component is one of the

primary differences with v6. The Route component, which accepts a path prop and a

component prop to map the path to a particular component, allows us to create routes

using the Routes component. More flexibility and route nesting are made possible by

this.

Image 6: React-Router-Dom

37

UseNavigate hook is a further new functionality in version 6. This hook offers a

programmatic means of choosing an alternative path. Based on user activities, we

used this hook to direct users to various components.

Additionally, v6 also introduces the useSearchParams hook, which allows us to easily

access and manipulate URL query parameters.

❖ Axios: The well-known JavaScript library Axios is utilised for sending HTTP

requests from a browser or Node.js. It is a promise-based framework that offers an

intuitive user interface for making and receiving asynchronous HTTP requests to

servers. Modern online apps, notably those created using the MERN (MongoDB,

Express.js, React, and Node.js) stack, frequently employ Axios. The many HTTP

request methods offered by Axios include GET, POST, PUT, DELETE, and more.

Additionally, it enables sending requests that have unique request payloads, request

parameters, and headers. JSON, XML, and plain text are just a few of the response

types that Axios can handle. Additionally, processing HTTP response codes and

errors is supported natively. Support for interceptors is one of Axios' core features.

You may change the request or answer before it is delivered or received, accordingly,

using interceptors. This might be helpful for custom error handling, adding or deleting

headers, changing the request payload, etc. Additionally, Axios offers the ability to

cancel requests if they are taking too long to fulfil or are no longer required. With the

most recent JavaScript frameworks and libraries, Axios is created to operate without

any issues. It may be used with React, for instance, to retrieve data from a server and

modify the state of a component based on the output. Additionally, HTTP queries

from server-side code may be made using Axios and Node.js.

3.5.7.2 Middleware Modules

❖ Body-parser:

Body-parser is a middleware component used in the Food Delivery Node.js and

Express.js applications. It is used in middleware before your handlers to parse

incoming request bodies and is accessible via the 'req.body' property.

38

Body-parser is used in the Food Delivery application to parse JSON payloads

delivered in the request body of REST API requests. This module is crucial to the

application's operation since it allows the server to parse and interprets incoming

JSON requests from clients and reply to them appropriately.

Body-parser is simple to use and installed with npm. It may be included in the project

using the required line and used as middleware in the Express.js application by

sending it to the 'app.use()' function after installation. Body-parser can process JSON,

raw text, and URL-encoded form input by default.

Overall, the body-parser is an important component of the Food Delivery application

since it allows the server to parse incoming requests and deliver the data needed to

reply appropriately.

❖ CORS: Cross-Origin Resource Sharing (CORS) is a crucial security element in web

development that enables web browsers to access resources from several domains.

Due to security limitations imposed by web browsers, when a web application is

hosted on one domain, it is often not permitted to make requests for resources on

another domain.

CORS enables servers to add extra HTTP headers that let web browsers know it's

okay to send cross-origin requests to particular domains, allowing web apps to get

around this limitation.

39

Figure 10: CORS

We utilised the CORS middleware package in our Node.js/Express.js server to enable

cross-origin requests in our food delivery service. Due to this, our React.js frontend

was able to communicate securely over HTTP with our backend server.

We were able to create a more reliable and secure application utilising CORS that

could accept requests from several domains and improve the user experience for our

clients.

3.5.7.3 Other Frameworks and Extensions

❖ Javascript XML:

JSX stands for JavaScript XML, and it is a JavaScript syntactic extension that allows

developers to construct HTML-like code within JavaScript files. This capability is

typically connected with the React library, which creates and manages user interfaces

using JSX.

Because of its simplicity of use and versatility, the usage of JSX in web development

has grown in popularity in recent years. It enables developers to create reusable

40

components that may be reused across an application, decreasing the amount of code

necessary and making maintenance easier.

One of the most notable advantages of JSX is its ability to simplify the process of

creating and displaying HTML components within a web application. JSX may be

used by developers to create bespoke components that encapsulate HTML elements

and their associated JavaScript functionality, making code reuse easier across different

parts of the application.

Another benefit of using JSX is that it enables developers to fully leverage the power

of JavaScript when dealing with HTML components. This means that developers may

utilise JavaScript logic to dynamically modify the content and properties of HTML

elements, enabling them to create incredibly dynamic and interactive user

experiences.

Apart from these benefits, JSX provides some features that make it easier to write and

maintain code. JSX, for example, enables developers to employ inline styling,

allowing them to give CSS styles right within their JavaScript code. This can help to

reduce the amount of code required while also making style control easier throughout

an application.

Overall, JSX is an essential tool for web developers, especially those who use the

React framework. Its ability to simplify the creation and display of HTML

components, together with support for JavaScript logic and inline style, makes it a

powerful and adaptable tool for creating modern, dynamic web interfaces.

❖ Bootstrap (v5):

Bootstrap, a popular front-end framework, is used to construct user-friendly and

responsive Internet programmes. It offers a huge number of pre-built UI components

and styles that may be readily adjusted to match the layout of the application.

41

Image 7: Bootstrap

In this section, we'll talk about designing the food delivery app with Bootstrap and

MERN.

1. Navigation Bar: The navigation bar is an essential component of the food delivery

app since it enables user registration and menu access. To complement the look of the

application, Bootstrap offers a variety of pre-built navigation bars. The navigation bar

must be kept user-friendly and straightforward.

2. Home Page: The user first arrives at the home page of the meal delivery app. It needs

to be planned to give a summary of the website as well as any ongoing specials or

discounts. Bootstrap has several pre-built elements, such as carousels, jumbotrons,

and cards, that may be utilised to construct the home page.

3. Menu Page: The user may examine the food items they can order, add them to their

cart, and continue the checkout process from the cart page. Forms, tables, and buttons

are just a few of the pre-built elements that may be utilised with Bootstrap to

construct the cart page. The cart page must be straightforward because it may greatly

affect the user's experience.

4. Checkout Page: The consumer may finalise the order by entering their shipping and

payment details on the checkout page. Bootstrap has some pre-built form elements,

such as input fields, checkboxes, and radio buttons, that may be utilised to construct

42

the checkout page. To prevent user annoyance and cart abandonment, the checkout

process must be made clear and easy.

5. User Sign-up Page: The user may create their account on the user profile page by

providing information such as their name, address, and payment information. The user

profile page may be designed using a variety of pre-built Bootstrap elements,

including forms, input fields, and buttons. The user profile page must be simple to use

and navigate.

Finally, utilising MERN to create responsive and user-friendly food delivery software,

Bootstrap offers a variety of pre-built UI components and styles that are easily

customizable. The objective is to maintain a straightforward and user-friendly

interface for the user while simultaneously giving the site administrator an

aesthetically pleasing and effective interface.

3.6 Project Flow
The Home component will be presented to the user when they first enter the programme,

therefore the project flow will begin there. The user may then browse the Menu component to

see a list of available products. Each pizza item on the menu will be rendered using the Pizza

component.

After selecting the products to be ordered, the user can move to the Checkout component,

which will provide the order summary and final cost. The user can then modify or cancel the

order before proceeding to payment.

If the user does not already have an account, they may go to the Signup component to

establish one. After creating an account, the user can utilise it to log in to view their order

history or place new orders.

Hooks such as useState, useLocation, useEffect, and useNavigate will be included in the

flowchart to manage the application's state, handle routing, and trigger modifications in

response to user activities. Overall, the flowchart for the MERN stack-based food delivery

service will be straightforward and intuitive, allowing users to simply move between different

components of the app and make orders with little effort.

43

CHAPTER 4
EXPERIMENTS AND RESULT ANALYSIS

Various tests were carried out throughout the development of the food delivery application

utilising the MERN stack to verify the system's functionality, performance, and dependability.

Analytical and experimental methodologies were used in the testing.

Analytical testing entailed evaluating the codebase, detecting possible problems, and testing

individual system components. Computational and mathematical tools were utilised to model

situations and identify potential system faults. The data obtained throughout the testing phase

was analysed using statistical methods.

Setting up a test bed that simulated a real-world scenario was required for experimental

testing. Setting up a server environment, validating network connections, and creating a

database to store and retrieve data were all part of the process. The system was then put

through its paces by inputting different data and checking the output at various stages.

The sorts of software testing that may be conducted for a meal delivery app are as follows.

● Unit testing: This testing is performed to validate the application's different

components. This would entail testing the React components, Express routes, and

MongoDB queries in a MERN stack. Unit testing results should be labelled as pass or

fail.

● Integration testing: This testing is performed to validate the interaction of the

application's various components. This would entail testing the interaction between

React and Express, Express and MongoDB, and React and MongoDB in a MERN

stack. Integration testing results should be labelled as pass or fail.

● System testing: This testing guarantees that the application complies with the

requirements and operates as planned in a practical environment. This would require

assessing a meal delivery app's ordering procedure, delivery tracking, and payment

processing. The results of system testing ought to be classified as passes, fails, or

partial passes.

44

● Acceptance testing: This testing makes that the application is prepared for

deployment and meets the needs of the customer. This would require evaluating an

app for food delivery's user interface, ease of use, and overall functioning. Results of

acceptance testing should be graded as passes or fail.

● Performance testing: This testing makes that the programme can handle the

expected load and continue to operate normally under pressure. For a food delivery

business, this would include assessing the app's response time, scalability, and load

capacity. Results from performance tests should be categorised as pass, fail, or partial

pass.

● Security testing: This testing guarantees the security of the application and the

privacy of user information. A food delivery app would need to have its login process,

data encryption, and secure payment processing evaluated. The results of security

testing should be classified as passing or failing.

● Regression testing: This testing ensures that any modifications made to the

programme do not impair its current functioning. In the case of a meal delivery app,

this would entail testing the app's basic functionalities following updates to the user

interface or the addition of new features. Regression testing findings should be

labelled as pass or fail.

● It is critical to mark the findings of each testing technique so that the development

team can follow the application's progress and identify any areas that require

improvement.

● Various testing methodologies, including unit testing, integration testing, and system

testing, were used to generate and implement test cases. Iterative testing was used,

with tests being created as new features were integrated and faults were discovered.

45

The following tests were done:

Test case: User authentication

Input: SignUp and SignIn

Expected output: Successful login and access to the user dashboard

Result: Pass

Test case: Accessibility to the menu on all pages, including the landing page

Input: Clicking “Menu” from Navigation Bar.

Expected Output: Successful switch to the Menu page.

Test case: Add item to the cart

Test case: Add item to cart

Input: Clicking the "Add to cart" button for a menu item

Expected output: The item is added to the user's cart and the cart total is updated

Result: Pass

Test case: Place order

Input: Clicking the "Pay via COD" button on the checkout page

Expected output: Confirmation message that the order has been placed.

Result: Pass

The testing findings were analysed at several phases of the development process. The output

was checked against the predicted outcomes after it was compared to the various inputs. The

comparison was carried out using at least two approaches, and the discrepancies were

justified using theory or previously published data.

Overall, the MERN stack-based food delivery application was determined to be extremely

functional, dependable, and efficient. The programme could manage a huge number of

queries and give results in a timely way. The testing findings were consistent with what was

predicted, and the application was judged to be very dependable. The testing procedure also

assisted in identifying possible difficulties and faults.,quickly corrected to guarantee that the

application was completely functioning and dependable.

46

CHAPTER 5
CONCLUSIONS

5.1 Conclusions
Finally, the creation of a food delivery application utilising the MERN stack resulted in a

functioning and efficient system for ordering and delivering meals. The software allows users

to explore menus and place orders thoroughly. while the restaurant can handle orders and

change menu items in real-time.

Planning, design, execution, and testing were all part of the development process. The needs

were identified and analysed during the planning stage, and a thorough project plan was

prepared. Wireframes, mockups, and a database structure were all created throughout the

design stage. The MERN stack was used for implementation, which provided a robust and

versatile set of tools for creating both the application's front-end and back-end. A set of unit,

integration, and acceptance tests was performed throughout the testing stage to confirm that

the system fulfilled all criteria and was free of faults and mistakes.

The adoption of MongoDB as the application's database was especially advantageous since it

allowed for quick data storage and retrieval and provided a scalable solution that could

manage massive volumes of data. Furthermore, using ReactJS as the frontend framework

enabled a dynamic and interactive user experience with rapid rendering and enhanced speed.

Various testing methodologies, including unit, integration, and acceptability testing, were

used to test the application. These tests were performed to confirm that the system satisfied

all functional and non-functional criteria and was bug and error-free. Several difficulties were

discovered throughout the testing phase, which were addressed and resolved in future rounds

of the development process. Overall, the testing method was critical in guaranteeing the

system's quality and dependability.

5.2 Future Scope
Several areas for future work might be highlighted for improvement. The app, for example,

may be upgraded to incorporate other features such as a rating system for restaurants and

drivers, or the ability to follow the delivery truck in real-time and track delivery status.

47

Furthermore, the app's speed and scalability might be improved by incorporating caching

systems or load-balancing approaches.

Finally, the creation of a food delivery application utilising the MERN stack resulted in a

functioning and efficient system that fits the demands of both users and restaurants. With a

user-friendly design and real-time delivery progress information, the programme provides a

quick and simplified method to order and transport meals. Modern technologies like

MongoDB, ReactJS, and NodeJS were used to provide a scalable and adaptable solution that

can be easily customised and expanded in the future. Overall, the creation of this application

highlighted the MERN stack's strength and diversity, as well as its potential to produce

unique and meaningful solutions for a variety of sectors.

48

References

[1] Admin and V. all posts by Admin, “How to Send Data from React to Node js Express +

MySQL - Tuts Make,” Tuts Make, Oct. 30, 2022. [Online]. Available:

https://www.tutsmake.com/how-to-send-data-from-react-to-node-js-express-mysql/

[2] “What is the meaning of ‘bodyParser.urlencoded({ extended: true }))’ and

‘bodyParser.json()’ in Express.js?,” Stack Overflow, Apr. 07, 2019. [Online]. Available:

https://stackoverflow.com/questions/55558402/what-is-the-meaning-of-bodyparser-urlencode

d-extended-true-and-bodypar

[3] A. Sen, “Node React Tutorial - How to connect React with backend Node.js?,” codedamn

news, Sep. 14, 2022. [Online]. Available:

https://codedamn.com/news/reactjs/how-to-connect-react-with-node-js

[4] “What does `app.use(bodyParser.json())` do?,” Stack Overflow, Oct. 05, 2016. [Online].

Available:

https://stackoverflow.com/questions/39870867/what-does-app-usebodyparser-json-do

[5] N. Makarevich and @adevnadia, “How to fetch data in React with performance in mind,”

How to fetch data in React with performance in mind, Oct. 06, 2022. [Online]. Available:

https://www.developerway.com/posts/how-to-fetch-data-in-react

[6] “Express.js Post - javaTpoint,” www.javatpoint.com. [Online]. Available:

https://www.javatpoint.com/expressjs-post

[7] “How to return values from async functions using async-await from function?,” Stack

Overflow, Apr. 20, 2018. [Online]. Available:

https://stackoverflow.com/questions/49938266/how-to-return-values-from-async-functions-us

ing-async-await-from-function

[8] “Express.js And MongoDB REST API Tutorial,” MongoDB. [Online]. Available:

https://www.mongodb.com/languages/express-mongodb-rest-api-tutorial

[9] “try/catch blocks with async/await,” Stack Overflow, Nov. 30, 2016. [Online]. Available:

https://stackoverflow.com/questions/40884153/try-catch-blocks-with-async-await

49

[10] J. Bodnar, “Axios tutorial - GET/POST requests in JavaScript with Axios,” Axios

tutorial - GET/POST requests in JavaScript with Axios. [Online]. Available:

https://zetcode.com/javascript/axios/

[11] “How to create dynamic values and objects in JavaScript ? - GeeksforGeeks,”

GeeksforGeeks, Feb. 22, 2021. [Online]. Available:

https://www.geeksforgeeks.org/how-to-create-dynamic-values-and-objects-in-javascript/

[12] “How To Remove a Property from a JavaScript Object,” How To Remove a Property

from a JavaScript Object. [Online]. Available:

https://www.w3schools.com/howto/howto_js_remove_property_object.asp

[13] “How do I test for an empty JavaScript object?,” Stack Overflow, Mar. 25, 2009.

[Online]. Available:

https://stackoverflow.com/questions/679915/how-do-i-test-for-an-empty-javascript-object

[14] “Loop Through an Object in JavaScript – How to Iterate Over an Object in JS,”

freeCodeCamp.org, Jul. 20, 2022. [Online]. Available:

https://www.freecodecamp.org/news/how-to-iterate-over-objects-in-javascript/

[15] “BrowserRouter causing Invalid hook call. Hooks can only be called inside of the body

of a function component,” Stack Overflow, Dec. 24, 2021. [Online]. Available:

https://stackoverflow.com/questions/70474837/browserrouter-causing-invalid-hook-call-hook

s-can-only-be-called-inside-of-the

[16] “Upgrading from v5 v6.11.1,” Upgrading from v5 v6.11.1 | React Router. [Online].

Available: https://reactrouter.com/en/main/upgrading/v5

[17] “React router, pass data when navigating programmatically?,” Stack Overflow, Feb. 11,

2017. [Online]. Available:

https://stackoverflow.com/questions/42173786/react-router-pass-data-when-navigating-progr

ammatically

[18] “React-router - How to pass data between pages in React?,” Stack Overflow, Sep. 08,

2018. [Online]. Available:

https://stackoverflow.com/questions/52238637/react-router-how-to-pass-data-between-pages-

in-react

50

[19] T. Motto, “Programmatically navigate with React Router (and Hooks) - Ultimate

Courses,” Programmatically navigate with React Router (and Hooks) - Ultimate Courses.

[Online]. Available: https://ultimatecourses.com/blog/programmatically-navigate-react-router

[20] “How to convert Set to Array in JavaScript ? - GeeksforGeeks,” GeeksforGeeks, May

13, 2019. [Online]. Available:

https://www.geeksforgeeks.org/how-to-convert-set-to-array-in-javascript/

[21] “Convert string value to object property name,” Stack Overflow, Aug. 28, 2012.

[Online]. Available:

https://stackoverflow.com/questions/12164764/convert-string-value-to-object-property-name

[22] “How do you pass data when using the navigate function in react router v6,” Stack

Overflow, Oct. 25, 2021. [Online]. Available:

https://stackoverflow.com/questions/69714423/how-do-you-pass-data-when-using-the-naviga

te-function-in-react-router-v6

[23] N. M, “How to Pass Data Between Pages in react-router-dom V6?,”

plainenglish.io/blog/how-to-pass-data-between-pages-in-react-router-dom-v6, May 01, 2022.

[Online]. Available:

https://plainenglish.io/blog/how-to-pass-data-between-pages-in-react-router-dom-v6

[24] “JSON And BSON,” MongoDB. [Online]. Available:

https://www.mongodb.com/json-and-bson

51

Appendix

Server:
server.js:
const express = require("express");
const bodyParser = require("body-parser");
const cors = require("cors");
const { MongoClient } = require("mongodb");
const e = require("express");

const app = express();

const urlencodedParser = bodyParser.urlencoded({ extended: false });
app.use(bodyParser.json());

app.use(cors({ credentials: true, origin: "http://localhost:3000" }));

const url = "mongodb://127.0.0.1:27017";
const database = "FoodDelivery";

const PORT = 8000;

app.get("/", (req, res) => {
res.send("Server running!");

});

app.get("/users", async (req, res) => {
let users = await getUsers();
res.send(users);

});

async function addUser(data) {
const client = new MongoClient(url);

try {
let mydb = (await client.connect()).db(database);
let collection = mydb.collection("User");

await collection.insertOne(data);

console.log("Bill successfully stored in the FoodDelivery Database.");
} catch (error) {
console.log(error);

} finally {
await client.close();

}
}

async function getUsers() {

52

const client = new MongoClient(url);
let data;
try {
let mydb = (await client.connect()).db(database);
data = await mydb.collection("User").find({}).toArray();

} catch (error) {
console.log(error);

} finally {
await client.close();

}

return data;
}

app.post("/signup", urlencodedParser, async (req, res) => {
let data = req.body;
let users = await getUsers();
let found = users.find((user) => user.email === data.email);
if (found === undefined) addUser(data);
else
res.send(
"Account with Email ID: " +
data.email +
" already exists. Use a different Email ID or Sign in."

);
});

async function addOrder(data) {
const client = new MongoClient(url);

try {
let mydb = (await client.connect()).db(database);
let collection = mydb.collection("Order");

await collection.insertOne(data);

console.log(
"Order saved successfully in database Food Delivery Application."

);
} catch (error) {
console.log(error);

} finally {
await client.close();

}
}

app.post("/orders", urlencodedParser, async (req, res) => {
let data = req.body;
addOrder(data);
res.send(
"Server: Order placed Successfully for " + data.user + " at " + data.time

53

);
});

app.listen(PORT, function (err) {
if (err) console.log(err);
console.log("***BACKEND***");
console.log("Server Started.");
console.log("Server listening on PORT:", PORT);

});

Client:
CSS:

style.js:
style.css

* {
font-family: 'Alegreya', serif;

}

JSON:
pizzas.js:
import Bacon from "../Images/Bacon.jpg";
import Cheese from "../Images/Cheese.jpg";
import Hawaiin from "../Images/Hawaiin.jpg";
import Margerita from "../Images/Margerhita.jpg";
import Mushrooms from "../Images/Mushrooms.jpg";
import Pepperoni from "../Images/Pepperoni.jpg";
import Seafood from "../Images/Seafood.jpg";
import Supreme from "../Images/Supreme.jpg";
import Vegetarian from "../Images/Vegetarian.jpg";

const pizzas = [
{
name: "Hawaiin",
size: ["Small", "Medium", "Large"],
price: [200, 300, 400],
category: "Non-Veg",
image: Hawaiin,
description: "",

},
{
name: "Mushroom",
size: ["Small", "Medium", "Large"],
price: [300, 370, 410],
category: "Veg",
image: Mushrooms,
description: "",

54

},
{
name: "Non-Veg Supreme",
size: ["Small", "Medium", "Large"],
price: [350, 400, 480],
category: "Non-Veg",
image: Supreme,
description: "",

},
{
name: "Pepperoni",
size: ["Small", "Medium", "Large"],
price: [200, 300, 400],
category: "Non-Veg",
image: Pepperoni,
description: "",

},
{
name: "Margerita",
size: ["Small", "Medium", "Large"],
price: [210, 320, 430],
category: "Veg",
image: Margerita,
description: "",

},
{
name: "Sea Food",
size: ["Small", "Medium", "Large"],
price: [250, 360, 470],
category: "Non-Veg",
image: Seafood,
description: "",

},
{
name: "Veg Supreme",
size: ["Small", "Medium", "Large"],
price: [220, 330, 450],
category: "Veg",
image: Vegetarian,
description: "",

},
{
name: "Bacon",
size: ["Small", "Medium", "Large"],
price: [240, 360, 480],
category: "Non-Veg",
image: Bacon,
description: "",

},
{
name: "Cheese Special",

55

size: ["Small", "Medium", "Large"],
price: [180, 280, 380],
category: "Veg",
image: Cheese,
description: "",

},
];

export default pizzas;

Components:
App.js:
import React from "react";
import Menu from "./Components/Menu";
import Home from "./Components/Home";
import { BrowserRouter as Router, Routes, Route } from "react-router-dom";
import Checkout from "./Components/Checkout";
import SignUp from "./Components/SignUp";
import "./Components/style.css";

function App() {
return (
<>
<Router>
<Routes>
<Route path="/" element={<Home />} />
<Route path="/menu" element={<Menu />} />
<Route path="/checkout" element={<Checkout />} />
<Route path="/signup" element={<SignUp />} />

</Routes>
</Router>

</>
);

}

export default App;

Checkout.js:
import React from "react";
import { useLocation, useNavigate } from "react-router-dom";
import { useEffect } from "react";

import axios from "axios";
import { useState } from "react";
import Navigation from "./Navigation";
const Checkout = () => {
const location = useLocation();
let cart = location.state;

56

const [users, setUsers] = useState([]);
const [currentUser, setCurrentUser] = useState("");

async function sendData() {
let bill = {
user: currentUser,
time: Date(),
cart: cart,

};

let response = await axios.post("http://localhost:8000/orders", bill);
let serverMessage = response.data;
alert(serverMessage);

}

async function getData() {
let userData = (await axios.get("http://localhost:8000/users")).data;
setUsers(userData);

}

function isEmpty() {
return currentUser.length === 0;

}

const handlePay = (e) => {
e.preventDefault();

console.log(currentUser);
if (isEmpty()) alert("Order Failed: Please select a valid account.");
else {
sendData();
alert("Order placed successfully. Thank you for your purchase.");

}
};

useEffect(() => {
getData();

}, []);

let total = 0;
return (
<>
<Navigation />
<div className="bg-dark p-4">
<div className="d-flex justify-content-center align-items-center">
<img

src="https://static.vecteezy.com/system/resources/previews/011/157/909/original/piz
zeria-emblem-on-blackboard-pizza-logo-template-emblem-for-cafe-restaurant-or-food-d
elivery-service-vector.jpg"

57

width={300}
>
<div className="p-4">
<h1 className="text-center text-light">
Thank you for choosing us.

</h1>

<h3 className="text-center text-light">Please review your cart.</h3>
</div>

</div>
<h4 className="my-4 text-light">
You have {cart.length} item(s) in your cart:

</h4>

<div>
<table className="table table-striped table-light">
<thead className="thead-dark">
<tr className="table-warning text-center">
<th>
<h4>Serial No.</h4>

</th>
<th>
<h4>Product</h4>

</th>
<th>
<h4>Category</h4>

</th>
<th>
<h4>Size</h4>

</th>
<th>
<h4>Quantity</h4>

</th>
<th>
<h4>Amount ($)</h4>

</th>
</tr>

</thead>
<tbody>
{cart.map((item, index) => {
total += item.price;
return (
<tr className="text-center">
<td>
<h5>{index + 1}</h5>

</td>
{Object.keys(item).map((key) => (
<td>
<h5>{item[key]}</h5>

</td>
))}

58

</tr>
);

})}
<tr className="text-center">
<td>
Total

</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>{total}</td>

</tr>
<tr className="text-center">
<td>
CGST (5%)

</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>{0.05 * total}</td>

</tr>
<tr className="text-center">
<td>
SGST (5%)

</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>{0.05 * total}</td>

</tr>
<tr className="text-center">
<td>
<h4> G. Total:</h4>

</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>
<h4>
${total + 0.1 * total}

</h4>
</td>

</tr>

</tbody>
</table>

59

<h4 className="my-4 text-light">Select Delivery Account:</h4>
<select
value={currentUser}
className="form-select"
onChange={(e) => {
console.log(e.target.value);
setCurrentUser(e.target.value);

}}
>
<option value="" disabled selected>
Select Account

</option>
{users.map((user) => {
return (
<option value={user.email}>
{user.name + " - " + user.email}

</option>
);

})}
</select>

<button className="btn btn-warning" onClick={handlePay}>
Pay via COD

</button>
</div>

</div>

{/* <select
value={size}
className="form-select form-select-sm"
onChange={(e) => {
setSize(e.target.value);

}}
>
{pizza.size.map((size) => {
return <option value={size}>{size}</option>;

})}
</select> */}

</>
);

};

export default Checkout;

60

Home.js:
import React from "react";
import Navigation from "./Navigation";
import { useNavigate } from "react-router-dom";

const Home = () => {
const navigate = useNavigate();

const handleOrder = (e) => {
e.preventDefault();
navigate("/menu");

};

return (
<>
<Navigation />

<div>
<div className="d-flex justify-content-center align-items-center m-3

bg-dark rounded p-5">
<div className="m-4">
<h1 className="text-light">
Fresh PIZZA at your Doorstep!

</h1>
<h3 className="text-light">
{" "}
Delicious Pizzas starting @ $200 Only!

</h3>
<h5 className="text-light">
Enjoy a fresh slice of pizza. Share with your friends, family or
just eat alone.

</h5>

<button className="btn btn-warning fw-bold" onClick={handleOrder}>
Order Now

</button>
</div>
<img

src="https://cdn.tatlerasia.com/indonesiatatlerdining/images/i/20180425-11b5f8889f5
6ae4aab094_resized_773x515.jpg"

width={900}
height={500}
className="img-rounded"

>
</div>

</div>

<div>

61

<div className="d-flex justify-content-center align-items-center m-3
bg-dark rounded p-5">

<img

src="https://cdn.jobtoday.com/img/e8c45297-24c2-4547-99ca-7bc530c9053d/1140x640.jpg
"

width={500}
height={250}
className="img-rounded"

>
<div className="m-4">
<h1 className="text-light">About us</h1>
<h5 className="text-light">
This project 'Food Delivery Application' is a web-application made
as an requirement of Major Project. Technologies used are React.js
for Front-end, Node.js and Express.js for Middle-ware (Back-end),
and MongoDB as Database Engine.

</h5>

<h5 className="text-light">
Made by: Manan Mehta, Group-115

</h5>
</div>

</div>
</div>

<div>
<div className="d-flex justify-content-center align-items-center m-3

bg-dark rounded p-5">
<div className="m-4">
<h1 className="text-light">
Introducing NEW Veg Supreme Pizza!

</h1>
<h5 className="text-light">
Hand tossed pizza topped with Onions, Tomatoes, Mushrooms,
Jalepenoes, Olives, and Corn.

</h5>

<h5 className="text-light">Try TODAY!</h5>

</div>
<img

src="https://www.franchisegator.com/articles/wp-content/uploads/2022/02/vegetables-
italian-pizza-restaurant-large.jpg"

width={400}
height={250}
className="img-rounded"

>
</div>

</div>
</>

62

);
};

export default Home;

Menu.js:
import React from "react";
import pizzas from "../JSON/pizzas";
import Pizza from "./Pizza";
import { useNavigate } from "react-router-dom";
import { useState } from "react";
import Navigation from "./Navigation";

const Menu = () => {
const navigate = useNavigate();
const [cart, setCart] = useState([]);

const handleCheckout = (e) => {
e.preventDefault();

if (cart.length == 0)
alert("Your cart is empty. Please purchase at least 1 item.");

else navigate("/checkout", { state: cart });
};

return (
<>
<Navigation />
<form className="w-100 bg-dark">
<div className="mx-3">
<button
className="btn btn-warning float-end"
onClick={(e) => handleCheckout(e)}

>
Checkout

</button>

</div>

<div className="d-flex justify-content-center">
<h1 className="text-dark bg-light m-4 p-2 w-100 text-center rounded">
A La Carte

</h1>
</div>
<div className="row">
{pizzas.map((pizza, index) => {
return (
<>
<div className="col-md-3 my-2 ">
<Pizza pizza={pizza} cart={cart} setCart={setCart} />

63

</div>
</>

);
})}

</div>
</form>

</>
);

};

export default Menu;

Navigation.js:
import React from "react";
import { useNavigate } from "react-router-dom";

const Navigation = () => {
const navigate = useNavigate();

const handleHome = (e) => {
e.preventDefault();
navigate("/");

};

const handleOrder = (e) => {
e.preventDefault();
navigate("/menu");

};

const handleSignUp = (e) => {
e.preventDefault();
navigate("/signup");

};

return (
<>
<nav class="navbar navbar-expand-sm bg-dark navbar-dark">
<div class="container-fluid">

<img

src="https://static.vecteezy.com/system/resources/previews/011/157/909/original/piz
zeria-emblem-on-blackboard-pizza-logo-template-emblem-for-cafe-restaurant-or-food-d
elivery-service-vector.jpg"

alt="Avatar Logo"
class="rounded-pill mx-2"
width={40}

/>
Pizza - Fresh & Tasty

64

<ul class="navbar-nav">
<li class="nav-item p-1">
<button
class="btn btn-basic nav-link active"
onClick={handleHome}

>
Home

</button>

<li class="nav-item p-1">
<button
class="btn btn-basic nav-link active"
onClick={handleOrder}

>
Menu

</button>

<li class="nav-item p-1">
<button
class="btn btn-basic nav-link active"
onClick={handleSignUp}

>
Sign Up

</button>

</div>

</nav>
</>

);
};

export default Navigation;

Pizza.js:
import React, { useState } from "react";

const Pizza = ({ pizza, cart, setCart }) => {
const [quantity, setQuantity] = useState(1);
const [size, setSize] = useState("Small");

const handleAddToCart = (e) => {
e.preventDefault();
console.log(pizza.name);
console.log(size);
console.log(quantity);
console.log(pizza.price[pizza.size.indexOf(size)] * quantity);

let tempCart = [...cart];

65

let item = tempCart.find((item) => {
return item.name === pizza.name;

});

if (item !== undefined) {
const index = tempCart.indexOf(item);
if (index > -1) {
tempCart.splice(index, 1);

}
}

let fPrice = pizza.price[pizza.size.indexOf(size)] * quantity;

let newItem = {
name: pizza.name,
category: pizza.category,
size: size,
quantity: quantity,
price: fPrice,

};

tempCart = [...tempCart, newItem];
setCart(tempCart);

alert(
pizza.name +

" Pizza added in your cart. Continue shopping or proceed to Checkout. Thank
you."

);
};

const handleRemoveFromCart = (e) => {
e.preventDefault();
let tempCart = [...cart];
let item = tempCart.find((item) => {
return item.name === pizza.name;

});

if (item !== undefined) {
const index = tempCart.indexOf(item);
if (index > -1) {
tempCart.splice(index, 1);

}
}

setCart(tempCart);
};

let color = "bg-success";
return (
<>

66

<div className=" shadow py-4 bg-dark rounded m-4 border border-warning">
<div className="d-flex justify-content-center">
<h3 className="text-warning">
{pizza.name}

</h3>
</div>
<div className="d-flex justify-content-center m-2">
<img
src={pizza.image}
className="img-thumbnail"
style={{ height: "200px", width: "200px" }}

/>
</div>
<div className="d-flex justify-content-center">
<div className="w-20 m-1">
{/* <p className="text-center">Size</p> */}
<select
value={size}
className="form-select form-select-sm"
onChange={(e) => {
setSize(e.target.value);

}}
>
{pizza.size.map((size) => {
return <option value={size}>{size}</option>;

})}
</select>

</div>
<div className="w-10 m-1 mx-1 d-flex">
<select
value={quantity}
className="form-select form-select-sm mx-1 w-100"
// ref={quantityRef}
onChange={(e) => {
setQuantity(e.target.value);

}}
>
{[...Array(10).keys()].map((x, index) => {
return <option value={index + 1}>{index + 1} </option>;

})}
</select>

<div>
{pizza.category === "Veg" ? (
<img

src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRtSunGZrQkQMZlsJUeWHb5oq
i2rqXb-rukGg&usqp=CAU"

width={20}
>

) : (

67

<img

src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSYMLfraBCscqg65z1lbsJ7Qr
dtJCGzNlv7_Q&usqp=CAU"

width={20}
>

)}
</div>

</div>
</div>

<div className="d-flex justify-content-center">
<div className="m-1 w-10">
<h3 className="text-center text-info">
${pizza.price[pizza.size.indexOf(size)] * quantity}

</h3>
</div>
<div className="m-1 w-10">
<button
className="btn btn-success "
onClick={(e) => {
handleAddToCart(e);

}}
>
Add

</button>
<button
className="btn btn-danger mx-2"
onClick={(e) => {
handleRemoveFromCart(e);

}}
>
Remove

</button>
</div>

</div>
</div>

</>
);

};

export default Pizza;

SignUp.js
import React from "react";
import axios from "axios";
import { useNavigate } from "react-router-dom";
import { useState } from "react";

const SignUp = () => {

68

const navigate = useNavigate();

const [user, setUser] = useState({});

const handleChange = (e) => {
setUser({ ...user, [e.target.name]: e.target.value });

};

async function sendData() {
let response = await axios.post("http://localhost:8000/signup", user);
let serverMessage = response.data;
alert(serverMessage);

}

const handleSubmit = async (e) => {
e.preventDefault();
console.log(user);
await sendData();

};

const handleBack = (e) => {
e.preventDefault();
navigate("/");

};

return (
<>
<div className="d-flex justify-content-center p-4 bg-dark m-4 rounded">
<div className="d-flex align-items-center w-100">
<img

src="https://static.vecteezy.com/system/resources/previews/011/157/909/original/piz
zeria-emblem-on-blackboard-pizza-logo-template-emblem-for-cafe-restaurant-or-food-d
elivery-service-vector.jpg"

width={600}
height={600}

>

<form className="w-100 p-4 mt-3">
<h1 className="text-light">
Create New Account

</h1>

<div class="form-group my-1">
<h5 className="label text-light mt-2">
Personal Info

</h5>

<label className="label text-light">Name</label>
<input
name="name"

69

onChange={(e) => handleChange(e)}
class="form-control"
type="text"
placeholder="Ex. John Doe"

/>
</div>

<div class="form-group my-1">
<label className="label text-light">Email</label>
<input
name="email"
onChange={(e) => handleChange(e)}
class="form-control"
type="email"
placeholder="Ex. somemail@gmail.com"

/>
</div>

<div class="form-group my-1">
<label className="label text-light">Contact</label>
<input
name="contact"
onChange={(e) => handleChange(e)}
class="form-control"
type="number"
placeholder="Ex. 9999900000"

/>
</div>

<h5 className="label text-light mt-4">
Delivery Address

</h5>

<div class="form-group my-1">
<label className="label text-light">House No.</label>
<input
name="houseNo"
onChange={(e) => handleChange(e)}
class="form-control"
type="number"
placeholder="Ex. 123"

/>
</div>

<div class="form-group my-1">
<label className="label text-light">Street and Locality</label>
<input
name="locality"
onChange={(e) => handleChange(e)}
class="form-control"
type="text"

70

placeholder="Ex. Avenue Street, Rajender Nagar"
/>

</div>

<div class="form-group my-1">
<label className="label text-light">City/Town</label>
<input
name="city"
onChange={(e) => handleChange(e)}
class="form-control"
type="text"
placeholder="Ex. New Delhi"

/>
</div>

<div class="form-group my-1">
<label className="label text-light">State</label>
<input
name="state"
onChange={(e) => handleChange(e)}
class="form-control"
type="text"
placeholder="Ex. Delhi"

/>
</div>

<div class="form-group my-1">
<label className="label text-light">Pin-code</label>
<input
name="pinCode"
onChange={(e) => handleChange(e)}
class="form-control"
type="number"
placeholder="Ex. 001122"

/>
</div>

<button
type="button"
class="btn btn-outline-warning mr-2"
onClick={handleBack}

>
Home

</button>
<button
className="btn btn-warning my-4 fw-bold m-2"
onClick={handleSubmit}
type="submit"

>
Sign Up

</button>

71

</form>
</div>

</div>
</>

);
};

export default SignUp;

72

8%
SIMILARITY INDEX

4%
INTERNET SOURCES

4%
PUBLICATIONS

5%
STUDENT PAPERS

1 1%

2 1%

3 <1%

4 <1%

5 <1%

6 <1%

7 <1%

Food Delivery Application using MERN Stack - Manan Mehta
ORIGINALITY REPORT

PRIMARY SOURCES

Submitted to Liverpool John Moores
University
Student Paper

Submitted to University of Greenwich
Student Paper

dev.to
Internet Source

Chris Minnick. "Beginning React JS
Foundations Building User Interfaces with
ReactJS", Wiley, 2022
Publication

tekolio.com
Internet Source

Brajesh De. "API Management", Springer
Science and Business Media LLC, 2017
Publication

Submitted to Queen Mary and Westfield
College
Student Paper

www.vingle.net

8 <1%

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

14 <1%

15 <1%

16 <1%

17 <1%

Internet Source

Submitted to IUBH - Internationale
Hochschule Bad Honnef-Bonn
Student Paper

Luis Argerich, Wankyu Choi, John Coggeshall,
Ken Egervari et al. "Professional PHP4",
Springer Science and Business Media LLC,
2003
Publication

Submitted to Coventry University
Student Paper

Submitted to University of Belgrade, Faculty
of Organizational Sciences
Student Paper

Submitted to Nizwa College of Technology
Student Paper

Submitted to Imperial College of Science,
Technology and Medicine
Student Paper

Submitted to Staffordshire University
Student Paper

www.readkong.com
Internet Source

"Appendix C", IMS Application Developer s
Handbook, 2011

18 <1%

19 <1%

20 <1%

21 <1%

22 <1%

23 <1%

24 <1%

25 <1%

26 <1%

27 <1%

Publication

Submitted to Kwame Nkrumah University of
Science and Technology
Student Paper

Nico Loubser. "Software Engineering for
Absolute Beginners", Springer Science and
Business Media LLC, 2021
Publication

dokumen.pub
Internet Source

Adam Freeman. "Expert ASP.NET Web API 2
for MVC Developers", Springer Science and
Business Media LLC, 2014
Publication

Submitted to University of Central Florida
Student Paper

codedamn.com
Internet Source

Internet Programming with Visual Basic, 2000.
Publication

slides.com
Internet Source

www.a2hosting.com
Internet Source

Submitted to University of Northampton
Student Paper

28 <1%

29 <1%

30 <1%

31 <1%

32 <1%

33 <1%

34 <1%

35 <1%

36 <1%

37 <1%

Submitted to University of South Australia
Student Paper

Submitted to University of Denver
Student Paper

www.dhiwise.com
Internet Source

dspace.ut.ee
Internet Source

www.abservetech.com
Internet Source

www.groovyweb.co
Internet Source

docplayer.net
Internet Source

ela.kpi.ua
Internet Source

manjula kumara. ""MealShare: Using
Blockchain Technology and a Reward-Based
System to Combat Global Food Waste"",
Institute of Electrical and Electronics
Engineers (IEEE), 2023
Publication

Elad Elrom. "React and Libraries", Springer
Science and Business Media LLC, 2021
Publication

38 <1%

39 <1%

40 <1%

41 <1%

42 <1%

43 <1%

44 <1%

45 <1%

46 <1%

47 <1%

www.cisin.com
Internet Source

Submitted to Birmingham Metropolitan
College
Student Paper

Cristian Darie, Karli Watson. "Beginning
ASP.NET E-Commerce in C#", Springer Science
and Business Media LLC, 2009
Publication

Hari Narayn. "Chapter 9 React Back", Springer
Science and Business Media LLC, 2022
Publication

ebin.pub
Internet Source

formidable.com
Internet Source

gateway.ipfs.io
Internet Source

hdl.handle.net
Internet Source

ir.cwi.nl
Internet Source

Frank Zammetti. "Chapter 14 Feed Your Face:
Fooderator, the Client", Springer Science and
Business Media LLC, 2022
Publication

Exclude quotes Off

Exclude bibliography Off

Exclude matches Off

