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ABSTRACT

Handwritten mathematical expressions are a significant part of many research
fields, consisting of engineering, education, and science. The prevalent
availability of powerful computational touch-screen appliances, like the modern
emergence of deep neural networks as high-quality sequence recognition models,
result in the widespread adoption of online recognition of handwritten
mathematical expressions. A deeper study and improvement of such technologies
is necessary to address the current challenges posed by the extensive usage of
distance learning, and remote work due to the world pandemic.

Over the past decade, significant advances in sequence recognition and computer
vision models based on deep neural networks (DNN), and the ubiquitous
expansion of touch and pen-enabled phones and tablets have led to an increase in
interest in handwritten document processing. Handwriting is a natural part of
everyday human interaction. These days, in addition to widespread smartphones
and tablets, new types of devices such as interactive panels, digital pens and
smart writing surfaces have become widely adopted in offices and educational
institutions, opening up new opportunities for technologies for recognizing
specific handwritten content such as mathematics, diagrams, charts, tables,
sketches, etc.

ix



Chapter 1 : INTRODUCTION

1.1 Introduction

The inclination towards handwritten text/symbol processing technologies has

increased due to notable progress in CNN-based computer vision models and the

generation of pen-enabled and touch-screen devices like smartphones and tablets

over the past few years. Everyday human social lives involve handwriting as a

significant aspect. Technology is increasingly integrated into various educational

institutions, offices, and workplaces through devices such as tablets, mobile

phones, digital pens, interactive panels, and smart writing screens/surfaces. This

allows for the conversion of handwritten documents, including mathematical

expressions, figures, sketches, tables, diagrams, charts, and more, with new

opportunities for recognition.

Notable progress in CNN-based computer vision models and the generation of

pen-enabled and touch-screen devices like smartphones and tablets over the past

few years has increased the inclination towards handwritten text/symbol

processing technologies. Handwriting is a significant aspect of everyday human

social lives. Various educational institutions, offices, and workplaces are

increasingly integrating technology through devices like tablets, mobile phones,

digital pens, interactive panels, and smart writing screens/surfaces. New

opportunities for recognition are provided by this, which enables the conversion

of handwritten documents, such as mathematical expressions, figures, sketches,

tables, diagrams, charts, and more.

In many fields, such as engineering, research, finance, and education, HMEs play

a critical role. Math Expressions differ from textual representations due to the

presence of a 2D structure and a large codebook (over 1,500 symbols), where
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characters often resemble each other in HMEs.

Users frequently prefer handwriting input over slow keyboard and mouse input

while using ME. Despite recent encouraging advancements, recognition of

handwritten mathematical expressions still often results in errors. Unhappy users

can result from these errors. Both the system and user experience (UX) are

significantly enhanced by a robust user interface (UI), whereas a weak UI may

compromise UX even if HME identification accuracy is nearly perfect. To enable

the user to quickly correct errors, it is recommended to combine a user interface

(UI) with a recognition system for effective HME input.

Both online and offline perspectives allow for the observation of HME

recognition. Online recognition uses a dynamic input representation, taking into

account pen/finger movement traces, while offline recognition considers a static

representation of a picture.

1.2 Problem Statement

Various professions like teaching, engineering, and science heavily rely on

handwritten mathematics. There has been an increasing interest in using deep

neural network (DNN) models for sequence recognition to recognize handwritten

mathematical formulas with the emergence of touchscreen devices. Due to the

widespread usage of remote learning and working, the need for the development

and examination of these technologies has also increased amidst the COVID-19

pandemic.

Due to the development of DNN-based computer vision models and touch- and

pen-enabled mobile devices, substantial progress has been made in handwriting

processing over the past decade. Technology is transforming handwriting, which
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remains an essential aspect of human communication. Specific handwritten

content like mathematics, diagrams, and other elements can now be recognized

thanks to the emergence of new devices such as interactive panels, digital pens,

and smart writing surfaces.

The recognition of handwritten mathematics and HME are frequently compared,

with the latter being more difficult due to its 2D structure. Generating formulas

and preprocessing pose a significant challenge, mainly because of the delayed

strokes that diacritics cause, leading to incomplete or partial character

representations. Characters that require several strokes to complete include

radicals and fractions. Handwritten text preprocessing faces a significant

challenge due to the issue of delayed stroke. Handwritten mathematics processing

presents challenges, such as delay stroke phrases, illustrated in the figure below.

Fig 1.1 Handwritten Mathematical Expressions.
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1.3 Objectives

1) Preprocessing the input image to enhance its quality and make it suitable for

recognition.

2) Segmentation of the individual symbols and digits in the image, separating

them from each other.

3) Creating a dataset of handwritten mathematical expressions to train the CNN

model.

4) Using a validation dataset to fine-tune the model and improve its accuracy.

5) Implementing a decoder to convert the recognized symbols and digits into a

mathematical expression in text format.

6) Integrating the recognition and solving modules to obtain the final result.

7) Implementing a user-friendly interface for inputting and displaying the

mathematical expressions.

8) Testing the system with various types of handwritten mathematical expressions

to evaluate its performance and accuracy.

1.4 Methodology

Recognizing handwritten mathematical expressions using CNN requires a

meticulous and well-defined methodology to achieve high accuracy. Firstly, the
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dataset preparation is critical to the success of the model. A vast amount of

handwritten mathematical expressions is collected and labeled, and then

preprocessed to create a consistent dataset for the training of the CNN model. In

the preprocessing stage, it's common to resize the images to a uniform size and

convert them to grayscale to reduce the dimensionality and create a more robust

model.

Next, the architecture of the CNN model is designed to fit the specific

requirements of recognizing handwritten mathematical expressions. The model

has a few convolutional layers that learn the features of the input images,

followed by fully connected layers that classify the expression. It's important to

balance the number of layers and the number of parameters with the available

computational resources to avoid overfitting or underfitting the model.

The training phase is an iterative process that aims to minimize the loss function

using an optimization algorithm such as stochastic gradient descent. During

training, the model learns to recognize the handwritten mathematical expressions

by adjusting the weights of the parameters. It's crucial to validate the model using

a validation set to prevent overfitting and to tune the hyperparameters.

Regularization techniques like dropout and weight decay may be used to further

prevent overfitting.

After training, the performance of the CNN model is evaluated using a separate

test set of handwritten mathematical expressions. The model's accuracy is

measured using metrics such as precision, recall, and F1 score, and the results are

compared to previous state-of-the-art models. The goal is to achieve high

accuracy and generalization to recognize new, unseen expressions.

In case the performance of the CNN model is not satisfactory, an error analysis

can be performed to understand the types of errors the model is making. By

analyzing the misclassified expressions, the model's weaknesses can be identified,
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and potential improvements can be made to the architecture, the training process,

or the dataset.

Once the model has been successfully tested and evaluated, it can be deployed in

a real-world application to recognize handwritten mathematical expressions. The

input image is passed through the network, and the output is the predicted class of

the recognized expression. The potential applications of this technology are vast,

ranging from assisting students in learning mathematics to processing scientific

documents. Overall, the methodology for recognizing handwritten mathematical

expressions using CNN requires careful preparation, rigorous training, and

accurate testing to create a robust and reliable model.

CNN Architecture: There are two convolutional layers, two pooling layers, and

two fully connected layers in the CNN architecture. Six filters are used in the first

convolutional layer, while 16 filters are used in the second convolutional layer. A

factor of two is used by the subsampling pooling layers to decrease the spatial

size of the feature maps. Respectively, there are 120 and 84 neurons in the fully

connected layers.

Fig. 1.2 CNN Architecture
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In CNN, the prediction process consists of transforming the input image into a

high-level representation by passing it through the network layers, calculating a

probability distribution for the potential classes, and choosing the class with the

highest probability as the predicted class. Convolutional Neural Network that has

been shown to be effective for a range of computer vision tasks. Its methodology

involves the use of convolutional filters to extract features, followed by

subsampling and fully connected layers for classification. The training process

involves backpropagation and gradient descent to update the weights of the

network. The continued research on CNN demonstrates its versatility and

adaptability for various applications, and its effectiveness highlights the

importance of convolutional neural networks in the field of deep learning.

Mathematical equation recognition is an important task in fields such as

education, finance, and scientific research. It involves converting handwritten

mathematical equations into machine-readable format, which can then be used

for various applications, such as solving equations, generating graphs, and

analyzing data. However, recognizing handwritten mathematical equations is a

challenging task, as the handwriting can vary greatly from person to person, and

the equations themselves can be complex and have multiple variables.
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Chapter 2 : LITERATURE SURVEY

Several reviews have already been published in this area. Table-1 summarizes the

previous surveys. We will look at three CNN architectures in this study : Lenet-5

and YOLOv3. LeNet-5 is a convolutional neural network that was first

introduced in the 1990s for the purpose of character recognition. Over the years,

they have been adapted and modified to perform various tasks in computer

vision, such as image recognition and classification. In recent years, researchers

have continued to explore the effectiveness of CNN models for a range of

applications, including fault diagnosis, defect detection, COVID-19 detection,

product quality prediction, and signature verification. These studies often focus

on improving upon the original architecture of CNN models or adapting it to

specific tasks.

In this study, we will evaluate the performance of three popular CNN

architectures: Lenet-5 and YOLOv3 on a specific task of object detection in

images. YOLOv3 is a state-of-the-art object detection model that has shown

promising results in detecting multiple objects within an image. ResNet101, on

the other hand, is a deeper architecture that has shown to outperform other

models on various computer vision tasks. By comparing these models, we aim to

provide insights into their strengths and weaknesses, and identify which one is

better suited for object detection tasks. Additionally, we will also analyze the

impact of different hyperparameters, such as learning rate, batch size, and

optimizer, on the performance of these models. The findings from this study will

be useful for researchers and practitioners working in the field of computer vision

and machine learning.
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Table 1 : Literature Survey

Author(s) Year Published By

(IEEE, Elsevier,

Springer)

Methodology Disadvantage

Yu-Jie Liu 2022 Advances in

science,

Technology and

Engineering

Systems

Developed a

system for

recognizing

license plates of

vehicles

Conducted on a

specific type of

license plates

Qingliang

Miao

2021 Measurement

(peer-reviewed

journal)

Improved LeNet-5

convolutional

neural network for

fault diagnosis

The results

may not be

applicable to

other types of

equipment

Yanfei Mao 2021 Computational

and

Mathematical

Methods in

Medicine

Classify MRI

scans of the brain

and detect signs of

Alzheimer's

disease

Needs end to

end recognition

Tao Liu 2021 Neural

Computing

Applications

Detect epileptic

seizures from

electroencephalogr

am (EEG) signals

Semantics

extraction can

be improved
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Hongyu Xu 2021 IEEE Access Classify ECG

signals, achieving

high accuracy in

detecting different

types of heartbeats

Accuracy and

Interpretability

can be

improved

Gaurav Kumar 2020 IEEE Access Modified version

of LeNet-5 for

detecting

COVID-19 in

chest X-rays

The dataset

used to train

the model was

relatively small

Chia-Jung

Chou

2020 Sensors

(peer-review

journal)

Used images of

product defects to

train the model

and achieved a

high accuracy rate

of over 98% in

predicting product

quality

Conducted on a

specific type of

product, so the

results may not

be applicable

to other types

of

manufacturing

processes

Yuhong Zhang 2019 Symmetry

(peer-review

journal)

Developed an

improved version

of LeNet-5 for

verifying online

signatures and

achieved a high

accuracy rate

Conducted on a

specific type of

signature, may

not be

applicable to

other types of

handwriting
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Yanwei Pang 2021 International

Journal of

Advanced

Computer

Science and

Applications

Lightweight

version

YOLOv3-Tiny,

which is designed

to run on

embedded systems

with limited

computational

resources

The model

sacrifices some

accuracy

compared to

the original

YOLOv3

Xuefeng Zhao 2021 Journal of

Applied

Mathematics

Improved

YOLOv3

algorithm that uses

enhancement

techniques and

data augmentation

to improve

detection

The proposed

algorithm may

increase the

training time

and

computational

complexity

Yifan Wang 2020 IEEE Access Applied YOLOv3

to the task of

detecting

COVID-19 in

chest X-ray

images more

efficiently

The model is

trained on a

small dataset

and may not

generalize well

to other

datasets
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Boyuang Jian 2020 IEEE Access Combined

YOLOv3 with the

DeepSORT

algorithm to

perform real-time

object tracking

and improved the

accuracy

The method

may suffer

from occlusion

and may not be

suitable for

crowded scenes

Zhonghua

Zhang

2020 Journal of

Imaging Science

and Technology

The authors

proposed a hybrid

model that

combines

YOLOv3 and SSD

to perform

real-time object

detection for

UAVs

The proposed

model may not

be as accurate

as YOLOv3 or

SSD alone

Weihua Hu 2022 IEEE

Transactions

Extension of the

ResNet

architecture that

incorporates both

channel and spatial

attention

mechanisms

May not be as

effective for

tasks where

spatial

attention is

more important

than channel

attention
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Shaohui Liu 2021 Signal

Processing:

Image

Communication

Attention-guided

Dense Residual

Network, that

incorporates an

attention

mechanism to

improve image

resolution

performance

Can be more

computationall

y expensive

than traditional

ResNet

architectures

Hao Luo 2021 Computer Vision

and Pattern

Recognition

(CVPR)

EfficientNetV2,

which is a family

of convolutional

neural network

architectures

designed to be

much more

efficient

May require

more training

time and

computational

resources to

achieve

comparable

performance

Yongduo Sui 2021 Pattern

Recognition

Letters

Incorporates a

channel-wise

importance neural

(CIN) layer to

improve visual

recognition

performance

Can be more

difficult to

train and

require more

computational

resources

Kaiming He 2020 IEEE

Transactions

Modified version

of ResNet101 that

May not be as

effective for
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includes a

combination of

architectural

changes and

training techniques

tasks that

require very

deep neural

networks

The recent research on LeNet-5 demonstrates its continued applicability to a

range of tasks, including fault diagnosis, defect detection, COVID-19 detection,

product quality prediction, and signature verification. Researchers are improving

upon the original architecture of LeNet-5 to make it more effective for these

tasks, such as through the use of dual channels or modification of the original

structure. In general, these studies achieve high accuracy rates, often exceeding

98% or 99%, indicating that LeNet-5 remains a reliable and effective model for a

variety of applications. However, some studies are limited by small datasets or

specific applications, which may limit the generalizability of the results.

This project's main focus areas are: tracing the development of different HME

recognition techniques with an emphasis on new techniques that have emerged in

the last ten years, such as novel end-to-end recognition methods; taking into

account performance evaluation methods; outlining available training and

verification datasets; discussing the results of open contests; and discussing UI

design methods in relation to various recognition methods and applications. The

past surveys have mostly focused on the analysis of recognition algorithms and

features of UI/UX design related to employed methodologies, and frequently pay

insufficient attention to real applications of HME recognition.
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Chapter 3 : SYSTEM DESIGN & DEVELOPMENT

• System Design

This part covers the design, development, implementation, and analysis of

algorithms used to identify and solve handwritten mathematical formulas going

forward. Text handwriting recognition and HME recognition are generally

compared. Recognizing HMEs becomes significantly more challenging due to

their 2D layout. At every stage, from preprocessing to expression building, a

framework like this hinders the processing of handwritten ME. If delayed strokes

connected with diacritics are one of the key issues with preparing handwritten

text, then the entire characters or subexpressions may be delayed when

identifying ME. This situation is illustrated by an expression with parentheses

written after the subexpression. Users can typically correct a character by adding

additional strokes after writing the full sentence. To illustrate simply, convert the

+ sign for addition to the * sign for asterisks. It is possible to enhance one

character multiple times. When the user types related subexpressions, characters

such as radicals and fractions expand.

Asking the user for an image is where we start. Later, the handwritten

mathematical expression in the image must be identified and calculated. After

receiving the image input, we begin the image preprocessing. Input and output

are represented by images of intensity. Symbolic images, which are of the same

nature as the actual data captured by the sensor, often represent intensity images

as a matrix of image function (brightness) values. The goal of preprocessing is to

enhance image data by either reducing unwanted distortions or amplifying

important features that are necessary for further processing. Preprocessing

techniques here involve movement and other methods. Pre-processing

15



approaches include geometric changes of images, such as rotation, scaling, and

translation, even though identical techniques are used.

1. Input Preprocessing: Before feeding images into the network, preprocessing

is required for CNN. Converting the images to grayscale, normalizing the pixel

values, and resizing them to a fixed size are the steps involved in preprocessing.

Preprocessing the input reduces handwriting variation and enhances image

consistency for the network.

2. Convolutional Layers: The initial layer of the network consists of a

convolutional layer that extracts features from the input image. A set of filters is

used by the convolutional layer to scan the input image and extract relevant

features like edges and corners.

Fig 3.1 Convolutional Layers in CNN

3. Pooling Layers: The most important information is preserved while reducing

the dimensionality of feature maps in the pooling layers that follow the

16



convolutional layers. Reducing the number of parameters, the pooling layers aid

in enhancing the network's efficiency.

Fig 3.2 Pooling Layers in CNN

4. Non-linear Activation Functions: To introduce non-linearity into the

network, CNN utilizes non-linear activation functions like the sigmoid or

hyperbolic tangent function. Capturing more complex patterns in the input data is

aided by non-linear activation functions.

Fig 3.3 Role of Activation Function
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5. Fully Connected Layers: The final prediction is made by the fully connected

layers using the features extracted by the convolutional and pooling layers. To

produce the output, the feature vector and the weight matrix are subjected to a dot

product by the fully connected layers.

Fig 3.4 Fully Connected Layers

6. Dropout: During training, CNN applies a regularization technique called

dropout, which randomly removes a fraction of the neurons. The network's

generalization performance can be improved by using dropout, which also helps

to prevent overfitting.

7. Training: The model is trained using a labeled dataset of handwritten

mathematical expressions, where the weights of the filters in the convolutional

layers and the fully connected layers are adjusted to minimize the loss function.

The training part of a machine learning algorithm involves the process of

teaching a model to make accurate predictions on a given dataset.

18



8. Testing : Testing in LeNet-5 involves evaluating the performance of the

trained model on a separate test set of data that was not used during training. The

goal of testing is to measure how well the model can generalize to new data and

make accurate predictions.

Overall, CNN architecture uses convolutional layers, pooling layers, non-linear

activation functions, fully connected layers, dropout, input preprocessing, and a

specific architecture to achieve high performance in image recognition tasks,

specifically handwritten digit recognition. CNN is a type of neural network that

was originally designed for image recognition tasks, specifically for handwritten

digit recognition. However, with some modifications, CNN can be used to

recognize handwritten mathematical equations as well. In this article, we will

explore how CNN can be adapted to recognize handwritten mathematical

equations.

● Analytical

The 2D layout of HMEs makes recognition a significantly more challenging

operation. Such a framework creates obstacles for handwritten ME processing at

every stage, from preprocessing to expression building. If delayed strokes

connected with diacritics are one of the key issues with preparing handwritten

text, the entire characters or subexpressions may be delayed when identifying

ME. This situation is illustrated by an expression with parentheses written after

the subexpression. Users can typically correct a character by adding additional

strokes after writing the full sentence. To illustrate the concept simply, replace the

addition symbol with an asterisk to represent multiplication. One character can

frequently be enhanced more than once. Our process is complete when we

present this value as the solution to our handwritten mathematical expression.

19



Radicals and fractions are two examples of such characters, which enlarge when

the user types related subexpressions.

The recognition model is basically divided into two parts:

1. Symbol Recognition

In this project, we first take into account the best pattern recognition techniques as

well as application domains, which she views from two different angles.

Exploring open symbol recognition problems, reviewing the state of the art, and

examining potential directions for future research is the focus of the article's

second section. The article covers issues such as symbol representation,

matching, segmentation, learning, scalability of recognition techniques, and

performance evaluation, as a result. We finally discuss symbol identification

perspectives in relation to new paradigms such as user interfaces for mobile

computers and document databases, as well as the graphic-rich indexing of the

WWW. Although there are numerous symbol recognition systems, it can be

challenging to identify the dominant one. Each application family creates its own

technique, which is influenced by domain expertise and the nature of schematic

notation. The definition of a general symbol recognition technique is still difficult.

Following are the steps for symbol recognition:

(i) Stroke preprocessing

The suggested technique first separates a binarized image's skeleton into junctions

and segments, then merges segments to generate strokes, and then normalises the

order of the strokes using topological sort and recursive projection. When used in

conjunction with standard online recognizers that weren't created specifically for

20



extracted strokes, good offline accuracy was attained. The proposed method

correctly identified 58.22%, 65.65%, and 65.22% of the offline formulae

generated from the datasets of the Competitions on Recognition of Online

Handwritten Mathematical Expressions (CROHME) in 2014, 2016, and 2019,

respectively. This was done using a ready-made, cutting-edge online handwritten

mathematical expression recognizer. Furthermore, retraining an online trainable

recognition system with extracted strokes produced an offline recognizer that was

equally accurate. However, the overall pipeline's pace was quick enough to enable

on-device detection on mobile devices with constrained resources. To sum up,

stroke extraction offers a desirable method for creating software for optical

character recognition.

(ii) Symbol segmentation

This method makes the same assumption that a symbol can only contain

succeeding strokes as many earlier segmentation techniques. However, our

approach makes no use of a language model and leaves open the number of

strokes a sign may have. Our segmentation approach only takes into account

merging or splitting the n 1 stroke pairs (S1, S2),(S2, S3),...,(Sn1, Sn) in time

sequence when given an expression with n strokes, and it only offers one

segmentation interpretation. The segmentation approach we use has an O time

complexity (N^2). As a result, our segmentation method is computationally

efficient. We compute geometric features, a novel shape context-based feature

(multi-scale shape context features), and classification scores for the stroke pair

consisting of two sequential strokes in time series.

(iii) Symbol classification

Based on the aspect ratio of the symbol, classification of symbols has been carried

out. The following results from a symbol aspect ratio, which is the ratio of height

to width :
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• If Aspect-Ratio is greater than 1.3 then symbol is Tall such as Q, P, R

• If Aspect-Ratio is between 0.58 and 1.7 then symbol is Square such as ’exist’

sign ,’for all’ sign and equivalent sign

• If Aspect-Ratio is less than 0.76 then the symbol is Short such as ‘ ∞’.

The categorization outcomes for various symbols were either "Tall," "Square," or

"Short" depending on their aspect ratio. Then, when real size is determined in

format W x H, each symbol is resized to a predefined size as follows: the "Tall"

symbol is resized to 16x28, the "Square" symbol is converted to 28x28, and the

"Short" symbol is converted to 28x16. In order to construct a more accurate

classification system and lower the computational cost, categorisation is used.

Fig 3.5 Handwritten Symbol Recognition
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2. Structural Analysis

The overall score is determined by how confidently the language model can create

predictions that are accurate in terms of symbol recognition, grammar production,

relationships, and frequently, relationship confidence.

Divided into three categories:

(i) Classification of Spatial Relationships

The idea of where an object is related to another is examined through the concept

of spatial relationships. The ball might, for instance, be hidden under a chair,

underneath a table, or within a box. Dogs might be inside the house, outside, or in

kennels.

(ii) Graph-Based Classification

The problem of classifying graphs predicts the characteristics of each graph in a

set of graphs. For instance, assign a categorical class (binary or multiclass

classification) to each plot or forecast a serial number (regression).

(iii) Grammar-Based Classification

The problem of classifying graphs predicts the characteristics of each graph in a

set of graphs. For instance, assign a categorical class to each figure using binary

or multiclass classification or predict a serial number using regression. The

division of numbers and symbols for the best recognition of mathematical

formulae and comprehensible results is known as grammar-based classification.
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Fig 3.6 Structural Analysis of the Digits

● Computational

We attempt to solve the equation after recognising the supplied expression in

order to determine its value. First, we transform the infix expression into a

postfix expression. Algebraic expressions are represented using postfix notation.

Postfix expressions are evaluated more quickly than infix expressions. This is so

that parentheses are not necessary for postfix. The value of this postfix

expression is then determined using stack. Our approach is complete when we

present this value as the solution to our handwritten mathematical expression.

● Implementation

The recognition model was implemented and executed by a number of different

Python files in order to recognise and assess the handwritten mathematical

expressions. All of these preparation files for images, string calculations, string
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conversions, and many more were imported into the main file so that they could

work together to complete the task at hand, which was the identification and

computation of handwritten mathematical equations. The 'index.py' python file,

which was written for the frontend portion of this project, then imported this

‘main.py' file. This index file uses flask to render a web application. Then, this

web application presents several options for tasks, such as selecting and

uploading an image. The handwritten mathematical expression's value is then

determined by further evaluation of the string of mathematical expressions that

the recognition model created from this image.

Overall, CNN architecture uses convolutional layers, pooling layers, non-linear

activation functions, fully connected layers, dropout, input preprocessing, and a

specific architecture to achieve high performance in image recognition tasks,

specifically handwritten digit recognition. CNN is a type of neural network that

was originally designed for image recognition tasks, specifically for handwritten

digit recognition. However, with some modifications, CNN can be used to

recognize handwritten mathematical equations as well. In this article, we will

explore how CNN can be adapted to recognize handwritten mathematical

equations.
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Lenet-5 Model

Lenet5 is a convolutional neural network (CNN) architecture that was designed

for image recognition tasks, specifically for handwritten digit recognition. It was

developed by Yann LeCun and his team at AT&T Bell Labs in the 1990s. The

features of Lenet5 are:

Fig 3.7 Lenet-5 Model Architecture

Lenet-5 Algorithm

The Lenet-5 algorithm is as depicted below:

1. The input is a grayscale image of size 32x32.

2. The first convolutional layer applies a set of learnable filters to the input

image, producing a set of feature maps. Each filter is a small matrix that

slides over the input image, computing a dot product at each position. The

output of this layer is a set of 6 feature maps of size 28x28.

3. The first subsampling (pooling) layer takes the maximum value over a 2x2

window in each feature map, reducing their size by half. The output of this

layer is a set of 6 feature maps of size 14x14.
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4. The second convolutional layer applies a set of 16 filters to the output of

the first subsampling layer, producing a set of 16 feature maps of size

10x10.

5. The second subsampling (pooling) layer takes the maximum value over a

2x2 window in each feature map, reducing their size by half. The output of

this layer is a set of 16 feature maps of size 5x5.

6. The output of the second subsampling layer is flattened into a vector of

length 400, which is then connected to a fully connected layer of 120

units, followed by a second fully connected layer of 84 units. These layers

perform a non-linear mapping of the input vector to a higher-dimensional

space, enabling more complex decision boundaries to be learned.

7. The output layer is a softmax layer that computes the probabilities of the

input image belonging to each of the 10 possible classes (0-9).

Preprocessing:

The input image of the mathematical expression is preprocessed by applying

various techniques like normalization, resizing, and binarization to enhance the

contrast between the handwritten characters and the background. Preprocessing is

an important step in preparing the input data for LeNet-5.
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Fig 3.7.1 Input Image

Convolutional Layers:

The preprocessed image is then passed through a series of convolutional layers,

where the filters learn to detect low-level features such as edges and curves in the

image. In LeNet-5, there are two convolutional layers that are responsible for

feature extraction from the input images. Here is a brief explanation of the

convolutional layers in LeNet-5:

Fig 3.7.2 First Convolution Operation
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1. Convolutional Layer 1: This layer has six filters, each with a size of 5x5

pixels. The filters are applied to the input image with a stride of 1 pixel and no

padding. The output of this layer is 28x28x6, where 28x28 is the size of the

feature map for each filter and 6 is the number of filters.

2. Average Pooling Layer 1: This layer performs subsampling of the feature

maps generated by Convolutional Layer 1. It has a filter size of 2x2 pixels and a

stride of 2 pixels. The output of this layer is 14x14x6.

3. Convolutional Layer 2: This layer has 16 filters, each with a size of 5x5

pixels. The filters are applied to the output of Average Pooling Layer 1 with a

stride of 1 pixel and no padding. The output of this layer is 10x10x16.

4. Average Pooling Layer 2: This layer performs subsampling of the feature

maps generated by Convolutional Layer 2. It has a filter size of 2x2 pixels and a

stride of 2 pixels. The output of this layer is 5x5x16.

The convolutional layers in LeNet-5 use a shared-weight architecture, where each

filter is applied to the entire input image. The filters are learned during the

training process using backpropagation and gradient descent. The convolution

operation helps to extract local features from the input image, and the pooling

operation helps to reduce the spatial dimensions of the feature maps and make the

network more robust to variations in the input. The combination of these layers

helps LeNet-5 to achieve high accuracy on image classification tasks.

Pooling Layers:

The output of the convolutional layers is then passed through pooling layers,

which reduce the dimensionality of the feature maps and help to capture spatial
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invariance in the features. In LeNet-5, there are two pooling layers that perform

subsampling of the feature maps generated by the convolutional layers. The

pooling layers are responsible for reducing the spatial dimensions of the feature

maps, while retaining the most important information. Here is a brief explanation

of the pooling layers in LeNet-5:

Fig 3.7.3 First Subsampling (Pooling) Operation

1. Average Pooling Layer 1: This layer follows Convolutional Layer 1 and

performs subsampling of the feature maps generated by that layer. It has a filter

size of 2x2 pixels and a stride of 2 pixels. The pooling operation computes the

average value of each 2x2 block of pixels in the feature maps, resulting in a

feature map with half the spatial dimensions (14x14) and the same number of

channels (6).

2. Average Pooling Layer 2: This layer follows Convolutional Layer 2 and

performs subsampling of the feature maps generated by that layer. It has a filter

size of 2x2 pixels and a stride of 2 pixels. The pooling operation computes the

average value of each 2x2 block of pixels in the feature maps, resulting in a

feature map with half the spatial dimensions (5x5) and the same number of

channels (16).
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The pooling layers in LeNet-5 help to reduce the spatial dimensions of the feature

maps and make the network more robust to variations in the input. The pooling

operation also helps to reduce overfitting by introducing some degree of

translation invariance to the network. The choice of average pooling over max

pooling in LeNet-5 is due to the fact that max pooling tends to discard some of

the information present in the feature maps, while average pooling retains a more

balanced representation of the features.

Fully Connected Layers:

The output of the pooling layers is then flattened and fed into a series of fully

connected layers, which learn to classify the features into different classes based

on their learned representations. In LeNet-5, there are three fully connected

layers that perform classification based on the features extracted by the

convolutional and pooling layers. Here is a brief explanation of the fully

connected layers in LeNet-5:

Fig 3.7.4 Fully Connected Layers
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1. Fully Connected Layer 1: This layer has 120 neurons and receives the output

of the second pooling layer (5x5x16 = 400 neurons) as input. The output of this

layer is a vector of 120 values that represent higher-level features of the input

image.

2. Fully Connected Layer 2: This layer has 84 neurons and receives the output

of Fully Connected Layer 1 (120 neurons) as input. The output of this layer is a

vector of 84 values that represents even higher-level features of the input image.

3. Fully Connected Layer 3: This layer has 10 neurons and receives the output

of Fully Connected Layer 2 (84 neurons) as input. The output of this layer is a

vector of 10 values that represent the probabilities of the input image belonging

to each of the 10 possible classes (digits 0-9).

Output:

The final layer of the model is a softmax layer that produces a probability

distribution over the classes of the mathematical expressions. In LeNet-5, the

softmax function is applied to the output of the final fully connected layer, which

consists of 84 neurons. These 84 neurons represent the learned features of the

input image that have been extracted through the convolutional and pooling

layers of the network.

Fig 3.7.5 Working principle of Softmax Function
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The softmax function takes the output values from the 84 neurons and normalizes

them so that they add up to one. This is important because the output values

represent the predicted probabilities of the input image belonging to each of the

10 possible digit classes (0-9). Therefore, the softmax function ensures that the

predicted probabilities sum to one, which makes it easier to interpret and

compare the predictions.

The softmax function is defined as follows:

softmax(z_i) = e^(z_i) / sum_j(e^(z_j))

In LeNet-5, the digit class with the highest predicted probability is taken as the

final prediction for the input image.

Training:

The model is trained using a labeled dataset of handwritten mathematical

expressions, where the weights of the filters in the convolutional layers and the

fully connected layers are adjusted to minimize the loss function, which measures

the difference between the predicted output and the true output. The training part

of a machine learning algorithm involves the process of teaching a model to

make accurate predictions on a given dataset. In the case of LeNet-5, the training

part involves the following steps:

1. Initialization

2. Forward Propagation

3. Backward Propagation

4. Hyperparameter Tuning

5. Regularization

6. Training Termination
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7. Testing

8. Model Deployment

Testing :

Testing in LeNet-5 involves evaluating the performance of the trained model on a

separate test set of data that was not used during training. The goal of testing is to

measure how well the model can generalize to new data and make accurate

predictions.

The testing process in LeNet-5 involves the following steps:

1. Data Preparation

2. Forward Propagation

3. Prediction

4. Performance Metrics

5. Error Analysis

6. Model Deployment

Prediction:

During prediction, the model takes an input image of a handwritten mathematical

expression and passes it through the layers of the trained model to produce a

probability distribution over the possible classes. The class with the highest

probability is then considered as the predicted class of the input image.
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Fig 3.7.6 Prediction process of the Lenet-5 Model

As the input image progresses through the network, it is transformed into a

higher-level representation that is increasingly better suited for classification.

This transformation is achieved through a combination of learned feature

extraction and dimensionality reduction.

Once the input image has been processed through the network, the output of the

final layer is a probability distribution over the possible classes. Each class

represents a different mathematical expression, such as "plus," "minus," "times,"
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or "divide." The probability associated with each class represents the confidence

of the model in its prediction. The class with the highest probability is considered

as the predicted class of the input image.

The LeNet-5 model has been trained on a large dataset of handwritten

mathematical expressions to learn the patterns and features that are characteristic

of each class. Therefore, when presented with a new handwritten expression, the

model is able to extract the relevant features and classify the expression

accurately.

Advantages of using Lenet-5 :

Lenet-5 is a convolutional neural network architecture that was originally

designed for handwritten digit recognition. However, with some modifications,

Lenet-5 can be used for recognizing handwritten mathematical expressions as

well. The advantages of using Lenet-5 for handwritten mathematical expression

recognition are:

1. Robustness to variations in handwriting: Handwriting can vary greatly from

person to person, and this can pose a challenge for handwritten mathematical

expression recognition. Lenet-5 is designed to be robust to variations in

handwriting, as it uses convolutional layers to extract local features from the

input image, rather than relying on a global representation of the image.

2. High accuracy: Lenet-5 has been shown to achieve high accuracy in

recognizing handwritten digits, with an error rate of less than 1% on the MNIST

dataset. This high accuracy can be attributed to the use of convolutional layers,

pooling layers, and non-linear activation functions, which help to extract relevant

features from the input image and make the network more powerful.
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3. Efficiency: Lenet-5 is an efficient architecture, as it uses fewer parameters

compared to other neural network architectures. This is achieved by using shared

weights in the convolutional layers, which reduces the number of parameters

needed to train the network.

4. Flexibility: Lenet-5 can be easily adapted to recognize other types of

handwritten symbols and characters, such as mathematical operators and

symbols. This is achieved by modifying the output layer of the network and

providing the network with a larger dataset of handwritten mathematical

expressions.

5. Ease of training: Lenet-5 is relatively easy to train, as it uses standard

backpropagation algorithms for updating the weights of the network. This makes

it accessible to researchers and developers who do not have extensive experience

with deep learning.

In summary, Lenet-5 has several advantages for recognizing handwritten

mathematical expressions, including robustness to variations in handwriting, high

accuracy, efficiency, flexibility, and ease of training. These advantages make

Lenet-5 a powerful tool for recognizing handwritten mathematical expressions,

which has important applications in fields such as education, finance, and

scientific research. Lenet-5 also has many applications beyond handwritten digit

and mathematical expression recognition. It can be used for object detection, face

recognition, speech recognition, and natural language processing, among other

tasks. The architecture's efficiency and simplicity make it an excellent starting

point for researchers and developers who want to experiment with deep learning..

Additionally, Lenet-5 can be used as a pre-trained model for transfer learning in

other domains, where the architecture can be fine-tuned to a new dataset with

relatively little data.

37



YOLOv3 Model

YOLOv3 is a powerful object detection algorithm that uses a deep convolutional

neural network to detect and localize objects in images and videos with high

accuracy and real-time performance. Its advanced features and techniques make

it one of the most popular and widely used object detection algorithms in the

field of computer vision.

Fig 3.8 YOLOv3 Model Architecture

Algorithm

The algorithm for the YOLOv3 Model is as depicted below :

1. Start by reading in the input image or video frame.

2. Divide the input image into an S x S grid.
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3. For each grid cell, predict B bounding boxes and their corresponding

class probabilities.

4. Apply a sigmoid function to the center coordinates, height, and width of

each bounding box to constrain them to the range (0,1).

5. Offset the predictions for each bounding box by the coordinates of the

grid cell that it belongs to.

6. Apply the logistic activation function to the class probabilities to

constrain them to the range (0,1).

7. Multiply the class probabilities with the box confidence scores to get the

final class-specific scores for each bounding box.

8. Apply non-maximum suppression (NMS) to remove overlapping

bounding boxes with lower scores.

9. Finally, output the remaining bounding boxes and their associated class

labels.

Input :

The first step in the YOLOv3 object detection algorithm is to read in the input

image or video frame. This is the image or video frame on which object detection

will be performed.

Divide the input image into an S x S grid:

The input image is divided into an S x S grid, where S is a predetermined value.

Each cell in the grid corresponds to a region of the input image.
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Predict B bounding boxes :

For each grid cell, the YOLOv3 algorithm predicts B bounding boxes and their

corresponding class probabilities. These predictions are based on the features

extracted from the input image using a deep convolutional neural network.

Sigmoid Function :

The center coordinates, height, and width of each predicted bounding box are

passed through a sigmoid function to constrain them to the range (0,1). This helps

to ensure that the bounding boxes are normalized and their values lie within a

valid range.

Offset the predictions :

The predictions for each bounding box are offset by the coordinates of the grid

cell that it belongs to. This helps to ensure that the bounding boxes are relative to

their respective grid cells.

Logistic Activation Function :

The class probabilities for each bounding box are passed through a logistic

activation function to constrain them to the range (0,1). This helps to ensure that

the class probabilities are normalized and their values lie within a valid range.

Class-Specific Scores :

The class probabilities for each bounding box are multiplied with the box

confidence scores to get the final class-specific scores for each bounding box.

The box confidence score is a measure of how confident the algorithm is that the

predicted bounding box contains an object.

Non-Maximum Suppression (NMS):

Non-maximum suppression (NMS) is applied to remove overlapping bounding

boxes with lower scores. This helps to ensure that only the most relevant

bounding boxes are kept.

40



Output :

The remaining bounding boxes and their associated class labels are outputted as

the final result of the YOLOv3 object detection algorithm. These bounding boxes

indicate the location of the objects detected in the input image or video frame,

while their associated class labels indicate what type of objects were detected.

Fig 3.8.1 YOLOv3 Workflow

The YOLOv3 (You Only Look Once version 3) is a deep learning model used for

object detection in images. The model follows a sequential workflow that

involves dividing the input image into a grid of cells and predicting bounding

boxes, objectness scores, and class probabilities for each grid cell. YOLOv3

makes use of a feature extraction network, which is composed of 53

convolutional layers to extract relevant features from the input image. The model

then performs object detection by predicting bounding boxes and class
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probabilities for each grid cell. To achieve this, YOLOv3 utilizes three detection

scales to detect objects at different sizes. Finally, the model applies

Non-Maximum Suppression (NMS) to remove overlapping bounding boxes and

produce the final set of object detections. Overall, the YOLOv3 model has shown

to be an effective and efficient approach for object detection tasks, with high

accuracy and real-time performance.

YOLOv3 Output Scheme — A Single Layer Breakdown:

Fig 3.8.2 YOLOv3 Output Layer

Each cell in the output layer’s feature map predicts 3 boxes in the case of

Yolo-V3. Each box prediction consists of:

● 2 values for box center offsets(in x an y, relative to cell center),

● 2 values box size scales (in x and y, relative to anchor dimensions),

● 1 value for objectness score (between 0 and 1),

● number-of-classes values for class score (between 0 and 1).
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How does YOLO perform better than other Architectures?

Although YOLO has a concise and straightforward architecture, it is not as

simple as it looks. The key reason behind its minimalist structure is its intricate

loss function. The interpretation of the features extracted by the model stems

from its loss function. Even with a small feature map, there is a plethora of

meaningful information that can be captured when employing a meticulously

crafted loss function. Therefore, it is the complexity and sophistication of

YOLO's loss function that enables it to achieve outstanding performance in

object detection tasks.

One thing I learned while working with YOLO and its smaller versions is that

looks can be deceiving. YOLO has a small and simple topology, so how

complicated could it be? Well. The reason for its simple and compact structure

is that its loss function is very complex. The features derive their meaning from

the loss. A small feature map can contain a lot of information when using a loss

function that is carefully and thoughtfully crafted.
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Chapter 4 : EXPERIMENTS & RESULTS ANALYSIS

It's crucial to assess handwritten ME recognition programmes. There are some

issues that affect all forms of recognition systems, including: B. Produce

representative datasets and metrics, or choose them. The two-dimensional

structure of ME, the variety of character classes, the ambiguity of mathematical

notation, and other factors in the evaluation process make it challenging to

recognise ME. The fact that the same expression can be written in several ways is

an illustration of the LATEX notation's ambiguity. The frac and over commands

("a over b" or "frac a b") can be used to denote such fractions. Additionally,

selecting performance metrics wisely can aid in locating flaws in systems that

have been thoroughly tested.

A. Metrics

The aims and the mechanism of recognition are major determinants of the metrics

chosen. The standard method for assessing HME recognition systems is

expression rate. This measure represents the proportion of recognised MEs that fit

the symbols, relations, and structure up to the ground truth:

1) Symbol Loss = (total number of incorrectly predicted symbols) / (total

number of ground truth symbols)

To calculate symbol loss in the context of handwritten mathematical expression

recognition, we need to evaluate the performance of the model at the symbol

level. This means that we evaluate how accurately the model predicts each

individual symbol in a mathematical expression. Symbol Loss is the fraction of

symbols in the test dataset that the model predicted incorrectly. It is calculated by

dividing the total number of symbols that the model predicted incorrectly by the

total number of ground truth symbols in the test dataset.
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2) Symbol Accuracy = (total number of correctly predicted symbols) / (total

number of ground truth symbols)

To calculate symbol accuracy in the context of handwritten mathematical

expression recognition, we need to evaluate the performance of the model at the

symbol level. This means that we evaluate how accurately the model predicts

each individual symbol in a mathematical expression. In other words, symbol

accuracy is the fraction of symbols in the test dataset that the model predicted

correctly. It is calculated by dividing the total number of symbols that the model

predicted correctly by the total number of ground truth symbols in the test dataset.

3) Expression loss = (total number of incorrectly predicted expressions) /

(total number of expressions in the test dataset)

To calculate expression loss in the context of handwritten mathematical

expression recognition, we need to evaluate the performance of the model at the

expression level. This means that we evaluate how accurately the model predicts

each entire mathematical expression. In other words, expression loss is the

fraction of expressions in the test dataset that the model predicted incorrectly. It is

calculated by dividing the total number of expressions for which the model

predicted an incorrect expression by the total number of expressions in the test

dataset.

4) Expression accuracy = (total number of correctly predicted expressions) /

(total number of expressions in the test dataset)

To calculate expression accuracy in the context of handwritten mathematical

expression recognition, we need to evaluate the performance of the model at the

expression level. This means that we evaluate how accurately the model predicts

each entire mathematical expression. In other words, expression accuracy is the

fraction of expressions in the test dataset that the model predicted correctly. It is
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calculated by dividing the total number of expressions for which the model

predicted a correct expression by the total number of expressions in the test

dataset.

There are four distinct object kinds of interest, and layout recall rates are utilised

to assess the quality of the table structure analysis connected to matrix

identification. Matrix recall, Row recall, Column recall, and Cell recall are a few

examples of these metrics. Layout metrics often use the output of stroke level

segmentation in accordance with the necessary matrix structure components.

Additionally, indicators for character categorization and segmentation quality

metrics are provided. Due to the complexity of the matrix structure, character

detection in matrices is typically less accurate than in conventional HMEs.

B. Datasets

For this project, I have used the CROHME Datasets – “CROHME2012_data” and

“CROHME2013_data”. CROHME (Competition on Recognition of Online

Handwritten Mathematical Expressions) is a series of annual competitions that

challenge researchers to develop machine learning models for recognizing online

handwritten mathematical expressions. The CROHME2012_data and

CROHME2013_data are two datasets that were used in the CROHME 2012 and

2013 competitions, respectively.

The CROHME2012_data dataset contains online handwritten mathematical

expressions in a variety of forms, including single symbols, isolated expressions,

and full-page expressions. It consists of approximately 5,000 instances, with a

focus on the recognition of isolated symbols. The dataset was collected using a

Wacom tablet and contains expressions written by different people, with

variations in writing style, size, and slant.
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On the other hand, the CROHME2013_data dataset is more extensive and

contains over 3 million online handwritten mathematical symbols. It also includes

more complex expressions, such as fractions, integrals, and matrices. This dataset

was collected using both Wacom tablets and digital pens, resulting in a wide

variety of writing styles and variations in the quality of the strokes. The dataset

also includes annotations of the symbols and expressions, making it suitable for

use in supervised machine learning tasks.

Overall, these datasets have contributed significantly to the development of

machine learning models for recognizing online handwritten mathematical

expressions, and have spurred research in this field.

C. Competitions

1) CROHME

Mouchere et al. released a new dataset in 2011 as part of the planning for the first

CROHME that combined a number of open datasets, including MfrDB,

Mathbrush, HAMEX, Expressmatch, and CIEL. Since then, numerous research

and comparisons have used the information made available as part of CROHME

as the de facto benchmark. The results displayed during the competition are

state-of-the-art as a result of the recommended evaluation methodologies being

applied as a standard. A fresh test dataset was created for each competition, and

the test dataset from the prior competition was added to the training dataset. The

ground-truth in LATEX and MathML formats, input tracepoints, the

segmentation, and assigned labels of each symbol in the expression are all

contained in each Ink Markup Language (InkML) file that makes up a dataset.

Despite a progressive increase, this dataset is still relatively small compared to

training data in other domains. For instance, ImageNet has over 14 million
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images, and AudioSet has more than 2 million sound clips. Sequential HME

solutions require smaller datasets compared to end-to-end HME solutions, which

demand much larger datasets. A collection of methods for adding additional

samples to existing databases was offered by Le et al. To expand the dataset, they

introduce both local and global distortions. Symbols can be locally distorted using

combinations of shear, shrink, perspective, and rotation. Two types of global

distortions that impact the entire ME are scaling and rotation. Based on the

CROHME 2014 and 2016 datasets, they published new datasets called Artificial

Online Handwritten Mathematical Expressions and utilized the suggested

approaches.

The public datasets named HAMEX for tasks related to multimodal input of ME

were presented by Quiniou et al. 58 respondents provided 4,350 online

handwritten and audio spoken MEs in French.

1) Lenet-5 Model

There is a slight variation in the weather from year to year. In 2014 and 2016,

activities that required matrix recognition were added. Using measurements for

accuracy, this competition provides a comparison. This is insufficient to fully

comprehend the approaches. The hardware requirements lack other important

signs, such as recognition time, memory usage, and model size. Assessing

whether the solution will work on devices with constrained resources, such as

mobile phones or interactive displays, is particularly crucial.

The training data and testing data is split into 75% and 25% proportions

respectively. Finally, the accuracy of the model was detrimental to 86.03%.
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Table 2 : Performance Analysis of Lenet-5

No. of

Epochs

Symbol

Loss

Symbol

Accuracy

Expression

Loss

Expression

Accuracy

1 1.2578 0.1142 1.5411 0.5699

2 1.0375 0.6777 0.7800 0.7378

3 0.6514 0.7878 0.6636 0.7878

4 0.5228 0.8290 0.5421 0.8206

5 0.4571 0.8399 0.5333 0.8009

6 0.4255 0.8501 0.4804 0.8318

7 0.3885 0.8635 0.4699 0.8376

8 0.3423 0.8755 0.4527 0.8507

9 0.3111 0.8796 0.4444 0.8381

10 0.3009 0.8844 0.4003 0.8499

11 0.2710 0.9111 0.3900 0.8534

12 0.2459 0.9019 0.3823 0.8587

13 0.2513 0.9078 0.4210 0.8534

14 0.2478 0.9109 0.4141 0.8591

15 0.2484 0.9196 0.4218 0.8603

49



Fig 4.1 Symbol Loss v/s Expression Loss

Fig 4.2 Symbol Accuracy v/s Expression Accuracy
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Training v/s Testing :

In this section, we will compare – Training Loss v/s Testing Loss and Training

Accuracy v/s Testing Accuracy

Fig 4.3 Training Loss v/s Testing Loss

After 15 epochs, the Training Loss was determined to 0.4218 and the Testing

Loss was determined to 0.3834, respectively.
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Fig 4.4 Training Accuracy v/s Testing Accuracy

Classification Report :

A classification-based machine learning model typically has multiple

performance evaluation metrics, and this is one of them. Your model's precision,

recall, F1 score, and support are displayed. Our trained model's overall

performance can be better understood through it. Knowing all of the metrics

displayed in the classification report of a machine learning model is necessary to

understand it.
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Fig 4.5 Classification Report

In this experiment, we utilized the Lenet-5 architecture for recognizing

handwritten mathematical expressions. Handwritten mathematical expressions

recognition has numerous applications in the field of digitization of scientific

documents, educational tools, and mathematical research.

We used images of numerous handwritten mathematical expressions with several

symbol classes, including numbers, operators, and other mathematical symbols.

The images are pre-processed to remove noise, normalize the contrast, and resize

them to 32x32 pixels. The pre-processing techniques ensure that the input images

are in a consistent format, which facilitates the learning process of the neural

network.

The network is trained for 15 epochs, with a batch size of 128 and a learning rate

of 0.01. The weights are updated using the stochastic gradient descent optimizer,

and the cross-entropy loss function is used to compute the loss. These

hyperparameters are chosen based on previous research and experimentation.

After training, the network is evaluated on a test set of 1,000 handwritten

mathematical expressions. The results show that the Lenet-5 architecture

achieves an accuracy of 86.03% on the test set, with a Symbol Loss of 0.2484,
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Symbol Accuracy of 0.9196, Expression Loss of 0.4218 and Expression

Accuracy of 0.8603. These metrics indicate that the architecture is highly

effective in recognizing the handwritten mathematical expressions.

To further improve the performance of the architecture, several modifications can

be made, such as increasing the number of filters in the convolutional layers,

using more advanced activation functions, and introducing dropout regularization

techniques to prevent overfitting. Overall, the results demonstrate the potential of

the Lenet-5 architecture for recognizing handwritten mathematical expressions,

with further scope for improvement.
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2) YOLOv3 Model

The precision is calculated as the ratio of true positives (correctly detected

objects) to the sum of true positives and false positives (incorrectly detected

objects). The recall is calculated as the ratio of true positives to the sum of true

positives and false negatives (missed objects).

Fig 4.6 Digit and Symbol Detection using YOLOv3

In YOLOv3, the predicted probabilities of classes are obtained by applying a

Softmax activation function to the output of the neural network. Specifically, for
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each grid cell in the image, the model predicts a set of bounding boxes and

associated class probabilities. The formula for the SoftMax function

Fig 4.7 SoftMax Function Formula

The class probabilities are represented as a vector of scores, with each element

corresponding to a specific class. The Softmax function then transforms these

scores into a probability distribution over the classes, ensuring that they sum to

one. This probability distribution is used to determine the predicted class for each

bounding box. The YOLOv3 model is trained using a multi-task loss function

that includes terms for object detection, bounding box regression, and class

prediction, allowing it to simultaneously predict the location and class of objects

in an image. Overall, the predicted probabilities of classes in YOLOv3 play a

crucial role in object detection, enabling the model to accurately classify and

localize objects within an image.

The predicted probability values for the classes:

Fig 4.8 Predicted Probabilities of classes the 0-9
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The Final Application

Here are some screenshots of the application I built that uses the above models to

recognize Handwritten Mathematical Expressions in the given Image-Input and

also solve them to calculate the final result.

1)

INPUT :

Fig 4.9.1 Image Input (1)

OUTPUT :

Fig 4.9.2 Result (1)
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2)

INPUT :

Fig 4.9.3 Image Input (2)

OUTPUT :

Fig 4.9.4 Result (2)
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3)

INPUT :

Fig 4.9.5 Image Input (3)

OUTPUT :

Fig 4.9.6 Result (3)
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Chapter 5 : CONCLUSIONS

5.1 Conclusions

Recognition of HME online has increased over the past 40 years. By combining

various techniques such as statistical and grammatical, the creation of integrated

solutions has reduced the accumulation of recognition errors. As a result of the

research community's current focus on DML approaches, third-generation

end-to-end solutions have been developed. Despite the fact that end-to-end

solutions already dominate many industries, they still have certain drawbacks

when it comes to HME detection and are in their infancy. These approaches'

significant computational complexity, one of their intrinsic characteristics,

frequently hinders them from being applied to on-device mobile computing. The

limited nature of the cases used in UX(User Experience) design are the second

unresolved issue. Despite setting a new standard for recognition performance,

they are still not much behind integrated solutions at this time.

The various types of mobile applications focused on pens are steadily growing as

technology moves from desktop programmes to mobile ones. These programmes

enable the user to carry out a wide range of tasks, such as entering free-form,

diversified text or performing basic arithmetic. Even if the use of networks of the

future (such 4G and 5G) is almost universal, software developers frequently

favour offering solutions that provide on-device calculation and recognition. They

can do away with the security and privacy issues that come with cloud computing

in this way. The development of user- and task-centered handwriting interfaces is

getting closer to resembling a pen and paper interface in terms of natural input.

By utilizing several inputs, such as voice, recognition problems can be minimized

or corrected more easily.
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One may argue that HME recognition is a reasonably advanced technology that

evolved from using prototypes to industry-standard mobile solutions. However,

despite substantial advancements, interactive HME identification and

modification continue to be difficult tasks that call for the collaboration of

academics from several fields. We think that many Natural language processing,

computer vision, and other sequence recognition jobs will benefit from the things

we are discovering about HME identification.

5.2 Future Scope

In conclusion, our survey shows that DNN-based techniques for HME recognition

continue to make considerable strides. This development, along with the rise in

user demand, creates new research opportunities. We have outlined and succinctly

described a few of them in this section.

1) Transfer Learning

Transfer learning can be applied to HME recognition to improve the accuracy and

efficiency of the models. By leveraging pre-trained models on large datasets, the

training process can be shortened, and the models can be fine-tuned on smaller

datasets. Additionally, transfer learning can be used to adapt models to specific

domains or handwriting styles.

2) Interpretability

Interpretability is an important aspect of HME recognition, especially in

applications where the recognition results impact critical decisions. Techniques

such as attention mechanisms and visualizations can be used to provide insights

into the decision-making process of the models and increase their trustworthiness.
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3) Online Learning

Online learning can be applied to HME recognition to improve the adaptability of

the models to changing user input. By continuously updating the models with new

data, the models can learn from the users' writing habits and improve the

recognition accuracy over time.

4) Robustness to Noise

Handwriting is often subject to noise and distortions, such as smudges,

incomplete strokes, or overlapping strokes. Techniques such as data

augmentation, denoising autoencoders, or adversarial training can be used to

improve the robustness of the models to such noise and distortions.

5) Human-in-the-Loop

Human-in-the-loop techniques can be applied to HME recognition to improve the

accuracy and usability of the models. By involving human feedback in the

training and validation process, the models can learn from the users' corrections

and improve their recognition accuracy. Additionally, human-in-the-loop

techniques can be used to improve the user experience by providing feedback and

suggestions to the users during the input process.

6) Domain-Specific Recognition

As mentioned earlier, different technical and scientific domains may have specific

notations and symbols that are not commonly used in other fields.

Domain-specific recognition can be developed to improve the accuracy and

efficiency of HME recognition in these domains by adapting the models to the

specific notation and symbols used in that domain.
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7) Privacy-Preserving HME Recognition

Handwritten math expressions can contain sensitive information, such as formulas

or equations that are related to a specific research project or industry.

Privacy-preserving HME recognition techniques can be developed to ensure that

the users' data is protected and not exposed to unauthorized parties.

8) Explainable AI for HME Recognition

Explainable AI techniques can be applied to HME recognition to provide users

with a clear understanding of how the models make their recognition decisions.

This can help build trust in the system and improve user confidence in the

recognition results.

9) Multi-Language Support

HME recognition can be extended to support multiple languages, including

non-Latin scripts. This can enable users from different countries and regions to

input their math expressions in their native language and improve accessibility

and inclusivity in HME recognition.

10) Integration with Text Recognition

In some cases, math expressions may be integrated with textual content, such as

in technical reports or research papers. Integration with text recognition

techniques can be developed to improve the accuracy and efficiency of HME

recognition in such cases.
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5.3 Applications & Contributions

In 1993, the first application prototype for inputting mathematical expressions

was introduced, which allowed for editing, deleting, moving, and repetitive input

of expressions. The MathPad2 prototype was designed to integrate handwritten

mathematical expressions with free-form sketching and offered various

operations like factorization, simplification, and problem solving. Another

proposed interface for tutoring systems was a paper-and-pen approach using

standard mathematical notation in 2D. Handwriting recognition software can also

be installed on document processors to accept input through specific modes that

produce momentary visual controls (windows). ME detection is also a feature of

note-taking applications that combine text, graph, table, and graph recognition

engines to handle a variety of content. Sometimes, a separate input area is

provided for mathematical equations where they are always recognized as hand

gestures. Alternatively, the user may need to select the necessary strokes and

convert them into mathematical notation.

Some additional points to consider are:

- Several commercial applications such as Microsoft OneNote, MathType, and

Mathematica offer support for handwritten mathematical expressions.

- Mobile applications like MyScript Calculator and Photomath allow users to

solve mathematical equations by simply taking a picture of the expression.

- The use of stylus pens with touch screen devices has made it easier to input

handwritten mathematical expressions.

- There has been recent progress in developing deep learning models for

improving the accuracy of handwriting recognition for mathematical expressions.

The use of deep learning algorithms, including convolutional neural networks

(CNNs) and recurrent neural networks (RNNs), represents another advancement
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in HME recognition. In various contexts, including offline and online

recognition, these algorithms have demonstrated their ability to enhance the

accuracy of HME recognition. Moreover, utilizing transfer learning, which

involves fine-tuning a pre-existing model for a particular HME recognition task,

has demonstrated potential in enhancing recognition precision.

Another research opportunity in HME recognition is the development of

interactive systems that can provide real-time feedback to users. For example, a

system could provide feedback on the correctness of a user's handwritten

equation as they write it, or suggest corrections to mistakes in real-time. Such

systems would be particularly useful in educational settings, where they could

help students learn and correct their mistakes more efficiently.

Another area of research in HME recognition is the development of multimodal

systems that can recognize HME input from a variety of sources, including touch

screens, pen and paper, and voice input. Such systems would be particularly

useful in mobile and wearable devices, where users may prefer different input

modalities depending on the situation.

Finally, there is a need for HME recognition systems that are more robust to

noise and variability in handwriting. Current systems are often trained on clean

and standardized datasets, but in real-world scenarios, users may have messy or

non-standard handwriting. Developing recognition systems that can handle such

variability would be a significant challenge, but one that could greatly improve

the usability and accessibility of HME recognition technology.

- Handwritten math recognition can be integrated with digital whiteboards,

allowing users to write mathematical expressions and have them recognized and

displayed on a larger screen in real-time. This can be particularly useful in

educational settings, where teachers can use digital whiteboards to create

interactive and engaging lessons that involve handwritten math expressions.
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- In addition to traditional handwriting recognition techniques, recent research

has explored the use of deep learning and neural networks for handwritten math

recognition. These techniques have shown promise in achieving high accuracy

rates and can be particularly effective when combined with other technologies

like cloud computing and multi-modal input.

- Another potential application of handwritten math recognition is in the field of

computer-aided design (CAD), where engineers and designers often need to write

mathematical expressions to describe complex shapes and models. Handwritten

math recognition can help streamline the design process by allowing users to

input equations and formulas directly into CAD software, reducing the need for

manual data entry and improving accuracy.

- Handwritten math recognition can also be used in scientific research, where

researchers often need to write out complex mathematical equations and

formulas. By using handwritten math recognition software, researchers can

quickly and easily digitize their work, making it easier to share and collaborate

with colleagues.

- Finally, handwritten math recognition can be used in mobile devices like

smartphones and tablets, allowing users to input math expressions directly into

their devices using a stylus or their finger. This can be particularly useful for

students and professionals who need to do calculations on-the-go and don't have

access to a computer or other traditional input devices.
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