

IMPROVING EFFICIENCY OF APACHE SPARK

BY TUNING ITS INTERNAL FEATURES

Project report submitted in partial fulfillment of the

requirement for the degree of Bachelor of Technology

in

Computer Science and Engineering/Information

Technology

By

Shivank Prajapati 191424

Arnav Saraswat 191544

Under the supervision of

Dr. Hari Singh

to

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology,

Waknaghat, Solan-173234, Himachal Pradesh

i

CERTIFICATE

This is to certify that the work which is being presented in the project report

titled “IMPROVING EFFICIENCY OF APACHE SPARK BY TUNING ITS

INTERNAL FEATURES” in partial fulfilment of the requirements for the

award of the degree of B.Tech in Computer Science And Engineering and

submitted to the Department of Computer Science & Engineering and

Information Technology, Jaypee University of Information Technology,

Waknaghat is an authentic record of work carried out by SHIVANK

PRAJAPATI, 191424 and ARNAV SARASWAT, 191544 during the period

from July 2022 to May 2023 under the supervision of Dr. HARI SINGH,

Department of Computer Science & Engineering and Information Technology,

Jaypee University of Information Technology, Waknaghat.

SHIVANK PRAJAPATI,191424

ARNAV SARASWAT,191544

The above statement made is correct to the best of my knowledge.

Dr. HARI SINGH

ASSISTANT PROFESSOR (SG)

Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat.

ii

PLAGIARISM CERTIFICATE

iii

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Improving

efficiency of Apache spark by tuning its internal features” in partial

fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering/Information

Technology submitted in the department of Computer Science & Engineering

and Information Technology, Jaypee University of Information Technology

Waknaghat is an authentic record of my own work carried out over a period

from July 2022 to May 2023 under the supervision of Dr. Hari Singh

(Assistant Professor (SG), Computer Science & Engineering and Information

Technology).

I also authenticate that I have carried out the above-mentioned project work

under the proficiency stream Cloud Computing.

The matter embodied in the report has not been submitted for the award of any

other degree or diploma.

Shivank Prajapati, 191424. Arnav Saraswat, 191544.

This is to certify that the above statement made by the candidate is true to the

best of my knowledge.

Dr. Hari Singh

Assistant Professor (SG)

Computer Science & Engineering and Information Technology

Dated:

iv

ACKNOWLEDGEMENT

Firstly, we express our heartiest thanks and gratefulness to almighty God for

His divine blessing makes us possible to complete the project work

successfully.

We are really grateful and wish my profound my indebtedness to Supervisor

Dr. Hari Singh, Assistant Professor (SG), Department of CSE & IT Jaypee

University of Information Technology, Wakhnaghat. Deep Knowledge and

keen interest of my supervisor in the field of “Data Science, Data Processing

and Cloud Computing” to carry out this project. His endless patience,

scholarly guidance, continual encouragement, constant and energetic

supervision, constructive criticism, valuable advice, reading many inferior

drafts and correcting them at all stage have made it possible to complete this

project.

We would like to express our heartiest gratitude to Dr.Pradeep Kumar Gupta,

Associate Professor, Department of CSE, for his kind help to finish this

project.

We would also generously welcome each one of those individuals who have

helped us straight forwardly or in a roundabout way in making this project a

win. In this unique situation, we might want to thank the various staff

individuals, both educating and non-instructing, which have developed their

convenient help and facilitated our undertaking.

Finally, we must acknowledge with due respect the constant support and

patients of our parents.

Shivank Prajapati, 191424. Arnav Saraswat, 191544.

v

TABLE OF CONTENT

CERTIFICATE I

PLAGIARISM CERTIFICATE II

CANDIDATE’S DECLARATION III

ACKNOWLEDGEMENT IV

TABLE OF CONTENT V

LIST OF FIGURES VII

LIST OF TABLES IX

ABSTRACT X

CHAPTER 1: INTRODUCTION 1

1.1 INTRODUCTION 1

1.2 PROBLEM STATEMENT 3

1.3 OBJECTIVE AND METHODOLOGY 12

1.4 ORGANIZATION 18

CHAPTER 2: LITERATURE SURVEY 19

CHAPTER 3: SYSTEM DEVELOPMENT 28

3.1 ANALYTICAL 28

3.1.1 CONSTRAINTS AND ASSUMPTIONS 30

3.1.1.1 CONSTRAINTS 30

3.1.1.2 ASSUMPTIONS 31

vi

3.1.1.3 USE CASE DIAGRAM 31

3.2 IMPROVEMENTS TO THE EXECUTION ENGINE 33

3.2.1 MEMORY MANAGEMENT 33

3.2.2 NETWORK LAYER 34

3.3 MATHEMATICAL 35

CHAPTER 4: PERFORMANCE ANALYSIS 37

4.1 PROCESS OVERVIEW 41

4.2 EXPERIMENTAL SETUP 42

4.3 WORKLOAD 46

4.4 PARAMETERS 46

CHAPTER 5: CONCLUSIONS 48

5.1 RESULTS 48

5.2 CONCLUSION AND FUTURE SCOPE 49

REFERENCES 51

APPENDICES 53

vii

LIST OF FIGURES

Sr. No. Figure Title Figure Number Page No.

1.

Apache Spark

software stack,

with specialized

processing

libraries

implemented over

the core engine.

1. 2

2. Features of

Apache Spark

2. 4

3. Architecture of

Spark

3. 6

4. Ecosystem of

Spark

4. 6

5. RDD system in

Spark

5. 8

6. RDD workflow 6. 9

7. Infographic of

Spark architecture

7. 11

8. Performance

tuning in Spark

8. 12

9. Spark vs Hadoop 9. 31

10. Hadoop based

architecture

10. 32

11. Spark based work

architecture

11. 32

12. Metrics dashboard

for Spark

streaming

12. 33

13. Base Master View 13. 37

viii

14. Job running with

cache

14. 37

15. Job running with

persist

15. 38

16. Distributing job

among workers

16. 38

17. 1st slave view 17. 39

18. 2nd slave view 18. 39

19. Job broadcasted

across slaves

19. 40

20. Log view- initial

state

21. 40

21. Log view-

terminated state

21. 41

22. Process Overview 22. 42

ix

LIST OF TABLES

Sr. No. Title Table Number Page No.

1 List of parameters,

range, and default

values

1. 46

2 Benchmark

figures

2. 48

3 Grid search results 3. 48

4 Random search

results

4. 48

5 Evolutionary

Optimization

results

5. 48

x

ABSTRACT

We are always enhancing Spark's speed and usefulness. To improve Spark's

usability, we and other community members are adding a substantial number

of standard libraries that provide scaled variations of popular data analysis

methods. For instance, in the previous year, the size of Spark's MLlib machine

learning library increased by a factor of 4. Additionally, utilising DataFrames

or SQL, it is simple to access external data sources using our pluggable data

source API. These APIs make up one of the most integrated standard libraries

for "big data" and will surely prompt creative design choices that will make

the building of workflows more effective.

Big data is used to refer to data of the order of terabytes and beyond. This data

is often difficult to process due to its sheer size. This is where a solution in the

form of big data processing and handling platforms comes in. Apache spark is

one such open-source platform. Spark has many configurational parameters

that can affect the execution time to various degrees depending upon the

nature of the job and manually changing these configurations to achieve the

best configuration for the job can be very challenging. After assessing various

works and studies, we have decided on using Grid search with a finer tuning,

Controlled Random Search and ANN algorithms to find the best

configurations for achieving a better efficiency. Ultimately, we find the fastest

algorithm that can compute the best configurations.

Additionally, Spark is being utilized more and more in research initiatives,

such as large-scale neuroscience, graph processing, online aggregation, and

genomic data processing. We anticipate that Spark's sizable amount of built-in

functionality and small amount of code will make it useful for both system-

and application-oriented projects.

This article's functionality is all open source and accessible at

spark.apache.org.

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

There are tremendous potential and formidable computational hurdles

associated with the expanding volume of data in business and research. Users

required a new mechanism for spreading computing across numerous nodes

when the volume of data exceeded the capacity of a single computer. As a result,

a range of innovative cluster programming paradigms aimed at different

workloads have proliferated. New models were created for new workloads since

the original versions of these models were rather specialised. For instance,

Google created Pregel for iterative graph algorithms and Dremel for interactive

SQL queries, while MapReduce offered batch processing. The open-source

Apache Hadoop platform is also the focus of systems like Storm and Impala.

One-size-fits-all approaches are becoming less popular, even in the realm of

relational databases. Unfortunately, the majority of big data applications call for

a combination of diverse processing techniques. Diversity and chaos are at the

heart of "big data." A typical pipeline needs SQL-style queries, iterative

machine learning, and code similar to MapReduce to load data. Therefore, a

separate engine may result in complexity as well as inefficiency. Some

applications can't be represented in any engine well, forcing users to patch

together many solutions.

2

Figure 1. The implementation of customised processing libraries over the

basic engine of the Apache Spark software stack.

A group from the University of California, Berkeley began work on the Apache

Spark project in 2009 with the goal of creating an uniform engine for distributed

data processing. Spark expands MapReduce's programming style with a "Stable

Distributed Dataset," or RDD, which is an abstraction for data-sharing. With the

help of this straightforward addition, Spark is now able to execute a variety of

processing workloads that previously needed different engines, such as SQL,

streaming, machine learning, and graph processing (see Figure 1). These

implementations achieve comparable performance by employing the same

optimizations as the specialised tools (such as incremental updates and column-

oriented processing), but they run like libraries on a single engine, making them

straightforward and effective. We claim that the results are more general than

particular to certain workloads. When combined with data sharing, MapReduce

may imitate any distributed computation and can thus handle a wide range of

workloads.

Spark's generality has numerous vital blessings. First, apps are less difficult to

expand due to the fact they use a unified API. second, combining processing

responsibilities is extra green; whereas earlier systems required writing records

to storage for transmission to every other engine, Spark can perform many

extraordinary functions at the identical statistics, typically in reminiscence.

subsequently, Spark allows new programs (together with graph-interactive

3

queries and non-stop system learning) that had been not viable with preceding

structures.

A powerful analogy on the fee of unity is to compare smartphones with disparate

cellular gadgets that preceded them (consisting of cameras, mobile phones, and

GPS gadgets). with the aid of unifying the features of these devices,

smartphones have enabled new packages that combine their features (together

with video messaging and Waze) that have been no longer viable on a single

device. bag. for the reason that its launch in 2010, Spark has end up the

maximum lively open source or large facts processing undertaking, with over

1,000 individuals. The assignment is utilized by greater than 1,000 companies,

from generation organizations to banking, retail, biotechnology and astronomy.

The maximum extensively publicized implementation is over eight thousand

nodes. As Spark advanced, the group sought to maintain to leverage its energy

as a unified engine. The crew hold to construct an included well-known library

on pinnacle of Spark, with capability from statistics ingestion to gadget getting

to know. customers locate this potential powerful; in surveys we discover that

most of the people of customers contain more than one Spark libraries in their

utility. As parallel statistics processing will become mainstream, the

composability of processing functions could be one of the maximum critical

concerns for both usability and overall performance. an awful lot of the records

evaluation is exploratory, with customers trying to fast comprise library

capabilities right into a single workflow. however, for huge data particularly,

duplicating facts between extraordinary systems is obvious for overall

performance. consequently, users want generalizable and composable

summaries.

1.2 Problem Statement

“IMPROVING EFFICIENCY OF APACHE SPARK BY TUNING ITS

INTERNAL FEATURES.”

4

We all know that when developing a program, it is important to pay attention

to performance as it helps in computing in-memory data. Spark jobs can be

optimized in many ways, so let us take a closer look at each one.

Spark and Its Capabilities

It is a free and open-source cloud (cluster) computing framework for actual-

time records processing. One of the key features is in-memory (main memory)

cluster computing, which in turn speeds up software processing. Spark presents

a programming interface across clusters with facts parallelism that is implicit

and is also fault tolerant. It covers a wide variety of workloads, like batch

packages, iterative algorithms, interactive queries and streaming.

Figure 2. Features of Apache Spark.

• SPEED

For processing big amounts of data, Spark about hundred times quicker than

Hadoop's MapReduce. it is able to also get this speed through properly managed

partitioning.

• STRONG CACHING

5

Powerful cache and disc built-in abilties are supplied via a easy coding layer.

• DEPLOYMENT

It may be utilized by integrating Mesos, YARN for Hadoop, or Spark's cluster

management.

• REAL-TIME

Because of in-memory (main memory) calculation, it gives decreased latency

and actual-time computation.

• POLYGLOT

Excessive-stage APIs for Java, Scala, R, and Python are offered built-in

Polyglot Spark. those four languages are all capable of generating Spark code.

additionally, it gives Python and Scala shells.

Summary Spark’s architecture

Spark's layers and components are loosely connected and feature a properly

built-in tiered layout. extra extensions and libraries are applied integratedto this

layout.

Figure 3 describes the basic architecture of Spark. The strength of Spark is

constituted of two abstractions:

• Directed acyclic Graph (DAG)

• Resilient distributed Dataset (RDD)

6

Figure 3. Architecture of Spark

As evident from Figure 4, the Spark system has components like Spark

Streaming, SQL, Mlib, etc.

Figure 4. Ecosystem of Spark

• SPARK CORE

Spark center is the base engine for massively parallel and allotted computing.

moreover, additional libraries constructed on pinnacle of the center allow a

ramification of streaming, sq., and gadget mastering workloads. it is chargeable

for managing and troubleshooting garage, scheduling jobs inside a cluster,

distributing and monitoring, and interacting with storage structures.

7

• SPARK STREAMING

Spark Streaming, part of Spark used to method real-time data streaming. So it's

a beneficial addition to the core of Spark's API. This permits excessive-

throughput and stream processing of live records streams which is fault tolerant.

• Spark SQL

Spark SQL, a newer module for Spark that merges relational computation with

Spark API's functional programming. helps querying statistics through SQL or

Hive query language. For those acquainted with RDBMS, Spark SQL can ease

migration from previous equipment and push the limits of conventional

relational computing.

• GraphX

GraphX, a Spark API for Graphs and Graph-parallel computing. therefore, we

make bigger Spark RDDs with resilient dispensed assets graphs. At a excessive

degree, GraphX extends Spark's 1RDD abstraction by way of introducing a

resilient disbursed property Graph - a Directed multigraph with properties

associated with each Edge and Vertex.

• MLlib (Machine Learning)

MLlib is machine learning Library. Spark MLlib is used to run machine learning

on Apache Spark.

• SparkR

This is an R package. Provides an implementation of disbursed dataframes.

Spark is packed with high-level libraries together with guide for R, square,

Python, Scala, Java, and more. those general libraries power seamless

integration into complex workflows. moreover, you can expand its abilties by

means of integrating numerous services which include MLlib, GraphX, sql data

frames, and streaming services.

8

Resilient Distributed Dataset (RDD)

RDDs are the essential for any Spark application. RDD stands for:

• Resilience: it's far fault tolerant and may recover statistics in case of

failure.

• distributed: facts dispensed across multiple nodes inside the cluster.

• Datasets: collections of cut up information with values.

Figure 5. RDD system in Spark

This is a layer of abstracted facts on pinnacle of disbursed collections. it's far

inherently immutable and obeys lazy ameliorations.

Information in an RDD is split into blocks based totally on keys. RDDs are very

resilient. The same statistics block is replicated to multiple executor node, so

you can fast get over troubles. So if one Executor nodes fails, every other node

will preserve to process the facts. This lets in you to leverage the abilties of a

couple of nodes to carry out characteristic computations in no time for your

dataset.

It's an abstraction of the disbursed collection's records. it is unchanging by

nature and lazy modifications.

An RDD divides its data into sections consistent with a key. RDDs are very

strong, meaning that that they can speedy get better from any problems since

9

the identical facts chunks are duplicated over several executor nodes. hence,

information processing will continue despite the fact that 1 Executor nodes fails.

using the speed of several nodes, we may also swiftly behavior our purposeful

computations towards our dataset in this manner.

Moreover, as soon as created, RDDs are immutable. Immutable way an item

whose country cannot be modified after advent, but which may be reliably

transformed.

Speaking of distributed environments, records in an RDD are split into logical

walls that may be computed on specific nodes of the cluster. This permits us to

carry out adjustments or movements at the whole facts in parallel. don't worry

about the distribution either. due to the fact Spark will deal with that. Figure 6

describes working of Spark RDDs. Figure 5 showcases the RDD system.

Figure 6. RDD workflow

RDDs may be created by the use of methods, parallelize current collections in

driver software, and to reference records units in external storage systems

together with: Shared report structures, HDFS, HBase, and so on.

RDDs can help you perform following type of operations:

• Transformation: Operations applied to create new RDDs.

• Action: implemented to an RDD, tells Apache Spark to apply a

computation and return the end result to the driver.

10

Working of Spark’s architecture

The master node has a driver application that drives the utility (see Figure 7).

The code we write behaves like a driver software. With an interactive shell, the

shell acts as a driver software. in the driver code, first create a Spark context.

think the Spark context is the gateway to all Spark capabilities. this is similar to

database connections. All instructions that run at the database undergo the

database connection. in addition, the entirety we do in Spark goes through the

Spark context.

The Spark context functions with the cluster supervisor now, controlling the

tasks/jobs. The driver software and Spark context manage activity execution in

the cluster. A task is cut up into a couple of tasks which are dispensed across

worker nodes. each time an RDD is created in Spark context, it is able to be

dispensed to one-of-a-kind nodes and cached there.

A worker node is essentially a slave node with a job to execute an assignment.

these obligations are accomplished on a partitioned RDD on the worker node,

so the results are back to his Spark context.

The Spark context picks up the process, splits the job into duties and dispatches

them to worker nodes. those responsibilities operate on a partitioned RDD, carry

out operations, gather consequences, and go back to the primary Spark context.

Increasing the range of employees permits jobs to be cut up throughout a couple

of partitions and run in parallel on multiple systems. it will likely be plenty

faster.

extra workers means greater memory size, which permits jobs to be cached and

run quicker.

11

Figure 7. Infographic of Spark architecture

• Step 1: Client sends Spark user software code. when software code is

sent, the driver

transforms user code, along with variations and movements, right into a

logical graph (DAG). This section also performs optimizations

consisting of pipeline variations.

• Step 2: The logical graph, DAG, is then transformed into a physical

execution hierarchy with many tiers. Then, every segment creates an

execution unit referred to as a project. Then the tasks bundled and

despatched to the cluster.

• Step 3: Here the driver communicates with the cluster

supervisor/manager and demands resources. The cluster

manager/supervisor begins executors on workers nodes on behalf of

driver. Then driver submits the task to the executor based on data

alignment. whilst the performer starts, it registers with the driver.

therefore, the driving force has a complete overview of the performers

performing the mission.

12

• Step 4: All through task execution, the driver software monitors running

executors. The drivers node also configure future duties based totally on

data placement/position.

1.3 Objective and Methodology

Spark overall performance tuning means manner of adjusting the settings for

recording the cores, memory, and times used for your system. This manner

ensures greatest Spark overall performance and forestalls Spark resource

hunger. Areas of performance tuning in Spark are described in Figure 8.

Figure 8. Performance tuning in Spark

Tuning is the system of modifying the machine's reminiscence, cores, and

instance recording parameters. With the assist of this procedure, Spark performs

at its excellent and aid constraints are prevented. based on system-specific

parameters, all attributes and settings are efficiently changed to assure highest

quality useful resource consumption. there is an in-memory computing issue to

Apache Spark. As a end result, cluster resources just like the CPU and important

memory might also turn out to be restricted.

13

To keep memory, RDDs are from time to time saved in a serialised manner.

facts serialisation aids in memory intake discount, storage optimization, and

desirable network overall performance.

Powerful tuning allows:

• Assures efficient and really apt usage of assets.

• cast off exhausting tasks.

• increase the system's speed.

• ensure the process is on the suitable execution engine.

Data Serialization

Converts an in-memory object to another format that can be saved to a file or

sent over a network. It plays an important role in the performance of distributed

applications. Slow computation due to formats that serialize slowly or consume

large files. Apache Spark provides his two serialization libraries:

• Java Serialization

• Kryo Serialization

Java Serialization - Objects are serialized in Spark using the

ObjectOutputStream framework and can be run in any class that implements

java.io.Serializable. Serialization performance can be controlled with the

java.io.Externalizable extension. It's flexible but slow, resulting in a large

serialized format for many classes.

Kryo serialisation - Spark may utilise the Kryo library to serialise items

(Version 2). It doesn't support every Serializable type, while being much tighter

compared to Java serialisation. We must pre-register for the classes to get higher

results. By using SparkConf to initialise our job and using

conf.set("spark.serializer", "org.apache.spark.serializer.KyroSerializer"), we

may change to Kryo.

14

For registering our class in Kryo, we employ the registerKryoClasses function.

We are required to raise spark.kryoserializer.buffer configuration if our objects

are huge. The value need to be substantial enough to accommodate the biggest

item that we intend to serialise.

Memory Tuning

Keep in mind 3 things while optimizing memory usage:

Java items may be accessed, but devour two to five instances greater memory

than raw information in fields. The reason for such behavior is:

• every unique Java object has an "object header". the size of this header

is sixteen bytes. occasionally the object includes less data, so in such

cases it is able to be large than the data.

• Java String raw string data has approximately 40 bytes of overhead.

String uses UTF-16 encoding internally, so it stores each character as 2

bytes. a 10-character string can easily consume 60 bytes.

• common collection classes including HashMap and LinkedList use

linked data structures. There you have got a "wrapper" object for each

access. This object has each a header and a pointer (8 bytes each) to the

following object inside the list.

• Collections of primitive types as "boxed objects". example:

java.lang.Integer.

15

Data Structure Tuning

We can lessen memory intake by using warding off Java features that add

overhead. There are numerous approaches to do this:

• avoid nested structures containing many small items and guidelines.

• Use numeric IDs or enum objects rather than strings for keys.

• in case your RAM size is less than 32 GB, set the JVM flag

–xx:+UseCompressedOops to create pointers to four bytes as opposed to eight

bytes.

Garbage Collection Tuning

JVM's process of garbage collection becomes an issue when huge churn RDDs

get stored programmatically. Java deletes old objects to make new ones. Track

all obsolete objects and locate unused ones. But the point is garbage collection's

price in Spark is similar to the amount of java objects. So for smaller objects he

recommends using Spark's data structures. Another way to achieve this is

storing the object in serialized format. So there is only 1 object/RDD partition.

Memory Management Tuning

Spark's memory management is segregated into 2 categories: storage and

execution. "Execution memory" as the name suggests is utilised for computing

in joins, shuffles, and aggregates. Storage is utilised for internal data

propagation and in-cluster caching. A single area M is shared by storage and

execution. The storage can utilise all of the memory while the execution

memory is not in use. For storage memory, the same is true. If required,

execution can exhaust the store. This is only done up until a particular threshold

R is reached for storage memory consumption.

With this design, we may obtain numerous qualities. First off, if caching is not

used, the programme can ustilise the whole available storage for execution. Data

blocks in applications that employ caching will cause it to reserve a limited

storage space, i.e. R, that is impervious to eviction.

16

Although we have two pertinent configurations, consumers don't need to change

them. Since default values apply to the majority of workloads:

• M's size is described by memory.fraction as a percentage of (JVM's heap

space-300MB) (default 0.6). The remaining 40% is kept in user's data

structure, Spark internal metadata, and OOM error protection in the

event of small and huge records.

• R is displayed as a part/fraction of M via memory.storageFraction

(default 0.5).

Garbage Collection tuning in Spark

Step one in tweaking Apache Spark's garbage collection is to bring together data

on how often trash collection takes place. additionally, it tracks the length of

waste pickup time. that allows you to accomplish this, use the Java option -

verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps. whilst the Spark

task runs again, a notification will seem within the people log whenever trash

collection takes place. not in the drivers programme, however inside the worker

node, are these logs.

The Java's heap space is cut up into areas. old and young. younger generations

own transient items, whereas older generations own long lasting items. The

elder generation's lengthy-lived RDDs are the target of the trash collection

adjustment. It additionally intends to be huge enough to preserve the assets of a

youthful generation. This permits us to collect temporary objects produced in

the course of task execution while not having to do a complete trash collection.

the following actions ought to facilitate attaining this:

• There might not be sufficient memory to complete the work if full trash

collection is called repeatedly earlier than it's far finished.

• we can decrease the amount of RAM wanted for caching if OldGen is

nearly full in line with garbage collection information. this can be

accomplished via decreasing spark.memory.fraction; although, caching

fewer objects is ideal than delaying task completion. Alternately, we will

17

reduce -Xmn by way of lowering the dimensions of the younger

generation.

Relying on our utility and the quantity of RAM consumed, Apache Spark

garbage collection settings may also have exclusive outcomes.

Factors apart form the ones mentioned that can be used to improve

performance:

a. Parallelism Level

Each application's stage of parallelism desires to be excessive enough to utilise

the whole cluster. Spark determines the quantity of "Map" tasks to execute on

every document based totally on the size of the document. A 2nd reason can be

the amount of parallelism. To alter the default, we might also adjust the

configuration setting spark.default.parallelism.

b. Memory Usage of Spark's Reduce Task

Despite the fact that RDDs match in our RAM, we often run into the

OutOfMemoryError problem. this is because of our project groupByKey's

running set being very huge. this may be fixed with the aid of growing

parallelism such that the input set for each system is condensed. due to the fact

that Spark employs a unmarried executor JVM for a selection of activities and

has a reasonably-priced task release cost, we can also enlarge the wide variety

of cores in our cluster.

c. Using large variables in broadcasts

Using the broadcast capability in SparkContext decreases the size of every

serialised job. flip a big item from the motive force programme utilized by a

task into a printed variable. It commonly evaluates activities which are 20 Kb

or much less for optimization.

18

d. Locality of Data in Apache Spark

Data locality has a considerable effect on how well Spark Jobs execute. The

computation is quicker while the facts and the code that manipulates the records

are gift. however, if the two are awesome, both the code or the records must be

transferred. Because serialised code is smaller than a block of information, it

can be sent from one place to every other extra fast.

There are numerous ranges of locality based totally on facts current area. From

closest to furthest, on this order:

• The process local setting need to be in the same JVM as the executing

code for the best locality.

• in this, NODE nearby is positioned at the equal node. this is therefore

due to the fact method nearby is a whole lot faster at transferring records

throughout processes.

• No pref facts does not have a geographical choice and is to be had

international.

• Rack local records is positioned at the server's identical rack. facts is

sent over the network over a unmarried transfer because it's far located

at the equal rack however on a separate server.

• Any data that isn't in the very same rack is stored elsewhere inside the

network.

1.4 Organization

• AWS

• Azure

• Apache Spark

• Python

• Oracle Java

19

CHAPTER 2: LITERATURE SURVEY

[1] Zahria, Reynolds, Xin and others

The expansion of data quantities in business and research creates both enormous

potential and computing difficulties. Users required new technologies to scale

out calculations to several nodes when data volumes grew beyond the capacity

of a single computer. As a result, the amount of novel cluster programming

models addressing various computing workloads has skyrocketed. For example,

MapReduce allowed batch processing, but Google also created Dremel for

interactive SQL queries and Pregel for iterative graph algorithms. At initially,

these models were somewhat specialised, with new models produced for

different workloads. Systems like Storm and Impala are additionally specialised

inside the open-source Apache Hadoop stack. The tendency has been away from

"one-size-fits-all" systems, even in relational databases.

Unfortunately, the majority of large-data applications necessitate combining

many processing modalities. A general pipeline includes MapReduce-like code

for data loading, SQL-like queries, and iterative machine learning since "big

data" by its very nature is varied and chaotic. Therefore, specialised engines can

lead to complexity and inefficiency since users must integrate many systems,

and some applications can never be described effectively in any engine.

The next gen of computer applications will require data processing (scalable),

yet this often entails a complicated series of processing processes using several

computing technologies. The Spark project offered a unified programming

paradigm and engine for large data applications to make this process easier. Our

experience demonstrates that a strategy like this can accommodate current

workloads well and provide consumers with significant advantages.

Apache Spark, we believe, emphasises the value of composability in large data

programming libraries and encourages the creation of more readily

interoperable libraries.

20

[2] Basha and Ramachandra

Actually, it's a highly significant approach and a very demanding task to analyse

and process the SPARK in a fast and economical manner. And as is customary,

SPARK helps people quickly and easily grasp huge quantities of data through

quick and easy visualisation. There are numerous programmes on the market

for creating such things studied, although one of the better tools is "SPARK,"

which creates the data to be adopted for a repository and maintaining

"BIGDATA" items. Numerous techniques were created and proposed for

evaluating and enhancing 'SPARK' success (performance). The study focuses

mostly on fine-tuning configuration parameter technique.

Despite the fact that 'SPARK' is affected by a series of parameters, a map that

minimised the relevant parameters had an effective influence.

The major goal of this effort is to improve "SPARK's" overall performance by

speeding up job execution. Time savings are achieved by adjusting a few of the

factors related to map reduction. Understanding these parameters is crucial

since there are several sorts of parameters with awkward (incorrect) values that

have a detrimental effect on performance as a whole. In this research, we offer

a strategy that reduces task execution time and accurately and effectively

optimises disc utilisation. In a heterogeneous environment, it precisely increases

the overall functioning of Spark by 38.53% over the base system.

For this project, the base system configuration parameter of Apache SPARK

was used to analyse and examine Twitter data. The study demonstrates changing

the MapReduce job's parameter settings. Configuration parameters must be

adjusted according to particular application until the waiting resource is

completely utilised to achieve better results. Administrators of SPARK should

use caution while choosing and changing the parameter's values. Since

carelessness causes performance to decline. As a result, the paper-research

suggests the "tuning approach," which improves overall performance by 38.5%

over SPARK framework's default setup. At this time, SPARK has hundreds of

different parameters.

21

[3] Dunner, Parnell, Atasu, Sifalakis and Pozidis

This paper investigates Apache Spark's performance bounds for ML

applications. To start, examine the features of a cutting-edge disbursed ML

algorithms that are built inside Spark and contrast it with a reference of

implementation using MPI, a high performance/efficiency computing

environment, that is similar. Paper pinpoints the Spark framework's most

important bottlenecks and closely examine how they affect the algorithm's

performance. Paper then suggests a variety of doable methods to reduce some

of Spark's overheads to enhance performance.

It is demonstrated that, to achieve the greatest performance from any

implementation, thorough algorithm tuning is required to account for the trade-

off between calculation communication and time delay. Performance is not just

dependent on maximising computational effectiveness and framework-related

overheads. The ideal trade-off depends on the characteristics of the distributed

algorithm as well as the infrastructure and framework. Finally, we use these

technological and algorithmic advancements to 3 distinct disbursed linear ML

algorithms that are built into Spark. We discuss our findings and demonstrate

how adopting the proposed improvements may lower the performance gap

between Spark and MPI from 20 to 2 times with the aid of five significant

datasets.

In this study, it is shown that compared to similar MPI implementations, vanilla

Spark implementations of distributed ML can exhibit performance losses of

more than an order of magnitude. Language-dependent overheads are

responsible for a significant portion of this loss.

It is demonstrated a reduction in this gap with MPI to only 2 after removing

these overheads by offloading crucial calculations into C++, combining this

with a number of useful enhancements to Spark, and effectively tweaking the

method. We come to the conclusion that improving the computational

efficiency of the implementation is insufficient for creating high-performance,

disbursed ML applications in Spark and other distributed computing

frameworks.

22

The algorithm must be carefully modified to take into account the tendency of

the particular system on which such an application will be used. Algorithms

with a tuning parameter that the user may utilise to adjust to changes in system-

level conditions are therefore quite interesting from a research standpoint.

[4] Ahmed, Barczak, Susnjak and Rashid

Massive-scale dataset garage, processing, and analysis the usage of massive

data analytics has come to be a crucial tool for the sector. New allotted

computing frameworks like Spark and Hadoop provide powerful methods to

take a look at large volumes of information. Spark profits a number of

popularity because of the availability of its application programming interface

(API) and its overall performance, surpassing the MapReduce framework in

reputation. The combination of the extra than a hundred and fifty parameters in

every of those frameworks has a sizable impact on cluster overall performance.

The system administrator might also easily set up their system applications

thanks to the preset machine settings, and they can use factory-set parameters

to gauge the overall performance in their particular cluster.

The use of a cluster that has been set up in our lab, this research compares the

performance of Spark and Hadoop with the aid of inspecting the maximum vital

input splits, resource use, and shuffle settings. tweaking those settings through

a huge number of tests the usage of a trial-and-errors method. WordCount and

TeraSort were selected as the 2 workloads to be evaluated for you to examine

the comparative analysis frameworks. Execution time, throughput, and speedup

are the 3 elements used to calculate performance measures. Our experimental

findings confirmed that the proper parameter selection and enter data size had a

big effect on both system performances.

Whilst default parameter values are modified, the examination of the effects

reveals that Spark plays higher than Hadoop for small statistics units,

accelerating WordCount workloads by way of up to 2 instances and TeraSort

workloads by using up to 14 instances.

23

[5] Aziz, Zaidouni and Bellafkih

One of the famous open-source big-data processing frameworks is Spark, which

enables the concurrent processing of widespread datasets utilising a tremendous

quantity of machines. applications of this framework frequently employ

resource control tools like YARN, which allocate tasks a certain wide variety

of resources for execution. The data that the framework will look at is likewise

saved in a allotted report machine like HDFS. by way of executing jobs on a

single-node cluster or multi-node cluster architecture, this technique permits

green sharing of cluster resources. therefore, one tough task is to implement

efficient resource management of these large cluster infrastructures in an effort

to execute disbursed data analytics in a manner this is both sensible and less

expensive.

In this research, we develop several ML algorithms the usage of the MLlib, after

which we manage the sources (CPU, memory, and disc) to assess Apache

Spark's performance. The assessment of severa studies that target useful

resource management and records processing in huge facts platforms is offered

in this study. moreover, we use Spark to do a scalability look at. Paper examines

processing times and speedups. it's far concluded that after the cluster reaches a

selected size, including greater nodes is now not required to growth overall

performance and processing time.

The study then looks at Spark's resource allocation adjustments. it's been tested

that enhancing performance depends on a way to optimise resource allocation

instead of simply assigning all of the to be had assets. The paper suggests

additional controlled parameters and demonstrates that they offer quicker

ordinary processing times than Spark's default parameters. sooner or later, use

system mastering techniques to analyze the patience of resilient dispensed

datasets (RDDs) in Spark. One storage stage stands proud many of the others

that have been tested for execution pace.

24

[6] Salloum, Dautov, Chen, Peng and Huang

With its cutting edge in-memory programming structure and upper-stage

libraries for scalable gadget getting to know, graph analysis, streaming, and

dependent records processing, Spark has come to be the de facto framework for

huge statistics analytics. it's miles a widespread-purpose cluster computing

framework featuring Scala, Java, Python, and R language-included APIs. it is

able to be tough for teachers, particularly people who are new to this discipline,

to recognize the whole body of work and research behind Spark due to the fact

it is a speedy growing open supply project with a rising variety of contributors

from each academia and business. this text offers a technical evaluation of

Spark-primarily based massive information analytics. the primary features,

abstractions, Sparks's elements are the subject of this text.

In further element, it demonstrates the talents of Spark for growing and

deploying big data pipelines and algorithms for machine learning, graph

evaluation, and flow processing. The file additionally discusses potential future

regions for Spark research and improvement for big records analytics.

[7] Gupta, Sharma and Jindal

The standard processing framework for big data analytics is Spark. The key

difficulties with big data analytics include managing a wide range of types,

storing enormous amounts of data, and processing data quickly. Because Spark

processes data in-memory, it has lots of benefits over MapReduce. The default

settings for running Spark applications are made on commodity hardware,

therefore they might not offer a solution that works for every setup and

environment. To obtain the best performance, resource allocation for Spark

applications must be tuned. In order to improve the speed of Spark applications,

this article addresses a variety of settings and choices, including caching,

broadcast variables, repartitioning, and the number of executors.

[8] Nguyen, Khan and Wang

Many businesses have chosen Apache Spark, a recently popularised data

analytics platform.

25

Spark offers a wide array of configuration options that may be modified to

enhance the performance of a particular application since the features of various

Spark applications frequently differ greatly in terms of resource requirements

and execution flow. Although some recent initiatives examined the issue of

configuration tuning in the context of Apache Spark, it is challenging to adjust

them automatically because to the vast number of options (which is typical for

large-scale cloud systems). Additionally, tuning efforts must take into account

combinations of settings since they are frequently connected to performance and

may conflict. This is done to prevent inefficient configuration and/or potential

configuration errors.

The paper examines machine learning-based algorithms that may automatically

search and discover the set of recommended changes that may considerably

increase performance compared to the default settings in order to automate the

configuration tweaking process. Specifically, the paper employs Latin

hypercube design technique to first select a set of configurations that are used

to benchmark the system and gather training data for a specified number of

parameters that may impact performance (which are recognised a priori). Then

train several machine learning models and then choose the best one based on

prediction accuracy. In the study, paper takes into account three distinct

machine learning techniques—Artificial Neural Networks, Support Vector

Regression, and Decision Trees—to build performance models for each

application.

The most efficient ML model found in the previous stage is then used to fine-

tune the configuration parameters for each application using the Recursive

Random Search technique.

The study evaluated nine distinct apps, representing three different application

categories, to test the framework because the same parameter may effect the

performance of various applications differently. In particular, we used

PageRank, Triangle Count, and Connected Components as representative of

graph processing algorithms, as well as Word Count and Tera Sort as

representative of batch processing applications, KMeans, Support Vector

Machines, Matrix Factorization, and Decision Trees as representative of

26

machine learning algorithms. In each instance, the article assesses the construct

models' correctness and the performance enhancement brought on by

configuration adjustment. According to the evaluation, our framework may

greatly boost performance, with the improvement varying depending on the

application from 22.8% to 40.0%.

[9] Schiavio, Bonetta and Binder

The adoption of big-data platforms has significantly increased, and Apache

Spark is quickly becoming as the industry standard for contemporary data

analytics. To improve the execution efficiency of analytical tasks on a range of

data sources, Spark depends on SQL query compilation. Spark's SQL code

generation has severe runtime overheads due to data access and de-serialization

in spite of its scalable design. When applications use human-readable data

formats like CSV or JSON, such a performance cost might be severe.

This paper gives a novel query compilation method that relies on run-time

profiling and dynamic code creation to get around these restrictions. With

textual-form data formats like JSON or CSV, Spark's new SQL compiler creates

very efficient machine code, resulting in high speeds of up to 4.4 times on the

TPC-H benchmark.

[10] Essertel, Tahboub, Decker, Brown, Olukotun and Rompf

Spark has recently taken over because the industry trendy for massive statistics

processing. due to its adaptability and ease, Spark has allowed a huge number

of customers to procedure petabyte-scale workloads: users can combine

relational queries within the fashion of square with Scala or Python code, and

the resulting programmes can be allotted across an entire cluster without the

want to paintings with low-stage parallelization or community primitives.

but, a whole lot of workloads with real-international importance are not massive

sufficient to warrant dispensed, scale-out execution because the information

may be thoroughly contained in a unmarried, effective server's foremost

27

memory. Spark remains favored by users due to its well known equipment and

consumer interface.

because of Spark's preference for dealing with facts size over improving the

computations on that information, its overall performance is subpar in positive

scale-up situations. overall performance might also nonetheless be crucial for

such medium-sized workloads if responsibilities want quite a few processing,

must be repeated frequently on changing records, or have interaction with

outside libraries and systems (e.g., TensorFlow for machine learning).

The paper introduces Flare, an accelerator Spark module that significantly

hastens a huge variety of applications on scale-up systems. Flare carries a code

creation method created to in shape the one of a kind functions of Spark and the

characteristics of scale-up architectures, mainly processing data without delay

from optimised record codecs and mixing square-style relational processing

with outside facts assets. Flare became stimulated via query compilation

methods from main-memory database systems.

28

CHAPTER 3: SYSTEM DEVELOPMENT

3.1 Analytical

Wide-spread use of MapReduce and huge-scale computing has caused the

emergence of numerous cluster computing systems. these systems use various

new APIs, often based totally on useful programming, to support both relational

queries and greater complicated sorts of processing along with extraction,

transformation, loading operations or machine getting to know.

Of these systems, Spark has come to be the maximum used.

This is because of our knowledge of over 500 deployments and the most lively

contributor community on Apache (over 400 participants in 2014). not like

preceding committed structures, Spark provides a fashionable-motive engine

primarily based on undertaking DAGs and data sharing, able to going for walks

workloads like batch jobs, streaming, square and chart analytics. There are APIs

for Scala, Python, Java, and R. As Spark moved from early adopters to a broader

audience, the opportunity to peer in which the practical API truly worked,

wherein it is able to be progressed, and what new customers want.

In general, assisting not unusual analytics workloads has been a fulfillment for

Spark. moreover, it employs ml, sql, streaming, graph processing, and streaming

libraries, regularly with overall performance on par with specialized engines.

due to the fact maximum customers blend more than one of those types of

processing of their workloads, the Spark engine's adaptability is essential.

Nevertheless, given the diversity of supported data types and calculations,

Spark's functional API posed several difficulties for both users and systems. The

most typical difficulties are:

• Functional semantics of an API. The foundation of the Spark API is a

set of Java/Python object collections, on which users may call any

Python or Java function using operators like map or groupBy. We

29

discovered that users frequently struggled to choose the ideal functional

operators for a particular calculation. Using Spark's groupByKey

operator, which produces a distributed collection of (key, list of value)

pairs, as an example, and then aggregating each list is a typical issue

(e.g., a sum). The reduceByKey operator in Spark may execute partial

aggregation on each node, which would make this calculation

significantly quicker. The groupByKey operator must transmit each list

of records to one machine since that is its return signature.

It is also challenging for the engine to automatically detect and replace

operators since the functions provided to Spark are random pieces of

Python or Java code. Static analysis of UDFs has been suggested in some

research, although this analysis can be fragile for sophisticated object-

oriented applications.

• Despite Spark's facet-impact-loose, functional API, disbursed

programmes are inherently difficult to debug due to the fact that

customers ought to consider undertaking distribution and skew.

according to our studies, performance debugging provides the most

tough troubles considering that customers often are unaware that their

activity is concentrated on a small wide variety of computers or that

some of their records systems are reminiscence-inefficient.

• Memory Control. because "huge facts" can take many distinct styles

and sizes, the engine must cautiously manage its memory. We found

other resources of excessive memory usage notwithstanding the reality

that external tactics for aggregation and joins are nicely regarded. as an

example, sure programmes records information (such those used for

photograph processing) is probably masses of gigabytes each,

necessitating meticulous tracking as each file is read. any other example

is that Spark first of all notion each block of the record, in HDFS is

normally 128 MB, should shop all of its records in memory without

delay. but, for some closely compressed datasets, each block might also

decompress into 3–4 GB.

30

• A significant IO. With biggest clusters now having over eight thousand

nodes and distinct tasks controlling over 1 PB, Spark workloads

multiplied dramatically. The networking and that i/O layers of Spark

have received high-quality engineering funding so that it will

characteristic nicely at this size.

• Non-experts’ access. Earlier cluster computing answers, like MapReduce,

have been created with software developers in thoughts, however maximum

agencies require "big information" to be to be had to a huge variety of

people, together with non-developers with domain understanding (together

with statisticians or information scientists). Better-level APIs are crucial for

all customers as well on account that a whole lot of facts evaluation is

exploratory and clients lack the time to create absolutely optimised

distributed programmes. We have made a giant effort to offer excessive-

level data-technological know-how API that mirror unmarried-node

equipment/utilities, like R's records frames throughout Spark, so that it will

solve those problems.

3.1.1 Constraints and Assumptions

3.1.1.1 Constraints

A large cluster couldn’t be used cause of the lack of funding for heavy

processing of data as such local based machines and virtual machines over

which the workers were distributed were used

• Heavy techniques can't be used considering the processing power of

client machines and the page load time of the website.

• Constrained ourself on the size of the data so that we don’t have to wait

for the long runtime of days for data preprocessing.

31

3.1.1.2 Assumptions

• There are enough resources needed to run spark and it’s virtual

environment over long period of time.

• The user has a basic knowledge about SQL, Python /R/Java/Scala.

3.1.1.3 Use case diagram

A diagram of a person's ability interactions with a device is called a use-case

diagram. A use-case diagram, that's often complemented through other kinds of

diagrams, presentations the several use instances and consumer kinds the device

has.

Figure 9. Spark vs Hadoop

Figure 9 shows the wroker heirarchy of spark versus hadoop and Figure 10 and

11 detail the architectures of hadoop and spark respectively.

32

Figure 10. Hadoop based architecture

Figure 11. Spark based work architecture

33

Figure 12. Metrics dashboard for Spark streaming

3.2 Improvements to The Execution Engine

Memory management and the networking layer make up the bulk of our efforts

in this area. Both emphasise improving the engine's robustness and performance

under heavy workloads.

3.2.1 Memory Management

We investigated the root causes of memory issues based on user feedback in

order to enhance memory management, and we created a per-node allocator that

controls all sources of memory consumption inside each node. When a limit was

reached, the memory management for Spark would evict any remaining old data

blocks, keeping track of how much "cached" data the user had chosen to

materialise in memory. The first manager didn't specifically monitor how much

RAM was being consumed for data processing. As a result, processing big joins

or aggregations was a significant contributor to the memory fatigue issues. We

34

introduced a second cap to monitor hash tables for joins and aggregates to

handle this.

As the threads doing these operations increase their tables, this cap is

dynamically distributed among them, and threads that are not permitted to

consume additional RAM spill to disc. To determine whether the uncompressed

data is still tiny enough to store, a third area was set aside for "unrolling" blocks

that are read from disc. To accommodate skewed record sizes in each of these

scenarios, we monitor memory use every 16 records. The engine functions

reliably under these conditions under a variety of workloads.

3.2.2 Network Layer

Networking layer’s largest assignment became helping shuffle operations on

many nodes. Shuffle operations need to transport output information from map

obligations to lessen tasks across the whole network, in order that each node is

sending some statistics to each different node. they're a undertaking to enforce

because every node might be fetching facts from diverse disks, multiple

connections are typically required to saturate community bandwidth, and care

ought to be taken to stability load. We formerly wrote a custom community

module that was primarily based on Java’s NIO. The module used the low-stage

Java NIO networking API without delay and had to maintain complicated

nation machines internally. further to this, it creates a higher memory strain

from JVM's garbage series and higher CPU usage than wanted because of

useless copies of community buffers.

We created a newer implementation of network module for Apache Spark [1]

based at the excessive-overall performance networking framework Netty [2].

Netty gives a better degree asynchronous event-pushed abstraction that makes

networking programming simpler. On top of Netty, we delivered a selection of

features to enhance performance and scalability, consisting of:

• No-copy I/O: Tell the kernel to bypass user-space memory and transfer

data from on-disk files directly to the socket. This lessens the demand

35

on the JVM heap's memory as well as the amount of CPU time used for

context transitions between kernel and user space.

• Off-heap network buffer management: Netty directly manages a pool

of memory pages outside the Java heap, removing network buffers'

negative effects on the JVM garbage collector.

• Multiple connections: To maximise the throughput of data fetches and

distribute load evenly across the nodes providing data, each Spark

worker node has multiple concurrently active connections (by default,

5). 200 machines connected by 10 Gbps lines may fully utilise a network

with a bisectional bandwidth. We utilised it to beat the previous Hadoop-

based records in the Daytona-GraySort competition [3] by sorting 100

TBs of on-disk data with 10% fewer workstations (Figure 10).

3.3 Mathematical

The amount of efficiency used here is time per node per broadcast used for a

singular job.

In the events of the overlaying structure it was found efficiency(ε)

Higher number of nodes in a cluster greater the performance of cumulative jobs.

HDFS [4] divides documents into small chunks of blocks and stores them on

different nodes. There are two sorts of nodes in HDFS: information nodes

(employees) and call nodes (grasp nodes). All operations along with delete,

study and write are based totally on those two kinds of nodes. The HDFS

workflow is:

First, the namenode requests permission. If generic, convert the document name

to list HDFS block IDs.

This includes files and facts nodes that shop blocks related to this document. list

of IDs is then back to the customer on which the consumer can carry out

similarly operations.

36

MapReduce [5] is a computing framework containing her operations of mappers

and reducers. The mapper methods the documents primarily based upon the

map's function and maps them to new key-value pairs.

New key value pairs are then assigned to special partitions and sorted based on

those keys. The combiner 's elective and can be visible as a nearby cut back

operation, in order that key can pre-matter values to lessen I/O pressure. sooner

or later, the partition splits the in-between key-price pair into various portions

and sends them to reducer.

MapReduce takes to use the shuffle operation. Shufen means forwarding the

mapper output records to correct reducer. Once the shuffle completes, the

reducer starts some reproduction- threads (fetchers) to retrieve the output files

of the map's challenge thru HTTP. The subsequent step is to merge the outputs

into diverse documents. These documents are treated as reducer input facts.

37

CHAPTER 4: PERFORMANCE ANALYSIS

Distributing Spark jobs over a set of machines can significantly affect its

execution times. Figure 13 shows the base master view of a example spark job

run on 2 workers (see figure 16, 17, 18).

Note: These executions were trial runs, just to check, determine and prove that

optimization can and will improve the execution times and execution time can

be a great predictor for efficiency of a spark job.

Figure 13. Base Master View

Figure 14 shows the same job running on same workers but with cache turned

on, reducing the execution time from 2 minutes to just 45 seconds.

Figure 14. Job running with cache

38

Figure 15 shows the same job running but with persist turned on. The execution

time is 13 seconds.

Figure 15. Job running with persist

Figure 16. Distributing job across workers

39

Figure 17. 1st Slave View

Figure 18. 2nd Slave View

40

Figure 19. Job ran over broadcasted over workers

Figure 20. Log view- Intial state

41

Figure 21. Log View-Terminated stage

4.1 Process Overview

The entire code is in three scripts, one for each parameter optimization

algorithm. All the three scripts compute the execution time of each workload

and the performance evaluator.

Three workloads i.e., Memory-intensive, CPU-intensive, Iterative-intensive are

first run on Spark’s default configurations execution time is stored. Then,

parameter optimization algorithms are run one by one. The performance

evaluator compares the execution times of every iteration (altered value of

parameter(s)) and stores the minimum execution time for all algorithms. The

values of parameters are varied in a set range defined in the Table 1. The

performance evaluator sets the Spark parameters as provided by the

optimization algorithms, and then job runner runs the job as shown in Figure

23.

42

Figure 22. Process Overview

4.2 Experimental Setup

The above approach is implemented on a Spark cluster that consists of one

master and two slave nodes. One slave and the master node reside on a single

machine, configured with 8GB memory and 4 cores. The other machine (slave)

is configured with 16GB memory and 6 cores.

1) ALGORITHM- GRID SEARCH

Grid search is a technique for finding the best combination of

hyperparameters for a machine learning model. However, in the context of

optimizing Spark configuration, grid search refers to a technique for finding

the optimal combination of Spark configuration parameters.

To perform grid search for optimizing Spark configuration, you can follow

these steps:

43

1. Define the range of values for each configuration parameter to optimize.

For example, we may want to optimize the `spark.executor.memory`

parameter, and we may define the range of values to be [1g, 2g, 3g, 4g].

2. Create a list of all possible combinations of the configuration parameters

and their values. For example, if we have two configuration parameters

with ranges [1g, 2g] and [2, 4], respectively, we would have four

possible combinations: (1g, 2), (1g, 4), (2g, 2), and (2g, 4).

3. For each combination of configuration parameters and their values, set

the Spark configuration accordingly and run Spark application or job.

4. Measure the performance of Spark application or job, for example, by

measuring its execution time or resource utilization.

5. Repeat steps 3-4 for all combinations of configuration parameters and

their values.

6. Select the combination of configuration parameters that resulted in the

best performance, and use it for the Spark application.

Grid search can be computationally expensive, as it requires running the

Spark application or job multiple times with different configurations. To

reduce the computational cost, we consider using a randomized search,

which randomly samples from the parameter space instead of exhaustively

searching it.

2) ALGORTIHM- RANDOM SEARCH

Random search is an alternative technique to grid search for finding the

optimal combination of Spark configuration parameters. In contrast to grid

search, which exhaustively searches a predefined set of parameter values,

random search randomly samples from the parameter space.

Here are the steps to perform random search for optimizing Spark

configuration:

1. Define the parameter space for each of the configuration parameters to

optimize. For example, we may define the parameter space for

`spark.executor.memory` to be the range [1g, 4g].

44

2. Set the number of iterations for the random search. This determines how

many random combinations of configuration parameters and values will

be tried.

3. For each iteration, randomly sample a combination of configuration

parameters and values from their respective parameter spaces. For

example, if we have two configuration parameters with parameter

spaces [1g, 2g, 3g, 4g] and [2, 4], respectively, we could randomly

sample (2g, 4) or (1g, 2).

4. Set the Spark configuration to the sampled combination of parameters

and values, and run Spark application or job.

5. Measure the performance of Spark application or job, for example, by

measuring its execution time or resource utilization.

6. Repeat steps 3-5 for the specified number of iterations.

7. Select the combination of configuration parameters that resulted in the

best performance, and use it for Spark application or job.

Random search can be a more efficient method than grid search because it

samples a smaller number of combinations of configuration parameters and

values. However, it may not guarantee that the optimal combination is

found, as it is based on random sampling. Therefore, it is recommended to

perform multiple random searches and select the best combination of

parameters from the results.

3) ALGORITHM- EVOLUTIONARY OPTIMIZATION

Evolutionary optimization is a metaheuristic optimization technique

inspired by biological evolution, where a population of candidate solutions

evolves over time through processes such as mutation, selection, and

crossover. This technique can also be applied to optimize Spark

configuration parameters.

Here are the steps to perform evolutionary optimization for optimizing

Spark configuration:

45

1. Define the parameter space for each configuration parameter to

optimize, as well as the population size and the number of

generations.

2. Generate an initial population of candidate solutions, where each

solution represents a combination of configuration parameters

and values. The solutions can be randomly generated or based

on expert knowledge.

3. Evaluate the fitness of each solution by running Spark

application or job with the corresponding configuration

parameters and measuring its performance.

4. Select a subset of the population based on their fitness values,

using techniques such as tournament selection or roulette wheel

selection.

5. Apply genetic operators such as mutation and crossover to the

selected solutions to generate new offspring solutions. For

example, mutation could involve randomly changing the value

of a configuration parameter, while crossover could involve

combining the values of two parent solutions.

6. Evaluate the fitness of the new offspring solutions.

7. Replace some of the least fit solutions in the population with the

new offspring solutions.

8. Repeat steps 4-7 for the specified number of generations.

9. Select the solution with the best fitness value from the final

population and use it for your Spark application.

Evolutionary optimization can be a powerful technique for optimizing Spark

configuration parameters, especially when the parameter space is large and

complex.

However, it can also be computationally expensive, as it requires running Spark

application or job multiple times to evaluate the fitness of each solution.

Additionally, the quality of the solution obtained can depend on the

initialization of the population and the choice of genetic operators.

46

4.3 Workload

The workloads used are designed to simulate archetypal workload behaviors of

Spark. For simulating CPU-Intensive behavior we calculate the value of pi to

106, for Memory-Intensive behavior we have serialized RDD’s of random

numbers 0-1000 and a total size of 10000, for Iterative-Intensive behavior we

have written a nested loop, with the outer loop running till 106 and inner loop

running till 102.

4.4 Parameters

Following the examples of the previous works we have read and done, we find

what factors affect the actual efficiency of Apache spark. Certain factors such

as implementation of certain spark functions such as cache and persist or

different data models which provide a better arrangement of collected data

depending on how frequent u access or transform them, their choice validates

on how well a job runs. In this paper we distributed the job into three factors

namely Iterative intensive, CPU intensive and memory intensive. We carry out

this job with distinct configuration of 9 parameters provided in TABLE 1.

Parameters Range Default

spark.task.cpus [1, 5] 1

spark.memory.storageFraction [0.25, 0.9] 0.5

spark.memory.fraction [0.25, 0.8] 0.6

spark.shuffle.file.buffer [16000,

512100]

32000

spark.scheduler.listenerbus.eventqueue.capacity [2500,

25000]

10000

spark.storage.memoryMapThreshold [1000000,

5000000]

2000000

spark.default.parallelism [4, 24] 24

47

spark.shuffle.spill.compress [FALSE,

TRUE]

FALSE

spark.executor.cores [1,32] 2

Table 1. List of parameters, range, and default values

48

CHAPTER 5: CONCLUSIONS

5.1 Results

The workloads run on default configurations is used as benchmark (see Table

2).

Workload Execution Time (seconds)

Iterative- intensive 14.21

Memory- intensive 13.80

CPU- intensive 12.01

Table 2. Benchmark figures

Grid search computed the following (see Table 3).

Workload Execution Time (seconds)

Iterative- intensive 9.93

Memory- intensive 10.91

CPU- intensive 9.87

Table 3. Grid search results

Random search computed the following (see Table 4).

Workload Execution Time (seconds)

Iterative- intensive 10.21

Memory- intensive 11.65

CPU- intensive 10.06

Table 4. Random search results

Evolutionary optimization computed the following (see Table 5).

Workload Execution Time (seconds)

Iterative- intensive 10.02

Memory- intensive 10.78

CPU- intensive 9.99

Table 5. Evolutionary optimization results

49

Grid search tunes the parameters and reduces the overall execution time by

23.26% in 10000 seconds.

Random search tunes the parameters and reduces the overall execution time by

20.23% in 6000 seconds.

Evolutionary optimization tunes the parameters and reduces the overall

execution time by 23.06% in 7000 seconds.

5.2 Conclusion and Future Scope

We are continuing to improve Spark for both usability and performance. On the

usability side, we and other members of the community are augmenting Spark

with a large set of standard libraries containing scalable versions of common

data analysis algorithms. For example, Spark’s machine learning library, MLlib,

grew by a factor of 4 in the past year. We have also designed a pluggable data

source API that makes it easy to access external data sources in a uniform way

using DataFrames or SQL [6]. Together, these APIs form one of the largest

integrated standard libraries for “big data,” and will undoubtedly lead to

interesting design decisions to enable efficient composition of workflows.

We have also increasingly seen Spark used in research projects, including online

aggregation [7], graph processing, genomic data processing, and large-scale

neuroscience. We hope that Spark’s relatively small code size and wide array

of built-in functions make it amenable to both systems and application-oriented

projects.

All the functionality described in this work is open source and available at

spark.apache.org

It can be concluded that the Random search is the most efficient algorithm as

its percentage reduction in execution time to overall execution time of algorithm

is maximum.

Optimizing the Spark parameters used in this project might affect different

workloads in different manners. So, selecting the correct parameters is a very

important task. Here, in this project, better results might be achieved by

50

selecting other parameters, a machine learning and prediction model can be

created for the same.

51

REFERENCES

[1] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael

Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram

Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott

Shenker, Ion Stoica, “Apache Spark: A Unified Engine For Big Data

Processing,” in Comms. of the ACM, Vol. 59, No. 11, pp. 56-65, Nov.

2016, doi: 10.1145/2934664

[2] Shaik Hussain Bhasha, Dr. G.A. Ramachandra, “Analyzing & Optimizing

Spark Performance,” in I n t l . Jo u r n a l o f In n ov a t iv e R es ea r ch i n

S c i en ce , E ng . , and T ech . , Vol. 7, Issue 10, October 2018, ISSN

(Online): 2319-8753, ISSN (Print): 2347-6710

[3] Celestine Dunner, Thomas Parnell, Kubilay Atasu, Manolis Sifalakis,

Haralampos Pozidis, “Understanding and Optimizing the Performance of

Distributed Machine Learning Applications on Apache Spark,” in 2017

IEEE International Conference on Big Data (BIGDATA), 11-14 December

2017, doi: 10.1109/BigData.2017.8257942

[4] Ahmed N., Barczak A.L.C., Susnjak T., “A comprehensive performance

analysis of Apache Hadoop and Apache Spark for large scale data sets

using HiBench,” in J Big Data 7, 110 (2020), December 2020,

https://doi.org/10.1186/s40537-020-00388-5

[5] Aziz K., Zaidouni D. & Bellafkih M., “Leveraging resource management

for efficient performance of Apache Spark,” in J Big Data 6, 78 (2019),

Aug 2019, https://doi.org/10.1186/s40537-019-0240-1

[6] Salloum S., Dautov R., Chen X., “Big data analytics on Apache Spark,”

in Int J Data Sci Anal 1, 145–164 (2016), Oct 2016,

https://doi.org/10.1007/s41060-016-0027-9

[7] Gupta P., Sharma A., & Jindal R., “An Approach for Optimizing the

Performance for Apache Spark Applications,” in 2018 4th International

Conference on Computing Communication and Automation (ICCCA), Dec

2018, doi:10.1109/ccaa.2018.8777541

[8] N. Nguyen, M. Maifi Hasan Khan and K. Wang, "Towards Automatic

Tuning of Apache Spark Configuration," 2018 IEEE 11th International

https://doi.org/10.1109/BigData.2017.8257942
https://doi.org/10.1186/s40537-020-00388-5
https://doi.org/10.1186/s40537-019-0240-1
https://doi.org/10.1007/s41060-016-0027-9

52

Conference on Cloud Computing (CLOUD), 2018, pp. 417-425, doi:

10.1109/CLOUD.2018.00059

[9] Filippo Schiavio, Daniele Bonetta, Walter Binder,” Dynamic speculative

optimizations for SQL compilation in Apache Spark,” in Proceedings of

the VLDB Endowment, Vol. 13, Issue 5, pp 754–767, Feb 2020, doi:

0.14778/3377369.3377382

[10] Gregory Essertel, Ruby Tahboub, James Decker, Kevin Brown, Kunle

Olukotun, Tiark Rompf, “ Flare: Optimizing Apache Spark with Native

Compilation for Scale-Up Architectures and Medium-Size Data,” in

Proceedings of the 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI ’18), October 8–10, 2018, ISBN 978-1-

939133-08-3

53

APPENDICES

[1] Apache spark v1.2

[2] www.netty.io

[3] https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-

benchmark.html

[4] https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[5] https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

[6] https://spark.apache.org/sql/

[7] https://freecontent.manning.com/aggregating-your-data-2/

http://www.netty.io/
https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
https://spark.apache.org/sql/
https://freecontent.manning.com/aggregating-your-data-2/

