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ABSTRACT 

 

We are always enhancing Spark's speed and usefulness. To improve Spark's 

usability, we and other community members are adding a substantial number 

of standard libraries that provide scaled variations of popular data analysis 

methods. For instance, in the previous year, the size of Spark's MLlib machine 

learning library increased by a factor of 4. Additionally, utilising DataFrames 

or SQL, it is simple to access external data sources using our pluggable data 

source API. These APIs make up one of the most integrated standard libraries 

for "big data" and will surely prompt creative design choices that will make 

the building of workflows more effective. 

Big data is used to refer to data of the order of terabytes and beyond. This data 

is often difficult to process due to its sheer size. This is where a solution in the 

form of big data processing and handling platforms comes in. Apache spark is 

one such open-source platform. Spark has many configurational parameters 

that can affect the execution time to various degrees depending upon the 

nature of the job and manually changing these configurations to achieve the 

best configuration for the job can be very challenging. After assessing various 

works and studies, we have decided on using Grid search with a finer tuning, 

Controlled Random Search and ANN algorithms to find the best 

configurations for achieving a better efficiency. Ultimately, we find the fastest 

algorithm that can compute the best configurations. 

Additionally, Spark is being utilized more and more in research initiatives, 

such as large-scale neuroscience, graph processing, online aggregation, and 

genomic data processing. We anticipate that Spark's sizable amount of built-in 

functionality and small amount of code will make it useful for both system- 

and application-oriented projects. 

This article's functionality is all open source and accessible at 

spark.apache.org. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

 

There are tremendous potential and formidable computational hurdles 

associated with the expanding volume of data in business and research. Users 

required a new mechanism for spreading computing across numerous nodes 

when the volume of data exceeded the capacity of a single computer. As a result, 

a range of innovative cluster programming paradigms aimed at different 

workloads have proliferated. New models were created for new workloads since 

the original versions of these models were rather specialised. For instance, 

Google created Pregel for iterative graph algorithms and Dremel for interactive 

SQL queries, while MapReduce offered batch processing. The open-source 

Apache Hadoop platform is also the focus of systems like Storm and Impala. 

One-size-fits-all approaches are becoming less popular, even in the realm of 

relational databases. Unfortunately, the majority of big data applications call for 

a combination of diverse processing techniques. Diversity and chaos are at the 

heart of "big data." A typical pipeline needs SQL-style queries, iterative 

machine learning, and code similar to MapReduce to load data. Therefore, a 

separate engine may result in complexity as well as inefficiency. Some 

applications can't be represented in any engine well, forcing users to patch 

together many solutions. 
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Figure 1. The implementation of customised processing libraries over the 

basic engine of the Apache Spark software stack. 

A group from the University of California, Berkeley began work on the Apache 

Spark project in 2009 with the goal of creating an uniform engine for distributed 

data processing. Spark expands MapReduce's programming style with a "Stable 

Distributed Dataset," or RDD, which is an abstraction for data-sharing. With the 

help of this straightforward addition, Spark is now able to execute a variety of 

processing workloads that previously needed different engines, such as SQL, 

streaming, machine learning, and graph processing (see Figure 1). These 

implementations achieve comparable performance by employing the same 

optimizations as the specialised tools (such as incremental updates and column-

oriented processing), but they run like libraries on a single engine, making them 

straightforward and effective. We claim that the results are more general than 

particular to certain workloads. When combined with data sharing, MapReduce 

may imitate any distributed computation and can thus handle a wide range of 

workloads. 

Spark's generality has numerous vital blessings. First, apps are less difficult to 

expand due to the fact they use a unified API. second, combining processing 

responsibilities is extra green; whereas earlier systems required writing records 

to storage for transmission to every other engine, Spark can perform many 

extraordinary functions at the identical statistics, typically in reminiscence. 

subsequently, Spark allows new programs (together with graph-interactive 
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queries and non-stop system learning) that had been not viable with preceding 

structures. 

A powerful analogy on the fee of unity is to compare smartphones with disparate 

cellular gadgets that preceded them (consisting of cameras, mobile phones, and 

GPS gadgets). with the aid of unifying the features of these devices, 

smartphones have enabled new packages that combine their features (together 

with video messaging and Waze) that have been no longer viable on a single 

device. bag.   for the reason that its launch in 2010, Spark has end up the 

maximum lively open source or large facts processing undertaking, with over 

1,000 individuals. The assignment is utilized by greater than 1,000 companies, 

from generation organizations to banking, retail, biotechnology and astronomy.  

The maximum extensively publicized implementation is over eight thousand 

nodes. As Spark advanced, the group sought to maintain to leverage its energy 

as a unified engine. The crew hold to construct an included well-known library 

on pinnacle of Spark, with capability from statistics ingestion to gadget getting 

to know. customers locate this potential powerful; in surveys we discover that 

most of the people of customers contain more than one Spark libraries in their 

utility.   As parallel statistics processing will become mainstream, the 

composability of processing functions could be one of the maximum critical 

concerns for both usability and overall performance. an awful lot of the records 

evaluation is exploratory, with customers trying to fast comprise library 

capabilities right into a single workflow. however, for huge data particularly, 

duplicating facts between extraordinary systems is obvious for overall 

performance. consequently, users want generalizable and composable 

summaries. 

1.2 Problem Statement 

 

“IMPROVING EFFICIENCY OF APACHE SPARK BY TUNING ITS 

INTERNAL FEATURES.” 
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We all know that when developing a program, it is important to pay attention 

to performance as it helps in computing in-memory data. Spark jobs can be 

optimized in many ways, so let us take a closer look at each one. 

 

Spark and Its Capabilities 

 

It is a free and open-source cloud (cluster) computing framework for actual-

time records processing. One of the key features is in-memory (main memory) 

cluster computing, which in turn speeds up software processing. Spark presents 

a programming interface across clusters with facts parallelism that is implicit 

and is also fault tolerant. It covers a wide variety of workloads, like batch 

packages, iterative algorithms, interactive queries and streaming.  

 

 

 

Figure 2. Features of Apache Spark. 

 

• SPEED 

For processing big amounts of data, Spark about hundred times quicker than 

Hadoop's MapReduce. it is able to also get this speed through properly managed 

partitioning. 

• STRONG CACHING 
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Powerful cache and disc built-in abilties are supplied via a easy coding layer. 

• DEPLOYMENT 

It may be utilized by integrating Mesos, YARN for Hadoop, or Spark's cluster 

management. 

• REAL-TIME 

Because of in-memory (main memory) calculation, it gives decreased latency 

and actual-time computation. 

• POLYGLOT 

Excessive-stage APIs for Java, Scala, R, and Python are offered built-in 

Polyglot Spark. those four languages are all capable of generating Spark code. 

additionally, it gives Python and Scala shells. 

 

Summary Spark’s architecture 

Spark's layers and components are loosely connected and feature a properly 

built-in tiered layout. extra extensions and libraries are applied integratedto this 

layout. 

Figure 3 describes the basic architecture of Spark. The strength of Spark is 

constituted of two abstractions: 

• Directed acyclic Graph (DAG) 

• Resilient distributed Dataset (RDD) 
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Figure 3. Architecture of Spark 

As evident from Figure 4, the Spark system has components like Spark 

Streaming, SQL, Mlib, etc. 

 

Figure 4. Ecosystem of Spark 

 

• SPARK CORE 

Spark center is the base engine for massively parallel and allotted computing. 

moreover, additional libraries constructed on pinnacle of the center allow a 

ramification of streaming, sq., and gadget mastering workloads. it is chargeable 

for managing and troubleshooting garage, scheduling jobs inside a cluster, 

distributing and monitoring, and interacting with storage structures. 
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• SPARK STREAMING 

Spark Streaming, part of Spark used to method real-time data streaming. So it's 

a beneficial addition to the core of Spark's API. This permits excessive-

throughput and stream processing of live records streams which is fault tolerant. 

 

• Spark SQL 

Spark SQL, a newer module for Spark that merges relational computation with 

Spark API's functional programming. helps querying statistics through SQL or 

Hive query language. For those acquainted with RDBMS, Spark SQL can ease 

migration from previous equipment and push the limits of conventional 

relational computing. 

• GraphX 

GraphX, a Spark API for Graphs and Graph-parallel computing. therefore, we 

make bigger Spark RDDs with resilient dispensed assets graphs. At a excessive 

degree, GraphX extends Spark's 1RDD abstraction by way of introducing a 

resilient disbursed property Graph - a Directed multigraph with properties 

associated with each Edge and Vertex. 

 

 

• MLlib (Machine Learning) 

MLlib is machine learning Library. Spark MLlib is used to run machine learning 

on Apache Spark. 

 

• SparkR 

This is an R package. Provides an implementation of disbursed dataframes. 

 

Spark is packed with high-level libraries together with guide for R, square, 

Python, Scala, Java, and more. those general libraries power seamless 

integration into complex workflows. moreover, you can expand its abilties by 

means of integrating numerous services which include MLlib, GraphX, sql data 

frames, and streaming services. 
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Resilient Distributed Dataset (RDD) 

 

RDDs are the essential for any Spark application. RDD stands for: 

• Resilience: it's far fault tolerant and may recover statistics in case of 

failure. 

• distributed: facts dispensed across multiple nodes inside the cluster. 

• Datasets: collections of cut up information with values. 

 

Figure 5. RDD system in Spark 

This is a layer of abstracted facts on pinnacle of disbursed collections. it's far 

inherently immutable and obeys lazy ameliorations. 

 

Information in an RDD is split into blocks based totally on keys. RDDs are very 

resilient. The same statistics block is replicated to multiple executor node, so 

you can fast get over troubles. So if one Executor nodes fails, every other node 

will preserve to process the facts. This lets in you to leverage the abilties of a 

couple of nodes to carry out characteristic computations in no time for your 

dataset. 

 

It's an abstraction of the disbursed collection's records. it is unchanging by 

nature and lazy modifications. 

 

An RDD divides its data into sections consistent with a key. RDDs are very 

strong, meaning that that they can speedy get better from any problems since 
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the identical facts chunks are duplicated over several executor nodes. hence, 

information processing will continue despite the fact that 1 Executor nodes fails. 

using the speed of several nodes, we may also swiftly behavior our purposeful 

computations towards our dataset in this manner. 

Moreover, as soon as created, RDDs are immutable. Immutable way an item 

whose country cannot be modified after advent, but which may be reliably 

transformed. 

 

Speaking of distributed environments, records in an RDD are split into logical 

walls that may be computed on specific nodes of the cluster. This permits us to 

carry out adjustments or movements at the whole facts in parallel. don't worry 

about the distribution either. due to the fact Spark will deal with that. Figure 6 

describes working of Spark RDDs. Figure 5 showcases the RDD system. 

 

 

 

Figure 6. RDD workflow 

RDDs may be created by the use of  methods, parallelize current collections in 

driver software, and to reference records units in external storage systems 

together with: Shared report structures, HDFS, HBase, and so on. 

RDDs can help you perform following type of operations: 

• Transformation: Operations applied to create new RDDs. 

• Action: implemented to an RDD, tells Apache Spark to apply a 

computation and return the end result to the driver. 
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Working of Spark’s architecture 

The master node has a driver application that drives the utility (see Figure 7). 

The code we write behaves like a driver software. With an interactive shell, the 

shell acts as a driver software. in the driver code, first create a Spark context. 

think the Spark context is the gateway to all Spark capabilities. this is similar to 

database connections. All instructions that run at the database undergo the 

database connection. in addition, the entirety we do in Spark goes through the 

Spark context. 

 

The Spark context functions with the cluster supervisor now, controlling the 

tasks/jobs. The driver software and Spark context manage activity execution in 

the cluster. A task is cut up into a couple of tasks which are dispensed across 

worker nodes. each time an RDD is created in Spark context, it is able to be 

dispensed to one-of-a-kind nodes and cached there. 

A worker node is essentially a slave node with a job to execute an assignment. 

these obligations are accomplished on a partitioned RDD on the worker node, 

so the results are back to his Spark context. 

 

The Spark context picks up the process, splits the job into duties and dispatches 

them to worker nodes. those responsibilities operate on a partitioned RDD, carry 

out operations, gather consequences, and go back to the primary Spark context. 

 

Increasing the range of employees permits jobs to be cut up throughout a couple 

of partitions and run in parallel on multiple systems. it will likely be plenty 

faster. 

extra workers means greater memory size, which permits jobs to be cached and 

run quicker. 
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Figure 7. Infographic of Spark architecture 

• Step 1: Client sends Spark user software code. when software code is 

sent, the driver 

transforms user code, along with variations and movements, right into a 

logical graph (DAG). This section also performs optimizations 

consisting of pipeline variations. 

 

• Step 2: The logical graph, DAG, is then transformed into a physical 

execution hierarchy with many tiers. Then, every segment creates an 

execution unit referred to as a project. Then the tasks bundled and 

despatched to the cluster. 

 

• Step 3: Here the driver communicates with the cluster 

supervisor/manager and demands resources. The cluster 

manager/supervisor begins executors on workers nodes on behalf of 

driver. Then driver submits the task to the executor based on data 

alignment. whilst the performer starts, it registers with the driver. 

therefore, the driving force has a complete overview of the performers 

performing the mission. 
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• Step 4: All through task execution, the driver software monitors running 

executors. The drivers node also configure future duties based totally on 

data placement/position. 

 

 

1.3 Objective and Methodology 

 

Spark overall performance tuning means manner of adjusting the settings for 

recording the cores, memory, and times used for your system. This manner 

ensures greatest Spark overall performance and forestalls Spark resource 

hunger. Areas of performance tuning in Spark are described in Figure 8. 

 

 

Figure 8. Performance tuning in Spark 

Tuning is the system of modifying the machine's reminiscence, cores, and 

instance recording parameters. With the assist of this procedure, Spark performs 

at its excellent and aid constraints are prevented. based on system-specific 

parameters, all attributes and settings are efficiently changed to assure highest 

quality useful resource consumption. there is an in-memory computing issue to 

Apache Spark. As a end result, cluster resources just like the CPU and important 

memory might also turn out to be restricted. 
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To keep memory, RDDs are from time to time saved in a serialised manner. 

facts serialisation aids in memory intake discount, storage optimization, and 

desirable network overall performance. 

Powerful tuning allows: 

• Assures efficient and really apt usage of assets. 

• cast off exhausting tasks. 

• increase the system's speed. 

• ensure the process is on the suitable execution engine. 

 

Data Serialization 

Converts an in-memory object to another format that can be saved to a file or 

sent over a network. It plays an important role in the performance of distributed 

applications. Slow computation due to formats that serialize slowly or consume 

large files. Apache Spark provides his two serialization libraries: 

• Java Serialization 

• Kryo Serialization 

Java Serialization - Objects are serialized in Spark using the 

ObjectOutputStream framework and can be run in any class that implements 

java.io.Serializable. Serialization performance can be controlled with the 

java.io.Externalizable extension. It's flexible but slow, resulting in a large 

serialized format for many classes. 

Kryo serialisation - Spark may utilise the Kryo library to serialise items 

(Version 2). It doesn't support every Serializable type, while being much tighter 

compared to Java serialisation. We must pre-register for the classes to get higher 

results. By using SparkConf to initialise our job and using 

conf.set("spark.serializer", "org.apache.spark.serializer.KyroSerializer"), we 

may change to Kryo. 
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For registering our class in Kryo, we employ the registerKryoClasses function. 

We are required to raise spark.kryoserializer.buffer configuration if our objects 

are huge. The value need to be substantial enough to accommodate the biggest 

item that we intend to serialise. 

 

 

 

Memory Tuning 

Keep in mind 3 things while optimizing memory usage: 

Java items may be accessed, but devour two to five instances greater memory 

than raw information in fields. The reason for such behavior is: 

• every unique Java object has an "object header". the size of this header 

is sixteen bytes. occasionally the object includes less data, so in such 

cases it is able to be large than the data. 

• Java String raw string data has approximately 40 bytes of overhead. 

String uses UTF-16 encoding internally, so it stores each character as 2 

bytes. a 10-character string can easily consume 60 bytes. 

• common collection classes including HashMap and LinkedList use 

linked data structures. There you have got a "wrapper" object for each 

access. This object has each a header and a pointer (8 bytes each) to the 

following object inside the list. 

• Collections of primitive types as "boxed objects". example: 

java.lang.Integer. 
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Data Structure Tuning 

We can lessen memory intake by using warding off Java features that add 

overhead. There are numerous approaches to do this: 

• avoid nested structures containing many small items and guidelines. 

• Use numeric IDs or enum objects rather than strings for keys. 

• in case your RAM size is less than 32 GB, set the JVM flag 

–xx:+UseCompressedOops to create pointers to four bytes as opposed to eight 

bytes. 

 

Garbage Collection Tuning 

JVM's process of garbage collection becomes an issue when huge churn RDDs 

get stored programmatically. Java deletes old objects to make new ones. Track 

all obsolete objects and locate unused ones. But the point is garbage collection's 

price in Spark is similar to the amount of java objects. So for smaller objects he 

recommends using Spark's data structures. Another way to achieve this is 

storing the object in serialized format. So there is only 1 object/RDD partition. 

 

Memory Management Tuning 

Spark's memory management is segregated into 2 categories: storage and 

execution. "Execution memory" as the name suggests is utilised for computing 

in joins, shuffles, and aggregates. Storage is utilised for internal data 

propagation and in-cluster caching. A single area M is shared by storage and 

execution. The storage can utilise all of the memory while the execution 

memory is not in use. For storage memory, the same is true. If required, 

execution can exhaust the store. This is only done up until a particular threshold 

R is reached for storage memory consumption. 

With this design, we may obtain numerous qualities. First off, if caching is not 

used, the programme can ustilise the whole available storage for execution. Data 

blocks in applications that employ caching will cause it to reserve a limited 

storage space, i.e. R, that is impervious to eviction. 
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Although we have two pertinent configurations, consumers don't need to change 

them. Since default values apply to the majority of workloads: 

• M's size is described by memory.fraction as a percentage of (JVM's heap 

space-300MB) (default 0.6). The remaining 40% is kept in user's data 

structure, Spark internal metadata, and OOM error protection in the 

event of small and huge records. 

• R is displayed as a part/fraction of M via memory.storageFraction 

(default 0.5). 

 

Garbage Collection tuning in Spark 

Step one in tweaking Apache Spark's garbage collection is to bring together data 

on how often trash collection takes place. additionally, it tracks the length of 

waste pickup time. that allows you to accomplish this, use the Java option -

verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps. whilst the Spark 

task runs again, a notification will seem within the people log whenever trash 

collection takes place. not in the drivers programme, however inside the worker 

node, are these logs. 

The Java's heap space is cut up into  areas. old and young. younger generations 

own transient items, whereas older generations own long lasting items. The 

elder generation's lengthy-lived RDDs are the target of the trash collection 

adjustment. It additionally intends to be huge enough to preserve the assets of a 

youthful generation. This permits us to collect temporary objects produced in 

the course of task execution while not having to do a complete trash collection. 

the following actions ought to facilitate attaining this: 

• There might not be sufficient memory to complete the work if full trash 

collection is called repeatedly earlier than it's far finished. 

• we can decrease the amount of RAM wanted for caching if OldGen is 

nearly full in line with garbage collection information. this can be 

accomplished via decreasing spark.memory.fraction; although, caching 

fewer objects is ideal than delaying task completion. Alternately, we will 
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reduce -Xmn by way of lowering the dimensions of the younger 

generation. 

Relying on our utility and the quantity of RAM consumed, Apache Spark 

garbage collection settings may also have exclusive outcomes. 

 

 

 

 

Factors apart form the ones mentioned that can be used to improve 

performance: 

a. Parallelism Level 

Each application's stage of parallelism desires to be excessive enough to utilise 

the whole cluster. Spark determines the quantity of "Map" tasks to execute on 

every document based totally on the size of the document. A 2nd reason can be 

the amount of parallelism. To alter the default, we might also adjust the 

configuration setting spark.default.parallelism. 

 

b. Memory Usage of Spark's Reduce Task 

Despite the fact that RDDs match in our RAM, we often run into the 

OutOfMemoryError problem. this is because of our project groupByKey's 

running set being very huge. this may be fixed with the aid of growing 

parallelism such that the input set for each system is condensed. due to the fact 

that Spark employs a unmarried executor JVM for a selection of activities and 

has a reasonably-priced task release cost, we can also enlarge the wide variety 

of cores in our cluster. 

c. Using large variables in broadcasts 

Using the broadcast capability in SparkContext decreases the size of every 

serialised job. flip a big item from the motive force programme utilized by a 

task into a printed variable. It commonly evaluates activities which are 20 Kb 

or much less for optimization. 
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d. Locality of Data in Apache Spark 

Data locality has a considerable effect on how well Spark Jobs execute. The 

computation is quicker while the facts and the code that manipulates the records 

are gift. however, if the two are awesome, both the code or the records must be 

transferred. Because serialised code is smaller than a block of information, it 

can be sent from one place to every other extra fast. 

 

There are numerous ranges of locality based totally on facts current area. From 

closest to furthest, on this order: 

• The process local setting need to be in the same JVM as the executing 

code for the best locality. 

• in this, NODE nearby is positioned at the equal node. this is therefore 

due to the fact method nearby is a whole lot faster at transferring records 

throughout processes. 

• No pref facts does not have a geographical choice and is to be had 

international. 

• Rack local records is positioned at the server's identical rack. facts is 

sent over the network over a unmarried transfer because it's far located 

at the equal rack however on a separate server. 

• Any data that isn't in the very same rack is stored elsewhere inside the 

network. 

 

1.4 Organization 

 

• AWS 

• Azure 

• Apache Spark 

• Python 

• Oracle Java 
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CHAPTER 2: LITERATURE SURVEY 

 

[1] Zahria, Reynolds, Xin and others  

The expansion of data quantities in business and research creates both enormous 

potential and computing difficulties. Users required new technologies to scale 

out calculations to several nodes when data volumes grew beyond the capacity 

of a single computer. As a result, the amount of novel cluster programming 

models addressing various computing workloads has skyrocketed. For example, 

MapReduce allowed batch processing, but Google also created Dremel for 

interactive SQL queries and Pregel for iterative graph algorithms. At initially, 

these models were somewhat specialised, with new models produced for 

different workloads. Systems like Storm and Impala are additionally specialised 

inside the open-source Apache Hadoop stack. The tendency has been away from 

"one-size-fits-all" systems, even in relational databases. 

Unfortunately, the majority of large-data applications necessitate combining 

many processing modalities. A general pipeline includes MapReduce-like code 

for data loading, SQL-like queries, and iterative machine learning since "big 

data" by its very nature is varied and chaotic. Therefore, specialised engines can 

lead to complexity and inefficiency since users must integrate many systems, 

and some applications can never be described effectively in any engine. 

The next gen of computer applications will require data processing (scalable), 

yet this often entails a complicated series of processing processes using several 

computing technologies. The Spark project offered a unified programming 

paradigm and engine for large data applications to make this process easier. Our 

experience demonstrates that a strategy like this can accommodate current 

workloads well and provide consumers with significant advantages. 

Apache Spark, we believe, emphasises the value of composability in large data 

programming libraries and encourages the creation of more readily 

interoperable libraries. 
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[2] Basha and Ramachandra 

Actually, it's a highly significant approach and a very demanding task to analyse 

and process the SPARK in a fast and economical manner. And as is customary, 

SPARK helps people quickly and easily grasp huge quantities of data through 

quick and easy visualisation. There are numerous programmes on the market 

for creating such things studied, although one of the better tools is "SPARK," 

which creates the data to be adopted for a repository and maintaining 

"BIGDATA" items. Numerous techniques were created and proposed for 

evaluating and enhancing 'SPARK' success (performance). The study focuses 

mostly on fine-tuning configuration parameter technique. 

Despite the fact that 'SPARK' is affected by a series of parameters, a map that 

minimised the relevant parameters had an effective influence. 

The major goal of this effort is to improve "SPARK's" overall performance by 

speeding up job execution. Time savings are achieved by adjusting a few of the 

factors related to map reduction. Understanding these parameters is crucial 

since there are several sorts of parameters with awkward (incorrect) values that 

have a detrimental effect on performance as a whole. In this research, we offer 

a strategy that reduces task execution time and accurately and effectively 

optimises disc utilisation. In a heterogeneous environment, it precisely increases 

the overall functioning of  Spark by 38.53% over the base system. 

For this project, the base system configuration parameter of Apache SPARK 

was used to analyse and examine Twitter data. The study demonstrates changing 

the MapReduce job's parameter settings. Configuration parameters must be 

adjusted according to particular application until the waiting resource is 

completely utilised to achieve better results. Administrators of SPARK should 

use caution while choosing and changing the parameter's values. Since 

carelessness causes performance to decline. As a result, the paper-research 

suggests the "tuning approach," which improves overall performance by 38.5% 

over SPARK framework's default setup. At this time, SPARK has hundreds of 

different parameters. 
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[3] Dunner, Parnell, Atasu, Sifalakis and Pozidis 

This paper investigates Apache Spark's performance bounds for ML 

applications. To start, examine the features of a cutting-edge disbursed ML 

algorithms that are built inside Spark and contrast it with a reference of 

implementation using MPI, a high performance/efficiency computing 

environment, that is similar. Paper pinpoints the Spark framework's most 

important bottlenecks and closely examine how they affect the algorithm's 

performance. Paper then suggests a variety of doable methods to reduce some 

of Spark's overheads to enhance performance. 

It is demonstrated that, to achieve the greatest performance from any 

implementation, thorough algorithm tuning is required to account for the trade-

off between calculation communication and time delay. Performance is not just 

dependent on maximising computational effectiveness and framework-related 

overheads. The ideal trade-off depends on the characteristics of the distributed 

algorithm as well as the infrastructure and framework. Finally, we use these 

technological and algorithmic advancements to 3 distinct disbursed linear ML 

algorithms that are built into Spark. We discuss our findings and demonstrate 

how adopting the proposed improvements may lower the performance gap 

between Spark and MPI from 20 to 2 times with the aid of five significant 

datasets. 

In this study, it is shown that compared to similar MPI implementations, vanilla 

Spark implementations of distributed ML can exhibit performance losses of 

more than an order of magnitude. Language-dependent overheads are 

responsible for a significant portion of this loss. 

It is demonstrated a reduction in this gap with MPI to only 2 after removing 

these overheads by offloading crucial calculations into C++, combining this 

with a number of useful enhancements to Spark, and effectively tweaking the 

method. We come to the conclusion that improving the computational 

efficiency of the implementation is insufficient for creating high-performance, 

disbursed ML applications in Spark and other distributed computing 

frameworks. 
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The algorithm must be carefully modified to take into account the tendency of 

the particular system on which such an application will be used. Algorithms 

with a tuning parameter that the user may utilise to adjust to changes in system-

level conditions are therefore quite interesting from a research standpoint. 

 

[4] Ahmed, Barczak, Susnjak and Rashid 

Massive-scale dataset garage, processing, and analysis the usage of massive 

data analytics has come to be a crucial tool for the sector. New allotted 

computing frameworks like Spark and Hadoop provide powerful methods to 

take a look at large volumes of information. Spark profits a number of 

popularity because of the availability of its application programming interface 

(API) and its overall performance, surpassing the MapReduce framework in 

reputation. The combination of the extra than a hundred and fifty parameters in 

every of those frameworks has a sizable impact on cluster overall performance. 

The system administrator might also easily set up their system applications 

thanks to the preset machine settings, and they can use factory-set parameters 

to gauge the overall performance in their particular cluster.  

The use of a cluster that has been set up in our lab, this research compares the 

performance of Spark and Hadoop with the aid of inspecting the maximum vital 

input splits, resource use, and shuffle settings. tweaking those settings through 

a huge number of tests the usage of a trial-and-errors method. WordCount and 

TeraSort were selected as the 2 workloads to be evaluated for you to examine 

the comparative analysis frameworks. Execution time, throughput, and speedup 

are the 3 elements used to calculate performance measures. Our experimental 

findings confirmed that the proper parameter selection and enter data size had a 

big effect on both system performances. 

Whilst default parameter values are modified, the examination of the effects 

reveals that Spark plays higher than Hadoop for small statistics units, 

accelerating WordCount workloads by way of up to 2 instances and TeraSort 

workloads by using up to 14 instances. 
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[5] Aziz, Zaidouni and Bellafkih 

One of the famous open-source big-data processing frameworks is Spark, which 

enables the concurrent processing of widespread datasets utilising a tremendous 

quantity of machines. applications of this framework frequently employ 

resource control tools like YARN, which allocate tasks a certain wide variety 

of resources for execution. The data that the framework will look at is likewise 

saved in a allotted report machine like HDFS. by way of executing jobs on a 

single-node cluster or multi-node cluster architecture, this technique permits 

green sharing of cluster resources. therefore, one tough task is to implement 

efficient resource management of these large cluster infrastructures in an effort 

to execute disbursed data analytics in a manner this is both sensible and less 

expensive. 

In this research, we develop several ML algorithms the usage of the MLlib, after 

which we manage the sources (CPU, memory, and disc) to assess Apache 

Spark's performance. The assessment of severa studies that target useful 

resource management and records processing in huge facts platforms is offered 

in this study. moreover, we use Spark to do a scalability look at. Paper examines 

processing times and speedups. it's far concluded that after the cluster reaches a 

selected size, including greater nodes is now not required to growth overall 

performance and processing time. 

The study then looks at Spark's resource allocation adjustments. it's been tested 

that enhancing performance depends on a way to optimise resource allocation 

instead of simply assigning all of the to be had assets. The paper suggests 

additional controlled parameters and demonstrates that they offer quicker 

ordinary processing times than Spark's default parameters. sooner or later, use 

system mastering techniques to analyze the patience of resilient dispensed 

datasets (RDDs) in Spark. One storage stage stands proud many of the others 

that have been tested for execution pace. 
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[6] Salloum, Dautov, Chen, Peng and Huang 

With its cutting edge in-memory programming structure and upper-stage 

libraries for scalable gadget getting to know, graph analysis, streaming, and 

dependent records processing, Spark has come to be the de facto framework for 

huge statistics analytics. it's miles a widespread-purpose cluster computing 

framework featuring Scala, Java, Python, and R language-included APIs. it is 

able to be tough for teachers, particularly people who are new to this discipline, 

to recognize the whole body of work and research behind Spark due to the fact 

it is a speedy growing open supply project with a rising variety of contributors 

from each academia and business. this text offers a technical evaluation of 

Spark-primarily based massive information analytics. the primary features, 

abstractions, Sparks's elements are the subject of this text. 

In further element, it demonstrates the talents of Spark for growing and 

deploying big data pipelines and algorithms for machine learning, graph 

evaluation, and flow processing. The file additionally discusses potential future 

regions for Spark research and improvement for big records analytics. 

 

[7] Gupta, Sharma and Jindal 

The standard processing framework for big data analytics is Spark. The key 

difficulties with big data analytics include managing a wide range of types, 

storing enormous amounts of data, and processing data quickly. Because Spark 

processes data in-memory, it has lots of benefits over MapReduce. The default 

settings for running Spark applications are made on commodity hardware, 

therefore they might not offer a solution that works for every setup and 

environment. To obtain the best performance, resource allocation for Spark 

applications must be tuned. In order to improve the speed of Spark applications, 

this article addresses a variety of settings and choices, including caching, 

broadcast variables, repartitioning, and the number of executors. 

[8] Nguyen, Khan and Wang 

Many businesses have chosen Apache Spark, a recently popularised data 

analytics platform. 
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Spark offers a wide array of configuration options that may be modified to 

enhance the performance of a particular application since the features of various 

Spark applications frequently differ greatly in terms of resource requirements 

and execution flow. Although some recent initiatives examined the issue of 

configuration tuning in the context of Apache Spark, it is challenging to adjust 

them automatically because to the vast number of options (which is typical for 

large-scale cloud systems). Additionally, tuning efforts must take into account 

combinations of settings since they are frequently connected to performance and 

may conflict. This is done to prevent inefficient configuration and/or potential 

configuration errors. 

The paper examines machine learning-based algorithms that may automatically 

search and discover the set of recommended changes that may considerably 

increase performance compared to the default settings in order to automate the 

configuration tweaking process. Specifically, the paper employs Latin 

hypercube design technique to first select a set of configurations that are used 

to benchmark the system and gather training data for a specified number of 

parameters that may impact performance (which are recognised a priori). Then 

train several machine learning models and then choose the best one based on 

prediction accuracy. In the study, paper takes into account three distinct 

machine learning techniques—Artificial Neural Networks, Support Vector 

Regression, and Decision Trees—to build performance models for each 

application. 

The most efficient ML model found in the previous stage is then used to fine-

tune the configuration parameters for each application using the Recursive 

Random Search technique. 

The study evaluated nine distinct apps, representing three different application 

categories, to test the framework because the same parameter may effect the 

performance of various applications differently. In particular, we used 

PageRank, Triangle Count, and Connected Components as representative of 

graph processing algorithms, as well as Word Count and Tera Sort as 

representative of batch processing applications, KMeans, Support Vector 

Machines, Matrix Factorization, and Decision Trees as representative of 



26 
 

machine learning algorithms. In each instance, the article assesses the construct 

models' correctness and the performance enhancement brought on by 

configuration adjustment. According to the evaluation, our framework may 

greatly boost performance, with the improvement varying depending on the 

application from 22.8% to 40.0%. 

 

[9] Schiavio, Bonetta and Binder  

The adoption of big-data platforms has significantly increased, and Apache 

Spark is quickly becoming as the industry standard for contemporary data 

analytics. To improve the execution efficiency of analytical tasks on a range of 

data sources, Spark depends on SQL query compilation. Spark's SQL code 

generation has severe runtime overheads due to data access and de-serialization 

in spite of its scalable design. When applications use human-readable data 

formats like CSV or JSON, such a performance cost might be severe. 

This paper gives a novel query compilation method that relies on run-time 

profiling and dynamic code creation to get around these restrictions. With 

textual-form data formats like JSON or CSV, Spark's new SQL compiler creates 

very efficient machine code, resulting in high speeds of up to 4.4 times on the 

TPC-H benchmark. 

 

[10] Essertel, Tahboub, Decker, Brown, Olukotun and Rompf 

Spark has recently taken over because the industry trendy for massive statistics 

processing. due to its adaptability and ease, Spark has allowed a huge number 

of customers to procedure petabyte-scale workloads: users can combine 

relational queries within the fashion of square with Scala or Python code, and 

the resulting programmes can be allotted across an entire cluster without the 

want to paintings with low-stage parallelization or community primitives. 

but, a whole lot of workloads with real-international importance are not massive 

sufficient to warrant dispensed, scale-out execution because the information 

may be thoroughly contained in a unmarried, effective server's foremost 
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memory. Spark remains favored by users due to its well known equipment and 

consumer interface. 

because of Spark's preference for dealing with facts size over improving the 

computations on that information, its overall performance is subpar in positive 

scale-up situations. overall performance might also nonetheless be crucial for 

such medium-sized workloads if responsibilities want quite a few processing, 

must be repeated frequently on changing records, or have interaction with 

outside libraries and systems (e.g., TensorFlow for machine learning). 

The paper introduces Flare, an accelerator Spark module that significantly 

hastens a huge variety of applications on scale-up systems. Flare carries a code 

creation method created to in shape the one of a kind functions of Spark and the 

characteristics of scale-up architectures, mainly processing data without delay 

from optimised record codecs and mixing square-style relational processing 

with outside facts assets. Flare became stimulated via query compilation 

methods from main-memory database systems. 
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CHAPTER 3: SYSTEM DEVELOPMENT 

 

3.1 Analytical 

 

Wide-spread use of MapReduce and huge-scale computing has caused the 

emergence of numerous cluster computing systems. these systems use various 

new APIs, often based totally on useful programming, to support both relational 

queries and greater complicated sorts of processing along with extraction, 

transformation, loading operations or machine getting to know. 

Of these systems, Spark has come to be the maximum used. 

This is because of our knowledge of over 500 deployments and the most lively 

contributor community on Apache (over 400 participants in 2014). not like 

preceding committed structures, Spark provides a fashionable-motive engine 

primarily based on undertaking DAGs and data sharing, able to going for walks 

workloads like batch jobs, streaming, square and chart analytics. There are APIs 

for Scala, Python, Java, and R. As Spark moved from early adopters to a broader 

audience, the opportunity to peer in which the practical API truly worked, 

wherein it is able to be progressed, and what new customers want. 

In general, assisting not unusual analytics workloads has been a fulfillment for 

Spark. moreover, it employs ml, sql, streaming, graph processing, and streaming 

libraries, regularly with overall performance on par with specialized engines. 

due to the fact maximum customers blend more than one of those types of 

processing of their workloads, the Spark engine's adaptability is essential. 

Nevertheless, given the diversity of supported data types and calculations, 

Spark's functional API posed several difficulties for both users and systems. The 

most typical difficulties are: 

 

• Functional semantics of an API. The foundation of the Spark API is a 

set of Java/Python object collections, on which users may call any 

Python or Java function using operators like map or groupBy. We 
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discovered that users frequently struggled to choose the ideal functional 

operators for a particular calculation. Using Spark's groupByKey 

operator, which produces a distributed collection of (key, list of value) 

pairs, as an example, and then aggregating each list is a typical issue 

(e.g., a sum). The reduceByKey operator in Spark may execute partial 

aggregation on each node, which would make this calculation 

significantly quicker. The groupByKey operator must transmit each list 

of records to one machine since that is its return signature. 

It is also challenging for the engine to automatically detect and replace 

operators since the functions provided to Spark are random pieces of 

Python or Java code. Static analysis of UDFs has been suggested in some 

research, although this analysis can be fragile for sophisticated object-

oriented applications. 

• Despite Spark's facet-impact-loose, functional API, disbursed 

programmes are inherently difficult to debug due to the fact that 

customers ought to consider undertaking distribution and skew. 

according to our studies, performance debugging provides the most 

tough troubles considering that customers often are unaware that their 

activity is concentrated on a small wide variety of computers or that 

some of their records systems are reminiscence-inefficient. 

 

• Memory Control. because "huge facts" can take many distinct styles 

and sizes, the engine must cautiously manage its memory. We found 

other resources of excessive memory usage notwithstanding the reality 

that external tactics for aggregation and joins are nicely regarded. as an 

example, sure programmes records information (such those used for 

photograph processing) is probably masses of gigabytes each, 

necessitating meticulous tracking as each file is read. any other example 

is that Spark first of all notion each block of the record, in HDFS is 

normally 128 MB, should shop all of its records in memory without 

delay. but, for some closely compressed datasets, each block might also 

decompress into 3–4 GB. 
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• A significant IO. With biggest clusters now having over eight thousand 

nodes and distinct tasks controlling over 1 PB, Spark workloads 

multiplied dramatically. The networking and that i/O layers of Spark 

have received high-quality engineering funding so that it will 

characteristic nicely at this size. 

 

• Non-experts’ access. Earlier cluster computing answers, like MapReduce, 

have been created with software developers in thoughts, however maximum 

agencies require "big information" to be to be had to a huge variety of 

people, together with non-developers with domain understanding (together 

with statisticians or information scientists). Better-level APIs are crucial for 

all customers as well on account that a whole lot of facts evaluation is 

exploratory and clients lack the time to create absolutely optimised 

distributed programmes. We have made a giant effort to offer excessive-

level data-technological know-how API that mirror unmarried-node 

equipment/utilities, like R's records frames throughout Spark, so that it will 

solve those problems. 

3.1.1 Constraints and Assumptions 

 

3.1.1.1 Constraints 

 

A large cluster couldn’t be used cause of the lack of funding for heavy 

processing of data as such local based machines and virtual machines over 

which the workers were distributed were used 

• Heavy techniques can't be used considering the processing power of 

client machines and the page load time of the website. 

• Constrained ourself on the size of the data so that we don’t have to wait 

for the long runtime of days for data preprocessing. 
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3.1.1.2 Assumptions 

 

• There are enough resources needed to run spark and it’s virtual 

environment over long period of time. 

• The user has a basic knowledge about SQL, Python /R/Java/Scala. 

 

3.1.1.3 Use case diagram 

 

A diagram of a person's ability interactions with a device is called a use-case 

diagram. A use-case diagram, that's often complemented through other kinds of 

diagrams, presentations the several use instances and consumer kinds the device 

has. 

 

 

Figure 9. Spark vs Hadoop 

Figure 9 shows the wroker heirarchy of spark versus hadoop and Figure 10 and 

11 detail the architectures of hadoop and spark respectively.  
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Figure 10. Hadoop based architecture 

 

 

 

 

Figure 11. Spark based work architecture 
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Figure 12. Metrics dashboard for Spark streaming 

 

3.2 Improvements to The Execution Engine  

 

Memory management and the networking layer make up the bulk of our efforts 

in this area. Both emphasise improving the engine's robustness and performance 

under heavy workloads. 

3.2.1 Memory Management  

 

We investigated the root causes of memory issues based on user feedback in 

order to enhance memory management, and we created a per-node allocator that 

controls all sources of memory consumption inside each node. When a limit was 

reached, the memory management for Spark would evict any remaining old data 

blocks, keeping track of how much "cached" data the user had chosen to 

materialise in memory. The first manager didn't specifically monitor how much 

RAM was being consumed for data processing. As a result, processing big joins 

or aggregations was a significant contributor to the memory fatigue issues. We 
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introduced a second cap to monitor hash tables for joins and aggregates to 

handle this. 

As the threads doing these operations increase their tables, this cap is 

dynamically distributed among them, and threads that are not permitted to 

consume additional RAM spill to disc. To determine whether the uncompressed 

data is still tiny enough to store, a third area was set aside for "unrolling" blocks 

that are read from disc. To accommodate skewed record sizes in each of these 

scenarios, we monitor memory use every 16 records. The engine functions 

reliably under these conditions under a variety of workloads. 

3.2.2 Network Layer  

 

Networking layer’s largest assignment became helping shuffle operations on 

many nodes. Shuffle operations need to transport output information from map 

obligations to lessen tasks across the whole network, in order that each node is 

sending some statistics to each different node. they're a undertaking to enforce 

because every node might be fetching facts from diverse disks, multiple 

connections are typically required to saturate community bandwidth, and care 

ought to be taken to stability load. We formerly wrote a custom community 

module that was primarily based on Java’s NIO. The module used the low-stage 

Java  NIO networking API without delay and had to maintain complicated 

nation machines internally. further to this, it creates a higher memory strain 

from JVM's garbage series and higher CPU usage than wanted because of 

useless copies of community buffers. 

We created a newer implementation of network module for Apache Spark [1] 

based at the excessive-overall performance networking framework Netty [2]. 

Netty gives a better degree asynchronous event-pushed abstraction that makes 

networking programming simpler. On top of Netty, we delivered a selection of 

features to enhance performance and scalability, consisting of: 

 

• No-copy I/O: Tell the kernel to bypass user-space memory and transfer 

data from on-disk files directly to the socket. This lessens the demand 
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on the JVM heap's memory as well as the amount of CPU time used for 

context transitions between kernel and user space. 

• Off-heap network buffer management: Netty directly manages a pool 

of memory pages outside the Java heap, removing network buffers' 

negative effects on the JVM garbage collector. 

• Multiple connections: To maximise the throughput of data fetches and 

distribute load evenly across the nodes providing data, each Spark 

worker node has multiple concurrently active connections (by default, 

5). 200 machines connected by 10 Gbps lines may fully utilise a network 

with a bisectional bandwidth. We utilised it to beat the previous Hadoop-

based records in the Daytona-GraySort competition [3] by sorting 100 

TBs of on-disk data with 10% fewer workstations (Figure 10). 

 

3.3 Mathematical  

 

The amount of efficiency used here is time per node per broadcast used for a 

singular job. 

In the events of the overlaying structure it was found efficiency(ε) 

Higher number of nodes in a cluster greater the performance of cumulative jobs. 

 

HDFS [4] divides documents into small chunks of blocks and stores them on 

different nodes. There are two sorts of nodes in HDFS: information nodes 

(employees) and call nodes (grasp nodes). All operations along with delete, 

study and write are based totally on those two kinds of nodes. The HDFS 

workflow is: 

First, the namenode requests permission. If generic, convert the document name 

to list HDFS block IDs. 

This includes files and facts nodes that shop blocks related to this document. list 

of IDs is then back to the customer on which the consumer can carry out 

similarly operations. 
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MapReduce [5] is a computing framework containing her operations of mappers 

and reducers. The mapper methods the documents primarily based upon the 

map's function and maps them to new key-value pairs. 

New key value pairs are then assigned to special partitions and sorted based on 

those keys. The combiner 's elective and can be visible as a nearby cut back 

operation, in order that key can pre-matter values to lessen I/O pressure. sooner 

or later, the partition splits the in-between key-price pair into various portions 

and sends them to  reducer. 

MapReduce takes to use the shuffle operation. Shufen means forwarding the 

mapper output records to correct reducer. Once the shuffle completes, the 

reducer starts some reproduction- threads (fetchers) to retrieve the output files 

of the map's challenge thru HTTP. The subsequent step is to merge the outputs 

into diverse documents. These documents are treated as reducer input facts. 
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CHAPTER 4: PERFORMANCE ANALYSIS 

 

Distributing Spark jobs over a set of machines can significantly affect its 

execution times. Figure 13 shows the base master view of a example spark job 

run on 2 workers (see figure 16, 17, 18).  

Note: These executions were trial runs, just to check, determine and prove that 

optimization can and will improve the execution times and execution time can 

be a great predictor for efficiency of a spark job.

 

Figure 13. Base Master View 

Figure 14 shows the same job running on same workers but with cache turned 

on, reducing the execution time from 2 minutes to just 45 seconds. 

 

Figure 14. Job running with cache 
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Figure 15 shows the same job running but with persist turned on. The execution 

time is 13 seconds. 

 

Figure 15. Job running with persist 

 

Figure 16. Distributing job across workers 
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Figure 17. 1st Slave View 

 

 

Figure 18. 2nd Slave View 
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Figure 19. Job ran over broadcasted over workers 

 

 

Figure 20. Log view- Intial state 
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Figure 21. Log View-Terminated stage 

4.1 Process Overview 

The entire code is in three scripts, one for each parameter optimization 

algorithm. All the three scripts compute the execution time of each workload 

and the performance evaluator.  

Three workloads i.e., Memory-intensive, CPU-intensive, Iterative-intensive are 

first run on Spark’s default configurations execution time is stored. Then, 

parameter optimization algorithms are run one by one. The performance 

evaluator compares the execution times of every iteration (altered value of 

parameter(s)) and stores the minimum execution time for all algorithms. The 

values of parameters are varied in a set range defined in the Table 1. The 

performance evaluator sets the Spark parameters as provided by the 

optimization algorithms, and then job runner runs the job as shown in Figure 

23. 
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Figure 22. Process Overview 

 

4.2 Experimental Setup 

The above approach is implemented on a Spark cluster that consists of one 

master and two slave nodes. One slave and the master node reside on a single 

machine, configured with 8GB memory and 4 cores. The other machine (slave) 

is configured with 16GB memory and 6 cores.  

 

 

 

 

1) ALGORITHM- GRID SEARCH 

Grid search is a technique for finding the best combination of 

hyperparameters for a machine learning model. However, in the context of 

optimizing Spark configuration, grid search refers to a technique for finding 

the optimal combination of Spark configuration parameters.  

To perform grid search for optimizing Spark configuration, you can follow 

these steps: 
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1. Define the range of values for each configuration parameter to optimize. 

For example, we may want to optimize the `spark.executor.memory` 

parameter, and we may define the range of values to be [1g, 2g, 3g, 4g]. 

2. Create a list of all possible combinations of the configuration parameters 

and their values. For example, if we have two configuration parameters 

with ranges [1g, 2g] and [2, 4], respectively, we would have four 

possible combinations: (1g, 2), (1g, 4), (2g, 2), and (2g, 4). 

3. For each combination of configuration parameters and their values, set 

the Spark configuration accordingly and run Spark application or job. 

4. Measure the performance of Spark application or job, for example, by 

measuring its execution time or resource utilization. 

5. Repeat steps 3-4 for all combinations of configuration parameters and 

their values. 

6. Select the combination of configuration parameters that resulted in the 

best performance, and use it for the Spark application. 

 

Grid search can be computationally expensive, as it requires running the 

Spark application or job multiple times with different configurations. To 

reduce the computational cost, we consider using a randomized search, 

which randomly samples from the parameter space instead of exhaustively 

searching it.  

 

2) ALGORTIHM- RANDOM SEARCH 

Random search is an alternative technique to grid search for finding the 

optimal combination of Spark configuration parameters. In contrast to grid 

search, which exhaustively searches a predefined set of parameter values, 

random search randomly samples from the parameter space. 

 

Here are the steps to perform random search for optimizing Spark 

configuration: 

 

1. Define the parameter space for each of the configuration parameters to 

optimize. For example, we may define the parameter space for 

`spark.executor.memory` to be the range [1g, 4g]. 
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2. Set the number of iterations for the random search. This determines how 

many random combinations of configuration parameters and values will 

be tried. 

3. For each iteration, randomly sample a combination of configuration 

parameters and values from their respective parameter spaces. For 

example, if we have two configuration parameters with parameter 

spaces [1g, 2g, 3g, 4g] and [2, 4], respectively, we could randomly 

sample (2g, 4) or (1g, 2). 

4. Set the Spark configuration to the sampled combination of parameters 

and values, and run Spark application or job. 

5. Measure the performance of Spark application or job, for example, by 

measuring its execution time or resource utilization. 

6. Repeat steps 3-5 for the specified number of iterations. 

7. Select the combination of configuration parameters that resulted in the 

best performance, and use it for Spark application or job. 

 

Random search can be a more efficient method than grid search because it 

samples a smaller number of combinations of configuration parameters and 

values. However, it may not guarantee that the optimal combination is 

found, as it is based on random sampling. Therefore, it is recommended to 

perform multiple random searches and select the best combination of 

parameters from the results. 

 

3) ALGORITHM- EVOLUTIONARY OPTIMIZATION 

Evolutionary optimization is a metaheuristic optimization technique 

inspired by biological evolution, where a population of candidate solutions 

evolves over time through processes such as mutation, selection, and 

crossover. This technique can also be applied to optimize Spark 

configuration parameters. 

Here are the steps to perform evolutionary optimization for optimizing 

Spark configuration: 
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1. Define the parameter space for each configuration parameter to 

optimize, as well as the population size and the number of 

generations. 

2. Generate an initial population of candidate solutions, where each 

solution represents a combination of configuration parameters 

and values. The solutions can be randomly generated or based 

on expert knowledge. 

3. Evaluate the fitness of each solution by running Spark 

application or job with the corresponding configuration 

parameters and measuring its performance. 

4. Select a subset of the population based on their fitness values, 

using techniques such as tournament selection or roulette wheel 

selection. 

5. Apply genetic operators such as mutation and crossover to the 

selected solutions to generate new offspring solutions. For 

example, mutation could involve randomly changing the value 

of a configuration parameter, while crossover could involve 

combining the values of two parent solutions. 

6. Evaluate the fitness of the new offspring solutions. 

7. Replace some of the least fit solutions in the population with the 

new offspring solutions. 

8. Repeat steps 4-7 for the specified number of generations. 

9. Select the solution with the best fitness value from the final 

population and use it for your Spark application. 

 

Evolutionary optimization can be a powerful technique for optimizing Spark 

configuration parameters, especially when the parameter space is large and 

complex.  

However, it can also be computationally expensive, as it requires running Spark 

application or job multiple times to evaluate the fitness of each solution. 

Additionally, the quality of the solution obtained can depend on the 

initialization of the population and the choice of genetic operators. 
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4.3 Workload 

The workloads used are designed to simulate archetypal workload behaviors of 

Spark. For simulating CPU-Intensive behavior we calculate the value of pi to 

106, for Memory-Intensive behavior we have serialized RDD’s of random 

numbers 0-1000 and a total size of 10000, for Iterative-Intensive behavior we 

have written a nested loop, with the outer loop running till 106 and inner loop 

running till 102. 

4.4 Parameters 

Following the examples of the previous works we have read and done, we find 

what factors affect the actual efficiency of Apache spark. Certain factors such 

as implementation of certain spark functions such as cache and persist or 

different data models which provide a better arrangement of collected data 

depending on how frequent u access or transform them, their choice validates 

on how well a job runs. In this paper we distributed the job into three factors 

namely Iterative intensive, CPU intensive and memory intensive. We carry out 

this job with distinct configuration of 9 parameters provided in TABLE 1. 

Parameters Range Default 

spark.task.cpus [1, 5] 1 

spark.memory.storageFraction [0.25, 0.9] 0.5 

spark.memory.fraction [0.25, 0.8] 0.6 

spark.shuffle.file.buffer [16000, 

512100] 

32000 

spark.scheduler.listenerbus.eventqueue.capacity [2500, 

25000] 

10000 

spark.storage.memoryMapThreshold [1000000, 

5000000] 

2000000 

spark.default.parallelism [4, 24] 24 
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spark.shuffle.spill.compress [FALSE, 

TRUE] 

FALSE 

spark.executor.cores [1,32] 2 

Table 1. List of parameters, range, and default values 
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CHAPTER 5: CONCLUSIONS 

 

5.1 Results 

The workloads run on default configurations is used as benchmark (see Table 

2). 

Workload Execution Time (seconds) 

Iterative- intensive 14.21 

Memory- intensive 13.80 

CPU- intensive  12.01 

Table 2. Benchmark figures 

Grid search computed the following (see Table 3). 

Workload Execution Time (seconds) 

Iterative- intensive 9.93 

Memory- intensive 10.91 

CPU- intensive  9.87 

Table 3. Grid search results 

Random search computed the following (see Table 4). 

Workload Execution Time (seconds) 

Iterative- intensive 10.21 

Memory- intensive 11.65 

CPU- intensive  10.06 

Table 4. Random search results 

 

Evolutionary optimization computed the following (see Table 5). 

Workload Execution Time (seconds) 

Iterative- intensive 10.02 

Memory- intensive 10.78 

CPU- intensive  9.99 

Table 5. Evolutionary optimization results 
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Grid search tunes the parameters and reduces the overall execution time by 

23.26% in 10000 seconds. 

Random search tunes the parameters and reduces the overall execution time by 

20.23% in 6000 seconds. 

Evolutionary optimization tunes the parameters and reduces the overall 

execution time by 23.06% in 7000 seconds. 

 

5.2 Conclusion and Future Scope 

We are continuing to improve Spark for both usability and performance. On the 

usability side, we and other members of the community are augmenting Spark 

with a large set of standard libraries containing scalable versions of common 

data analysis algorithms. For example, Spark’s machine learning library, MLlib, 

grew by a factor of 4 in the past year. We have also designed a pluggable data 

source API that makes it easy to access external data sources in a uniform way 

using DataFrames or SQL [6]. Together, these APIs form one of the largest 

integrated standard libraries for “big data,” and will undoubtedly lead to 

interesting design decisions to enable efficient composition of workflows. 

We have also increasingly seen Spark used in research projects, including online 

aggregation [7], graph processing, genomic data processing, and large-scale 

neuroscience. We hope that Spark’s relatively small code size and wide array 

of built-in functions make it amenable to both systems and application-oriented 

projects. 

All the functionality described in this work is open source and available at 

spark.apache.org 

It can be concluded that the Random search is the most efficient algorithm as 

its percentage reduction in execution time to overall execution time of algorithm 

is maximum. 

Optimizing the Spark parameters used in this project might affect different 

workloads in different manners. So, selecting the correct parameters is a very 

important task. Here, in this project, better results might be achieved by 
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selecting other parameters, a machine learning and prediction model can be 

created for the same.   
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