
ITEM DELIVERY APPLICATION USING REACT NATIVE

Project report submitted in partial fulfillment of the requirement for
the degree of Bachelor of Technology

in

Computer Science and Engineering

By

Abhishek Mishra (191287)

Under the supervision of

Dr. Aman Sharma

to

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology

Waknaghat, Solan-173234, Himachal Pradesh

i

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “ Item Delivery

Application using React Native” in partial fulfilment of the requirements for

the award of the degree of Bachelor of Technology in Computer Science and

Engineering/Information Technology submitted in the department of

Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology Waknaghat is an authentic record of my

own work carried out over a period from July 2022 to May 2023 under the

supervision of Dr. Aman Sharma (Assistant Professor (SG), Computer

Science & Engineering and Information Technology). The matter embodied in

the report has not been submitted for the award of any other degree or diploma.

(Student Signature)

Abhishek Mishra (191287)

This is to certify that the above statement made by the candidate is true to the

best of my knowledge.

(Supervisor Signature)

Dr. Aman Sharma

Assistant Professor (SG)

Computer Science and Engineering

Dated:

ii

Plagiarism Certificate

iii

Originality Report

iv

Acknowledgement

I would like to express my sincere gratitude and appreciation to all those who

have helped me in completing this major project. First and foremost, I would

like to thank my project supervisor (Dr. Aman Sharma) for providing me with

guidance, support, and valuable feedback throughout the project. Your expertise

and knowledge have been invaluable to me.

I would also like to extend my gratitude to Jaypee University of Information

Technology, for providing me with the necessary resources and facilities to

complete this project. Without your support, this project would not have been

possible.

My heartfelt thanks to my family and friends, who have been a constant source

of encouragement and motivation throughout my academic journey. Your

unwavering support and belief in me have been my greatest strength.

Lastly, I would like to thank all the participants who took part in my study, for

sharing their valuable time and insights with me. Your contribution has been

instrumental in the successful completion of this project.

Thank you all once again.

(Student Signature)

Student Name: Abhishek Mishra

Roll no. : 191287

v

Table of Content

S.

No

Title Page

No.

1 Candidate ‘s Declaration i

2 Plagiarism Certificate ii

2 Acknowledgement iv

3 List of figures vi

4 List of tables viii

5 Abstract ix

6 Chapter - 1 Introduction 1

7 Chapter - 2 Literature survey 10

8 Chapter - 3 System Development 12

9 Chapter - 4 Performance analysis 35

10 Chapter - 5 Conclusions 46

11 References 50

vi

List of Figures

S No. Figure

No.

Description Page

no.

1 1.1 Data fetching from back-end and rendering on front-

end.

8

2 1.2 Showing the comparison between usage of different

technologies

9

3 3.1 Syntax of inline styling 14

4 3.2 Styling using create function 14

5 3.3 Styling using style components 15

6 3.4 ER diagram of user authentication 26

7 3.5 ER diagram of product and location selection feature. 17

8 3.6 Showing the flow of payment methods 18

9 3.7 ER diagram of complete application 19

10 3.8 Function component in ReactJs 25

11 3.9 Class component in ReactJs 25

12 3.8 Complete cycle of Expo 39

13 3.9 Flow of requests and response from client to server 29

14 3.10 List of Firebase features 31

15 3.11 Dependencies included in this project 34

16 4.1 Commands for installing cli and initialising app 41

vii

17 4.2 Versions of technologies used 42

18 4.3 Config file generated by firebase 42

19 4.4 Login and Register screens of application 39

20 4.5 Code for persisting the user 40

20 4.6 Home screen of application 41

21 4.7 Order tracking using MapView 42

22 4.8 Order details screen 43

23 4.9 Syntax of fetch function to GET from API 43

24 4.10 Backend of user initiated online payment 44

25 4.11 Payment Screen of application 45

26 5.1 Reads per day underdeveloped. 47

27 5.2 Writes per day underdeveloped 47

28 5.3 Dashboard of admin-side 48

viii

List of Tables

S.No. Table

No.

Title Page

no.

1 1.1 List of technologies stacked for application 7

2 4.1 List of screens 36

ix

Abstract

The Item Delivery Application is a React Native-built mobile application that

seeks to offer consumers a simple and effective platform for delivering and

receiving goods from remote locations. This report covers the features,

functionality, and architecture of the application's development. Users will find

it simple to explore and finish activities because to the application's user

interface's clear and simple design. The backend of the application, which

manages user information and orders, was created using Node.js and Express.

The application links users with delivery personnel who can quickly and

effectively pick up and deliver the desired things. Users may monitor the status

of their delivery in real-time and get alerts at various points.

In general, this application offers consumers a dependable and practical on-

demand delivery service that satisfies their regular demands. Users looking for

a dependable and effective approach to obtain goods from their chosen stores

will find the application to be useful due to its features and performance. A top-

notch, cross-platform software that works on both Android and iOS devices may

be created with the help of contemporary platforms and technologies like

Node.js and React Native.

Chapter - 1

Introduction

1.1 Introduction

With the growing numbers of consumers choosing the convenience of having

goods and services delivered to their doorstep in recent years, which has

resulted in a huge increase in the on-demand delivery market's appeal.. One

such segment of the on-demand delivery market is the hyperlocal delivery

service, which has gained tremendous popularity in urban areas. Customers of

the well-known hyperlocal delivery service Swiggy Genie in India can send as

well as receive items inside the city. Because of the service's accessibility,

dependability, and reasonable cost, it has seen tremendous growth. This article

will examine the creation of an app similar to Swiggy Genie. To enable clients

to send and receive products swiftly and easily, we set out to develop an app

that would offer a seamless hyperlocal delivery experience. We had to

overcome a number of obstacles when designing the app, including creating a

user-friendly interface, improving the program's speed, and guaranteeing the

safety of information provided by users. We will go through the strategy we

used to overcome these obstacles in this report, along with the fixes we put in

place to build a productive hyperlocal delivery app. Along with insights into

the lessons we learned along the way, we will also give an overview of the

main features and functions of the app.

Overall, the process of creating the app was both resilient and gratifying. We

anticipate that other companies trying to develop comparable apps to improve

their hyperlocal delivery operations would find this report to be a helpful

resource. Swiggy. Our app provides a delivery service that enables users to

get anything delivered from anywhere within a city. Whether it's forgotten

keys, documents, groceries, or even laundry, this application promises to

deliver it all in just a few clicks. The app is simple to use, with a user-friendly

interface and a range of features designed to make the delivery experience as

1

seamless as possible. Several stages of the development process were

conceptualization, design, development, testing, and deployment. We

encountered a number of challenges when developing the app, including

enhancing its performance, guaranteeing data security, and connecting with

third-party APIs and services [5]. The positive aspect is that we were able to

overcome all these challenges and develop a useful item delivery application

through thorough planning and efficient implementation.

The technology we are using to implement this application is React Native.

Facebook developed the well-known open-source React Native framework for

building mobile applications [6]. It enables programmers to create native

mobile applications for both the iOS and Android platforms using a single

codebase and is built on top of React, a well-known JavaScript toolkit for

creating user interfaces. One of React Native's key benefits is that it enables

programmers to create high-quality, effective mobile applications using

well-known web development languages like JavaScript, CSS, and HTML.

Because of this, it is the perfect option for web developers who wish to switch

to building mobile apps without having to learn another programming

language or framework. Hot reloading, which enables developers to view their

modifications in real-time without needing to relaunch the programme, and a

comprehensive set of built-in components which may be readily customised to

match the particular demands of the application are just a couple of the helpful

features offered by React Native. Due to its simplicity, adaptability, and ability

to rapidly develop and refresh applications, React Native has grown to be an

increasingly popular option for developing mobile apps. It has been used to

create top-notch mobile applications by businesses like Facebook, Instagram,

Airbnb, and Tesla. Developing software that is adaptable to several different

kinds of hardware is known as cross-platform software creation. Microsoft

Windows, Linux, macOS, or any combination of these operating systems may

all be utilised by a cross-platform application. A cross-platform application is

one that works exactly the same on any type of device, such as an internet

browser or Adobe Flash. React Native is also quite configurable, giving

programmers the freedom to design distinctive user experiences that meet the

2

needs of an organisation or project. This is made feasible by the adaptability of

React Native's architecture and the simplicity of incorporating unique

animations and effects.

1.2 Problem Statement

As more people rely on delivery services to have items delivered from one

location to another within a city, the item delivery industry is expanding

quickly. However, the users' needs for speed, convenience, and security are

frequently not met by the current delivery services. The goal of this project is

to utilise React Native to develop an item delivery application that overcomes

these problems and offers users a seamless, effective, and secure delivery

experience. Specifically, the project aims to solve the following problems:

● Limited delivery options: confined Delivery possibilities: Users of

currently available delivery options are frequently confined to a select

few service providers, which results in an insufficient number of

delivery possibilities. Users who require prompt and effective delivery

of their items may find this to be annoying.

● Lack of real-time tracking: Real-time monitoring is often absent

from conventional delivery systems, making it challenging for

customers to keep track of their goods and get updates in real-time.

Which is handled in our project. This helps the user to continuously

monitor the item which they have sent. Keeping track of the delivery

partner.

● Ineffective Communication: Poor and inefficient communication

might lead to delays, missing deliveries, and other problems between

users and delivery workforce members. This leads to lack of belief of

the application user over the delivery partners.

In order to solve these problems and give consumers a seamless, effective, and

secure delivery experience, this endeavour aims to develop an item delivery

application. I strive to give consumers a delivery service that fulfils their needs

3

and surpasses their expectations by creating an application that offers a wide

selection of delivery options, tracking in real time, effective communication,

and strong safety features. Consumers demand prompt and effective delivery

of their goods in the rapidly changing environment of today. A trustworthy

item delivery software that can provide clients with a flawless and hassle-free

delivery experience is becoming more and more necessary as e-commerce and

online shopping grow in popularity. However, the market's current delivery

apps frequently experience problems like sluggish deliveries, inaccurate

tracking, and subpar customer support. Customers become dissatisfied as a

result, and the app experiences a decline in sales. Consequently, there is a

demand for a product delivery application that can overcome all of these

challenges and offer clients a quick, dependable, and open delivery option.

The fact that React Native employs native components instead of web-based

ones indicates that it delivers superior efficiency and swiftness. React Native

apps become more rapid and responsive as a result, offering users a smooth

and seamless experience. React Native is also quite adaptable, giving

developers the ability to construct distinctive user experiences that meet the

needs of their company or project. This is made feasible by the adaptability of

React Native's architecture and the simplicity with which custom transitions

and effects may be included.

1.3 Objectives

The objective of our application is to provide an intuitive interface. The

application should be simple to use, with instructions that are relatively easy to

follow and a user-friendly UI that leads users through the entire process of

delivery. To enable clients to send and receive products swiftly and easily, we

set out to develop an app that would offer a seamless hyperlocal delivery

experience. The objective of this application are as follows:

● To offer a trust-worthy delivery experience : This application

should make sure that packages arrive on schedule and reliably, with

4

clear notification and tracking systems to keep users updated at all

times. Therefore it offers a dependable delivery service.

● Support a variety of delivery choices : In order to satisfy the

requirements of numerous users, the application should offer an

extensive variety of delivery options, such as food, medicine,

documents, tools e.t.c..

● Delivery at reasonable cost : The application must give users of this

application reasonable service for delivery at an affordable price

without sacrificing dependability or performance. Therefore, the cost

of the delivery service will be depending upon the distance between

the source and the destination.

● Status of the delivery package : The user can see the status of their

delivery packages in real-time, This application provides the user to

track the route of the delivery partner in real-time. This enables the

user to keep track of the product they have sent at all times. monitoring

the delivery partner.

● Communication and customer service : The user of this application

would be able to contact the delivery partner and clear their issues, if

the user wants he can also communicate with the admin or customer

care if he is facing any delivery issues.

1.4 Methodology

In this section we will be discussing the methodology used in the project step

by step. In this application we have used React Native as a framework as a

front-end mobile application. Development and deployment of React Native

applications may be done in two distinct ways: Expo Go and React Native

CLI. Developing and deployment of React Native applications may be done in

two distinct ways: Expo Go and React Native CLI.

The development environment Expo offers a number of tools and services

which render it easier to create and distribute React Native apps. Expo Go is

5

one of such solutions, an application for smartphones that enables you to view

and evaluate your React Native application without the need to set up a

different emulator or device. Your application will be started in Expo Go on

your smartphone by just scanning a QR code created by Expo CLI. A variety

of additional resources are also offered by Expo, including a collection of

already built components, a software development server, and a building

service that streamlines the process of submitting your application to app

stores. Expo is a great option for programmers who want to swiftly develop

and test their concepts without needing to deal with the difficulties of creating

and distributing a native mobile app, for novices, or for experienced

developers.

In this application I have worked in Expo go for better representation of the

concept and requirements of the project. After selecting the framework and the

platform, the first step toward building our project is to gather all the

information and requirements for this project. In this step we identify user

demands, determining necessary features, and establishing the project's scope

are all part of this process. Then the next step is design and wireframing. After

understanding the requirement of the application, objectives and other aspects

and putting it together we work on its UI/UX designs. This step includes

conceptualising and prototyping the application. This involves establishing

how the user flows, developing the interface's functionality and the user

experience, and producing an aesthetic that is compatible with the application

and the requirements of the intended audience. In order to achieve this we

have to follow certain rules:

1. Identify target users: The key to developing an effective application

is recognising those who are your target users. To understand your

users' wants, objectives, and pain spots, perform user study and collect

feedback.

2. Keeping it simple : The layout must be uncomplicated, clear, and

straightforward to use. We should avoid using complicated navigation

from one component to another and cluttering our interfaces.

6

3. Consistency: In layout, uniformity is very crucial. In order to provide

a uniform and consistent user experience we should use the exact same

layout, fonts, colours, and icons throughout the entire application.

4. Use the right colours : The choice of shades is crucial in layout. Use

colouring that is suitable for your brand and the intended use of the

product. To make the user interface easy to comprehend and navigate,

refrain from using excessive colours and make sure there is adequate

contrast.

Table 1.1 shows the technologies stacked for implementation of the

application.

React Native Front-end framework

Node.js Back-end

Express.js API

Stripe Payment gateway

Firebase Back-end authentication

Table 1.1 List of technologies stacked for application

After creating the UI of our application and understanding the needs of the

users our next step is to stack all the technology requirements. The choice of

the technological stacking comes next. The main technology employed to

create the mobile application for Android and iOS targeted users is React

Native. Node.js for API connectivity, and Firebase for backend services are

some more technologies that might be leveraged. Google's cloud-based

Firebase platform offers an array of resources and applications for creating

and deploying apps for the web and mobile devices. A wide range of backend

capabilities provided by Firebase enable programmers to create apps with

greater efficiency and speed. There are numerous services provided by

Google’s firebase like: Authentication, Cloud messaging Programmers may

7

deliver alerts to users over many platforms, such as iOS and Android, and the

web, using real-time cloud communication. After choosing the technologies

the user is then moved to the most important step of developing the code. The

application's code is written during the development stage. Fig 1.1 shows. This

involves building the application's front- end and back-end, integrating APIs,

and testing it for faults and other problems. The application is tested

throughout the testing and quality management stage to ensure it satisfies its

functionality and operational criteria. Testing for units, validation of

integration, and user acceptability testing are all included in this. Following

recommendations, documenting all of the efforts made, and making sure the

source code is adaptable and manageable to accommodate subsequent

upgrades and improvements are crucial through the whole process.

Fig 1.1 Data fetching from back-end and rendering on front-end.

8

Over the years the React Native is continuously trending in comparison with

other technologies as shown in Fig 1.2. The most popular technology giving

tough competition to React native is Flutter but due to some disadvantages of

flutter and some extra features of React Native makes it more reliable,

adaptive and flexible to use. Components, hooks, component’s life cycle are

some of the key features of React native which makes our development faster.

Fig 1.2 Comparison of different Frameworks

9

Chapter-2

Literature Survey

In this section of this report we will be discussing the literature review we

have done to explore existing literature on React native application. A

well-appreciated cross-platform programming framework called React Native

is used to create mobile apps for both iOS and Android based devices. The

framework is renowned for its use, efficacy, and adaptability. One of the most

common use cases for mobile applications, and their popularity is increasing

rapidly, is product delivering. This evaluation of the literature's current state

focuses on React Native application for product delivering. A lookup on

different academic databases, including Google Scholar, IEEE Xplore, and the

ACM Digital Library, was done to conduct the aforementioned evaluation.

One research by Atul et al. (2021) investigated the creation of an application

for product distribution using React Native. According to the report,

employing React Native instead of creating separate iOS and Android

applications cut development time by up to 30%. The application also offered

real-time tracking of the package's progress and could manage several

simultaneous requests. The customer experience of a React Native-based

goods distribution application was the subject of an additional study by Singh

et al. (2020). Users were able to complete delivery orders quickly and

effectively because of the application's user-friendly interface, which the

research deemed to be straightforward and simple to use.

Riaz et al. (2021) in research paper “Development of a React Native Mobile

Application” shows The creation of a laboratory for clinical screening

application utilising React Native is explored in this article. The research

identifies the benefits of utilising React Native for creating mobile apps that

run across platforms and offers details on the creation process. The findings of

this literature research indicate there is rising interest in employing React

Native to create applications for product distribution. The benefits of using

10

React Native have been emphasised in several studies, including its capacity to

create applications for multiple platforms, which lowers development

expenses and shortens time to market. Furthermore, React Native provides

outstanding efficiency, which is essential for programmes that need to process

and deliver information in real-time.

"Building Mobile Applications using React Native: A Study of Performance

and User Experience" by P. Singh et al. (2020). In this study, an application

for mobile devices built with React Native is tested for efficiency and user

satisfaction. According to the report, React Native is a strong framework for

developing applications for smartphones since it provides exceptional

performance and consumer experience. "Cross-Platform Mobile Development

with React Native: A Case Study" by S. Arndt et al. (2020). A case

investigation of a multi-platform smartphone application created with React

Native is presented in this paper. The research sheds insight into the design

process and emphasises React Native's advantages for creating applications

that run across platforms.

"Development of a React Native-based Mobile Application for Online

Grocery Shopping" by S. Lee et al. (2020). This piece examines the creation

of a smartphone application for purchasing groceries online that is built on

React Native. The research focuses insight into the design process and

emphasises the advantages of utilising React Native while creating

applications for e-commerce. "A Comparative Study of React Native and

Native Mobile Application Development" by S. Hasan et al. (2019). The paper

contrasts the creation of native mobile applications to React Native in terms of

performance, user experience, and design. According to the report, React

Native has a number of benefits, such as more rapid development and

improved user interfaces.

These academic articles illustrate the advantages of utilising React Native for

creating cross-platform mobile applications and offer insightful information on

how React Native applications are developed.

11

Chapter - 3

System Development

3.1 Analysis

In this stage we gather and analyse, recognise, collect and evaluate the

specifications and functionality for the application. Finding the application's

key components, such as registration of new users in our application,

signing-in the registered user, locating the current users pick-up point and

delivery point, calculating the cost associated with the delivery, payment

processing, and delivery tracking, is necessary for this.

Based on these requirements we made a system design that covers the

structure, interface for users, and database structure based on the

specifications. Make a design paper that specifies the system's technical

specifications. We need to create the system with the aid of essential platforms

and technologies, including React Native and Firebase (for backend services).

Design the user interfaces, combine the back-end services, and put the system

logic into practice. After implementation we have to run tests on our

application. The platform's construction utilising React Native, Firebase, and

other pertinent resources and structures is the main emphasis of the

implementation phase. React Native components are used in the creation of

the user interface, while CSS is used for styling. Firebase is used to create the

backend services and offers features like cloud computing, database storage,

and authentication. Programming languages like JavaScript or TypeScript are

used to carry out the system logic.

Firebase is a popular backend-as-a-service (BaaS) platform Firebase offers

numerous services for mobile and web applications, such as cloud storage,

real-time databases, verification, and more. There are a number of benefits of

utilising Firebase in React Native projects:

12

● Easy integration : straightforward and user-friendly integration:

Firebase offers an integration for React Native that is easy and

straightforward to use, with pre-built frameworks and extensions that

make it simple to use its services. Developers can easily get started and

rapidly incorporate Firebase into their React Native apps thanks to

Firebase's robust guidelines and assistance.

● Scalability : Firebase is highly adaptable, which enables it to manage

enormous amounts of information and traffic without experiencing any

performance concerns. Because Firebase offers automatic scaling, it

will automatically increase its resources to withstand the load as flow

and data volumes rise, ensuring quick and dependable effectiveness for

your React Native applications.

● Real-time updates : Data may be instantaneously updated throughout

every device in real-time thanks to Firebase's real-time database

abilities. Applications requiring real-time synchronisation or

cooperation between numerous users, such chat programmes or

collaborative editing tools, might benefit from this.

● Analytics and testing : To track and improve the efficiency of React

Native applications, Firebase offers strong analytics and benchmarking

capabilities. Firebase Analytics gives developers in-depth knowledge

on user behaviour, enabling them to improve user experience and

monitor important KPIs. Developers may test their React Native

applications on a variety of devices using the testing tools provided by

Firebase Test Lab, guaranteeing that they function properly on

different platforms and setups.

● Cloud storage : Firebase offers services for storing and retrieving

massive volumes of data, including audio, video, and picture files.

Given its scalability, dependability, and security, Firebase storage is a

solid option for applications that need to be able to transfer and upload

large amounts of data. Incorporating a variety of strong services

provided by Firebase into React Native apps. Firebase is simple and

offers advantages including flexibility, real-time updates, strong

13

authentication, cloud storage, and extensive statistics and testing

features.

Numerous advantages of using Firebase in React Native projects include

simple integration, scalability, real-time updates, strong authentication, cloud

storage, and potent analytics and testing tools.

3.2 Design

This phase involves designing a technological strategy for the item's delivery

application as part of the design process. This comprises the database schema,

user interface, and architecture. The system's backend services, APIs

(Application Programming Interface), and user interface components are all

described in the structure of the system plan along with how they interact. To

assure accessibility and ease of use, the user interface layout should adhere to

best practices and guidelines for design. The data model, relationships

between entities, and data storage techniques should all be specified in the

database architecture.

In React Native, "StyleSheet" is a styling tool used that combines JavaScript

with CSS-like syntax. A quick and effective approach to specify style for

React Native elements is through the use of StyleSheet.

● Inline styling : Similarly to how styles are applied to individual

HTML elements, React Native components can have inline styling

added to them. For instance, you may explicitly define the component's

colour, size of the font, and additional parameters. As shown in Fig 3.1

Fig 3.1 Inline styling

14

● StyleSheet.create() : You may use the StyleSheet.create() to generate

more intricate styles and reuse them across many components. The

above function accepts an object as an input, where the style objects

are represented by the values and the style names are the keys.

Fig. 3.2 styling using create function

● Using styles in components : After defining the aesthetics using

StyleSheet.create, one can use the style prop to add them on to React

Native components. The code for this is shown in Fig. 3.3

Fig. 3.3 Styling using style components.

● Cascading and inheritance : Like to CSS, React Native allows for

the cascading and inheritance of styles. By default, child components

take on the parent component's styles, though one can change or add to

them as necessary. Combining inline styling with StyleSheet.create,

which offers a quick and easy method to specify and apply styles to

React Native components, is how styling is done in React Native.

Designing of the project is distributed into certain levels. These levels are :

15

● Authentication

● Product and location selection

● Payment

Fig 3.4 represents the ER model of user authentication. If the user is new to

this application he needs to sign up and if an individual is already registered

then he has to simply sign in. In both the cases the user can only validate

himself with the mobile number [3]. The user gets an OTP on their registered

mobile number.

Fig. 3.4 ER diagram of user authentication

Product and Location Selection

Moving further in this application after signing-in the user will get an option

of selecting the pickup and drop location for the product delivery. In this

module of our application the user have to fill following details :

● Pick-up location

● Destination

● Details of the items which is to be delivered

16

● Some instructions for the delivery partner to deliver the product.

Fig 3.5 shows the flow of this process, first the user will select the pick-up

point, as he clicks on this option a map will be displayed to select a location.

For this map, I have used MapBox and MapView which are components of

react native. This same step is followed in selecting a destination location.

Then the user has to add the items he wants to be delivered. Users can also add

some instructions for the delivery partner to deliver the items. It is a guideline

for the delivery boy on how he should be reaching his destination.

Fig. 3.5 ER diagram of product and location selection feature.

After selecting the source location and destination location the MapBox tool

will find the appropriate and the fastest route to reach the destination and give

us the distance between the two points, the price for the delivery is totally

depending on the distance between the two points. As the user confirms the

source and destination points he will be getting a detailed bill for the delivery

and he will get a make payment page. Fig 3.6 shows the payment ER diagram.

The user has the functionality to add a new card to make payment.

The user will be choosing each time from which card he wants to make a

payment, if he wants to add a new card, a dialogue box will appear in the

middle of the screen, where he needs to fill in the card details. There is a

proper validation done in the front-end, if the card details are correct or not.

17

The card details whether the card exists or not, the card details match the

existing card or not is done on the backend using Stripe, we will be discussing

this technology in the further section of this chapter.

Fig 3.6 Showing the flow of payment methods

The user of this application will also get a number of features like, to see and

edit profile, give rating and reviews to the delivery partner, order history and

notification. As soon as the item reaches its destination, the user will get a

notification about the delivery. The user is then able to rate the driver based on

its behaviour and delivery timing and the user can also be able to write some

reviews about the delivery partner. The user can also be able to see all the

reviews and rating he has ever given to the delivery partner.

Each time when the user opens up the application he will be logged-in as a

previous user or the last user. The logout feature will take the user back to the

welcome page of the application and there, the user will be able to sign-in

again with another mobile number or create a new user. The user should be

18

having the entered mobile number working to get an OTP on that particular

number.

Fig 3.7 ER diagram of application

3.3 Development

This section focuses on thorough discussion of the building process of our

application. It also contains the tools and technologies I have used, as well as

the challenges I came across may all be found during the creation portion of a

report on a React Native application. This contains the detailed information of

the technologies used in this project.

● Expo

● Android Studio

● React Native

● Node.js

● Express.js

● Firebase

19

● Stripe

Now, we will discuss each and every technology in detail and how we have

used it in our project from initialising our application to adding features to the

application and use of these technologies in our application at various stages.

Android Studio

An Integrated Development Environment (IDE) called Android Studio has

been employed to create applications for Android. Additionally, React Native,

a well-liked framework for creating multi-platform mobile applications, is

developed in this environment. The officially licensed IDE for Android,

Android Studio, offers a number of features and tools designed to make the

design and development process easier and more efficient. By employing one

source code base, programmers can create native mobile apps for the iOS and

Android platforms using the framework for JavaScript, also known as React

Native[1, 2]. For designing React Native apps, Android Studio offers a strong

development environment with tools for establishing a profile evaluation, and

troubleshooting. To test and preview campaigns on various devices and

operating systems, it also comes with a device emulator for Android. By

means of an extension designated "React Native Tools," Android Studio

supports React Native advancement. With the help of this plugin, the IDE

gains support for a number of features and functions, including code

emphasising and autocompletion, support for building and executing React

Native projects, and support for developing, testing, and troubleshooting React

Native applications.

Features of Android Studio for React Native:

● A built-in Android emulator is provided by this IDE to evaluate

applications on various hardware and OS versions.

20

● Dynamic refreshing and hot reloading enables the developers to

rapidly view modifications to their code without having to recompile

the app every time.

● Dynamic refreshing enables the developers to rapidly view

modifications to their code without having to recompile the app every

time.

● For React Native elements and APIs, code automatic completion and

syntax-highlighting features are provided. Tools for app assessment

that analyse effectiveness and highlight areas for improvement

assistance with creating native Android components which can be used

into React Native applications.

React native tool plugin. React Native development-specific capabilities are

added via the React Native Toolkit extension for Android Studio this is also

provided by Visual Studio Code, in this also we can add-on extra plugins.

● Newly installed React Native applications are frequently made

available right from the IDE.

● Resources for debugging React Native programmes to find and correct

bugs.

● React Native CLI integration enables programmers to execute and

create applications right inside Android Studio.

● It is possible to skip to component descriptions as well as the

completion of code for React Native widgets and APIs.

● a comfortable environment for Android developers to work in a strong

IDE with a wide range of capabilities and resources for developing

apps. A variety of smartphones with Android and iOS and versions

that may be utilised to simulate and test applications.

● Assistance with integrating native Android modules into React Native

applications with Git and other version management systems that is

efficient.

In addition to offering extensive assistance for React Native growth and

development, Android Studio offers a strong and effective IDE for creating

21

Android applications. The IDE provides a number of features and

instrumentation that can speed up the development procedure and assist

programmers in creating high-calibre, mobile applications that work across

platforms. Android Studio is a popular option among programmers for

creating React Native applications because of its durable features and

simplicity of use.

ExpoGo

Expo is a well-liked and potent suite of development and deployment tools for

React Native applications. It offers a simplified method of development that

removes the majority of sophistication and framework-specific requirements

related to creating and distributing applications for mobile devices. Expo saves

designers from bothering about infrastructure support so they are able to focus

on creating interesting and exceptional applications. Expo's ability to support

software development across platforms is one of its key advantages. Expo

eliminates the distinctions between the Android and iOS operating systems so

that programmers are able to develop programmes that work effectively on

both operating systems. This is made possible by using a uniform API to

access aspects of the device including the camera, push notifications, and

connections.

The ease of setup is another important aspect of Expo. With a few

straightforward keystrokes, developers can rapidly build up an entirely novel

project, and Expo will handle the rest. Because there is no longer a need for

difficult setting up and configuring procedures, programmers can easily begin

developing in React Native. Additionally, Expo offers a variety of already

assembled UI elements that are able to be quickly altered to meet the demands

of the app you are developing. These parts include things like buttons, text

inputs, and picture views, among others. Additionally, Expo offers a collection

of APIs that can be used to access native device features like the camera, push

notifications, and contacts in order to create complex and interesting mobile

applications.

22

Expo can only be used with react native which is also made available by

Facebook in the year 2015. But to work with React Native we first need to

understand what Reactjs is, how the components in Reactjs are rendered.

Concept of Hooks is also very important to understand the SPA (Single page

application) mechanism of Reactjs. Developers describe what they want to

happen, and React manages the how, thanks to the use of declarative

programming, which is one of React's major characteristics. Because

programmers can concentrate on the application logic without being

concerned about its execution specifics, writing and maintaining algorithms is

made simpler to do so. React is renowned for its capacity to manage

significant volumes of data and change the user interface in instantaneous

fashion without the need for a page reload.

React is incredibly effective and quick since it renders components using a

virtual DOM (Document Object Model). React may reduce the amount of UI

changes needed by using the simulation of the DOM, which is a thin

approximation of the actual document object model (DOM). Components that

we create in React can be of two types: Class based components and Function

based components, the benefit of using function based components is that we

can use Hooks with them.

Function based components

Function components must return the React elements that make up the

component's Appearance and are defined using a standard JavaScript function.

They accept a configurable 'props' object as the argument they are given,

which holds any information that the component's parent passes to it. Function

components lack state by default, but they can add state with the 'useState()'

hook. Any changes to state cause the component to be re-rendered because

state is an object that holds data that is particular to the component. The

majority of new React code repositories only employ functional components,

which are currently the suggested method for defining components in React.

Class-based components continue to be supported by React, and they can be

23

helpful in some circumstances, such as when connecting with libraries from

outside the framework that need them or dealing with old code. The

useEffect() function, that is called after the function component has been

displayed the first time around and may be used to carry out side effects like

getting information from a server or changing the document title, is one of the

additional hooks that function components have access to. Function elements

are quicker to speculate about and test since they are more portable and less

complex than class-based elements. Since they lack the extra complexity of a

JavaScript scripting class, they are also far more performant. Functional

components supports following hooks:

● useState Hook

● useEffect Hook

● useRef Hook

● useCallback Hook

● useMemo Hook

● useContext Hook

● useReducer Hook

Class-Based Components

Using a JavaScript class to define a component is known as class-based

components. Prior to the introduction of component functions in React 16.8,

they were the main method of constructing components in React. Class-based

components have to inherit from the 'React.Component' class and be declared

using the 'class' keyword. They contain a function called "render()" that

delivers the React fragments that comprise up the UI of the component. State

is likewise a feature of class-based sections, and it is controlled via

the'setState()' function. Any changes to state cause the component to be

re-rendered because state is an object that holds data that is particular to the

component. Fig 3.8 and Fig 3.9 shows the syntactical differences between

24

functional and class components. Additionally, decoration, organisation, and

interaction with events are supported by JSX in React Native. To style your

widgets, you may use inline styling or additional stylesheets, and you can

utilise arrangement aspects like "FlexBox" to manage how your UI is laid out.

Your elements can also include event handlers to react to user events, such as

'onPress' for a button's press.

Fig 3.8 Function component of Reactjs

Fig 3.9 Function component of Reactjs

Lifespan methods, or methods that are invoked at particular times during the

component's lifespan, are likewise included in class-based components.

ComponentWillUnmount(), which is called right before the widget is removed

from the DOM, and componentDidMount(), which is called after a component

has been displayed for the first time, are examples of these operations.

25

Fig. 3.8 Complete cycle of Expo

Fig 3.8 shows the Expo's real-time reloading function which is a significant

additional advantage of using Expo. This eliminates the requirement to

compile over again or rebuild the programme and enables developers to

observe changes to their code in real-time. This may help your development

process move along much more quickly and make it simpler to continue

working on the application itself. Additionally, Expo has a function called

over-the-air updates that enables programmers to push improvements to their

applications without having to wait for users to install the latest version via the

app store[5]. This makes it simple to update the application with fresh

capabilities and address issues without affecting the user experience.

● Cross-platform development: By separating away platform-specific

aspects and offering a standard API for gaining utilisation of device

functionalities, Expo allows it to be simpler to design programmes that

work on both the iOS and Android platforms.

26

● Simplified setup : Expo makes it unnecessary to do difficult setup and

configuration procedures, making it simple for developers to begin

working with React Native.

● Expo's hot reloading: Expo’s hot-reloading feature enables

developers to view updates made to the code in real-time without

requiring them to recompile or recreate the entire application.

● Pre-built components: Expo comes with a number of pre-built user

interface (UI) elements that may be readily modified to meet the

requirements of your application. Examples of these include <Button>

,<Text>, <Image>, <TextInput> , e.t.c..

Node.js

A JavaScript runtime called Node.js was constructed on top of the V8

JavaScript engine. Since it enables programmers to run JavaScript code

externally from an internet browser, it is ideal for developing applications that

run on the server. Due to its event-driven, autonomous I/O approach, Node.js

is renowned for its ability to manage several simultaneous links without

causing delays for other applications. As a result, it is very versatile and ideal

for developing applications that operate in real-time. Node.js is intended to be

lightweight as well as quick, so it is able to run on affordable hardware while

handling a lot of information without experiencing any kind of delay. A

significant and enthusiastic programmer community produces and maintains a

broad range of library components and modules that may be quickly added to

Node.js programmes to add new features and functionalities.

The Node.js reinforces both relational and non-relational databases, which

makes it simple to select the best database for your application based on your

particular demands and specifications. Developers may quickly install,

manage and update independent libraries and modules using the built-in

package manager npm (Node Package Manager). Being a publicly available

programme, Node.js codebase is readily available to everyone for viewing,

27

editing, and contribution. Its comprehensive documentation provides a simple

way for developers to understand and utilise the platform, and those who have

become familiar with JavaScript will find it very simple to pick up.

In this project Node.js is used for building the complete back-end of this

project. The features of Node.js for choosing it over other technologies are as

follows:

● JavaScript Runtime: Using the framework of Node programmers are

able to execute the code that uses JavaScript independently of a web

browser. As a result, programmers can apply JavaScript to create the

server-side portion apps, command-line tools, and other kinds of

software.

● Event-Driven Architecture: Node.js's event-driven, autonomous I/O

approach enables it to manage many concurrent connections without

delaying other requests. Because of this, Node.js is very extensible and

ideally suited for creating applications that operate in real time, such as

chat, gaming, and other kinds of apps that need data to be processed

immediately.

● Support for Multiple Databases: Both relational and non-relational

databases are supported by Node.js. This makes it simple to select the

ideal database for your application in accordance with your unique

demands and specifications.

● Simple to Learn: For programmers who are already comfortable with

JavaScript, for them Node.js is rather simple to learn and implement.

This implies that developers won't need to learn an entirely novel

programming language or environment in order to get started

immediately developing server-side apps leveraging Node.js.

● Node.js was developed on top of the V8 JavaScript engine, that has

been substantially optimised for speed and is compact. Node.js is

hence able to operate quickly and consume less of the system's

resources compared to other server-side platforms. Asynchronous

28

programming, or asynchronous programming, is another feature of

Node.js that enables programmers to create quick-running code.

● Wide-ranging Modules: Wide range of modules and packages are

created and maintained by a huge and active community: Node.js has a

tremendous and engaged community of contributors. To offer

additional capabilities and features, these extensions may be readily

incorporated into applications written in Node.js.

Express.js

Express.js serves as a quick, lean web framework based on Node.js that offers

a number of advantageous features for creating APIs and online apps. It is

based on Node.js and offers a simple API that makes the procedure of creating

web and mobile apps easier. The server-side functions offered by Express.js

may be utilised to carry out a variety of activities, including processing

requests that come in, authorising users, and managing exceptions. Complex

request-response flows may be made by connecting these services provided by

middleware in a pipeline.

Fig. 3.9 Flow of requests and response from client to server

29

Express.js is frequently used to create APIs, or interfaces for application

programming, which enable interaction between different parts of a

programme. A common method for software to communicate data and

services is provided by an API, which facilitates the development of

sophisticated software platforms. Express.js offers a straightforward and

understandable API that makes creating APIs simple. Developers may create

functions that handle GET, POST, PUT, and DELETE requests by defining

routes that correlate to the various HTTP methods. A variety of intermediate

operations, including processing receiving JSON data, authorising users, and

managing errors, are available in Express.js. A RESTful API, which is an

architectural framework for developing APIs that adheres to a set of

restrictions, may also be built using Express.js. RESTful APIs modify

resources (like data objects) while offering replies in an accepted format (like

JSON) via HTTP methods.

Security and scalability are crucial factors to take into account while

developing an API with Express.js. Data in transit may be made more secure

with the support for SSL/TLS encryption that Express.js offers. Additionally,

it encourages rate limiting along with other attack-prevention strategies.

Benefits of using Express.js for building APIs in React Native project:

● Scalability: Express.js is very scalable and can handle many

concurrent connections without experiencing any lag. It can be set up

on a group of servers or a platform that uses the cloud, like AWS or

Google Cloud.

● Security: Express.js supports SSL/TLS encryption, which helps to

protect data while it is being transmitted. Additionally, it encourages

limitation of rate and other attack-prevention strategies.

● Large Community: Substantial and prominent developer community:

Express.js has a sizable and active developer ecosystem that builds and

maintains a variety of modules and libraries that are readily

30

incorporated into Express.js programmes to bring additional features

and possibilities. Additionally, the platform has excellent

documentation that makes it simple for developers to comprehend and

use.

Google Firebase

Google has created a platform called Firebase that offers an array of tools for

developing and expanding mobile and web applications. Due to this it

provides a variety of services and tools that can enable development and

quicken time-to-market, it is a well-liked option for developers using React

Native. Fig 3.9 shows the list of features provided by the firebase in-built

section.

Fig 3.10 List of Firebase features

Key details regarding Firebase for React Native applications is provided

below:

31

1. A cloud-hosted database called Firebase Realtime Database may be

employed to save and sync data instantaneously. It offers a NoSQL

database, making it simple to handle and maintain information in an

open to change, scalable fashion[3, 4]. Applications that adapt in real

time to data changes may be created using the Firebase Live Database,

making them more interactive and appealing for users.

2. A quick and easy approach to add authentication to your React Native

application is with Google Authentication. A variety of authentication

techniques are supported, including social media, phone, email and

password, and more[6]. You may create safe apps that need

authentication from users and permission with Firebase Identification.

In this project we are working only on one kind of authentication and

that is phone number authentication. It generates OTP and sends it on

the entered mobile number. This OTP has a variable life span for more

security.

3. User-generated material with a large size, such photographs and

videos, may be easily stored and served with Firebase cloud-based

storage. It allows for both local and remote storage, allowing access to

material from any location in the globe. For a full storage solution for

your React Native application, Firebase Cloud Storage interfaces with

other Firebase services like Authorization and Dynamic Database.

4. Google Firebase also provides a feature called FCM (Firebase cloud

messaging). Delivering messages to clients on Android, iOS, and the

web is made possible by the dependable and scalable Firebase

cloud-based messaging service. It offers a variety of capabilities,

including targeting, planning, and statistical analysis, making it simple

to give people timely and relevant communications. It is a popular

option for developers using React Native due to its simplicity of use,

scalability, and interaction with other Google services.

32

Stripe for Payment

A service for handling payments called Stripe makes it possible for companies

of any kind to receive and handle payments online. It delivers a variety of

services and applications that enable businesses to make payments easily and

effectively[5]. Many companies, which include entrepreneurs, small

enterprises, and large corporations, use Stripe on a global scale[12]. Stripe

works for all kinds of payments starting from card payment to UPI payments,

card payments also includes all kinds of cards, i.e. master-card, visa-card, in

debit card and credit card options. Some key features of Stripe are given

below:

● Payment methods : Online payment processing is made simple and

safe by Stripe. Numerous payment options, such as debit and credit

card transactions, and payments via mobile devices are supported. All

aspects of payment processing, such as identifying fraudulent

transactions, reimbursements, and currency conversions, are handled

by Stripe. Additionally, it supports memberships and periodic

payments, making it simple for businesses to handle customers'

payments over time.

● Security : Stripe prioritises safety and delivers a variety of tools to

support organisations in keeping their transactions safe. It holds a PCI

Level 1 Service Provider authorization, which is the highest kind of

validation available to payment processors. Additionally, Stripe's

platform offers fraud identification and avoidance tools like

multiple-factor authentication, real-time risk assessment, and machine

learning algorithms.

● Global Reach : With around 135 recognised denominations and over

40 operating nations, Stripe makes it simple for business

establishments to take payments through clients all around the globe.

33

International payments are handled entirely by Stripe, involving

conversions of currencies and observance of regional laws.

● Billing : A set of software programmes called invoicing makes it

simple for companies to handle membership and payments that recur.

It offers capabilities for creating price structures, maintaining users and

payments, and responding to unsuccessful payments. To offer a

complete billing solution, Stripe Billing connects with other Stripe

services like Payment Processing and Hawkeye.

Organisations can handle and accept payments via the internet with ease

thanks to a variety of products and services offered by Stripe. Stripe offers a

complete platform for managing payments in your React Native application

with payment processing, developer tools, security, global reach, billing

purposes, and detection of fraudulent transactions solutions. Businesses across

all kinds choose it because of its versatility, protection, and simplicity of use.

Fig. 3.11 Dependencies included in this project

34

Chapter - 4

Experiments and Result Analysis

Firstly we initialised our React Native project inside a desired folder, For

initialising React Native application we need to have node and yarn installed

on our system. After installing node and yarn we need to install

react-native-cli globally on our system[14, 13]. Installing react native cli

globally will add this package automatically into our application whenever we

initialise a new React Native project. Fig 4.1 shows the code for globally

installing the react-native-cli.

Fig 4.1 Commands for installing cli and initialising app

The latest version of node, npm and yarn are used in the development of this

project to keep the requirements and functionality of this project. Fig 4.2

shows the version of the same.

Fig 4.2 Versions of technologies used

There are several modules and pages in this project starting from the Welcome

Screen we have and many, numerous screens or "views" that collectively make

up your application's user interface are typical. Each screen serves as an

35

individual component of your mobile application and may have various

features and functionalities. Table 4.1 shows the list of screens given below.

S. No. Screen Title Functionality

1. Welcome Screen It gives the user an option to register or
an existing user to sign-in to their
respective accounts.

2. Login Screen In this screen the user needs to enter the
registered mobile number and press
submit and he will move to the next
screen.

3. Register Screen If the user is not registered (new user),
he has to enter a mobile number to get
himself registered.

4. Verification Screen In this screen there is a user input of 6
digits in which the user needs to enter
the OTP which he got via SMS on the
entered mobile number.

5. Home Screen In this screen the user can press on
“Modal” for different functionalities,
here he gets the button to set pick up and
destination locations.

6. Task Screen In this screen the user needs to enter the
destination and source locations along
with the order that needs to be delivered.

7. Confirmation Screen This screen is for rechecking the source
and destination location and confirming
the address.

8. Order Details Screen This screen shows the user the details he
has filled in the previous pages along
with the delivery charges and proper
billing details.

9. Payment Screen If the user confirms the details he is then
landed on the payment screen where he
can add a new card or make payment
with already added cards just by filling
necessary card details.

10. Track Order Screen The user is then able to see the real-time

36

tracking of the delivery partner on a
Map.

11. Feedback Screen After the item gets delivered the user of
the application is then able to rate and
write some reviews about the delivery
partner.

12. Edit Profile Screen This is a feature screen of this
application where the user can edit its
profile except for his mobile number.

13. Notification Screen This screen shows the notification of the
items that have been delivered or picked
up.

14. Chat Screen The user will be able to chat with the
admin and communicate about his
problems or any other delivery issues.

Table 4.1 List of screens

User Authentication using Firebase

Google Firebase offers us a number of options for authenticating the user

providing a guaranteed security to the user. In this application I have only used

mobile authentication because of easy implementation, better security as well

as it provides better user experience. The usage of the mobile OTP in Google

Firebase offers mobile applications a safe and practical authenticating

technique that may boost user experience while also lowering the danger of

credential fraud. This generates a six-digits OTP and sends it to the entered

and existing mobile number and expires after 5 minutes. After initialising a

new project in google firebase and choosing the platform, Google Firebase

provides us configuration content which contains following fields as shown in

Fig 4.3

1. API - Key

2. Auth Domain

37

3. Project Id

4. Storage Bucket

5. Messaging SenderId

6. Application Id

Fig 4.3 Config file generated by firebase

After the user login to their respective accounts the most important and

challenging task is to keep them logged-in until they logout from the

application. In any application if we are not preserving the Auth state of the

user, the individual will automatically get logged out of the application. To

achieve this we have to keep the user Auth preserved and pass it on throughout

the application [5].

Fig 4.4 shows how the application’s Login and Registration screen will look

like. Functionality of the login screen is ,it gives the user an option to register

or an existing user to sign-in to their respective accounts. The Function of

Register screen is, if the user is not registered (new user), he has to enter a

mobile number to get himself registered. This is generating a One Time

Password sending through firebase and sending this to the user’s phone to

authenticate the user. The same step is being applied to both, first time

registering people as well as already registered accounts.

38

Fig 4.4 Login and Register screens of application

This above challenge can be done by four different methods : first one is prop

drilling in which we will be sending the Auth of a particular user to different

components, second is by using Context API and making all the fields of the

user configuration a global variable and the third method is by using Redux

Toolkit. In this application I have done this by prop drilling and using context

API. Another method to achieve our aim is to use Async-Storage provided by

React Native.

It's crucial to keep in mind that AsyncStorage has several drawbacks, like its

restricted capacity for storage and incapacity for handling massive volumes of

data.

39

AsyncStorage isn't intended to be used as a reliable archive solution, thus

developers should be mindful of this and store private information using

stronger storage alternatives.

Fig 4.5 Code for persisting the user

Dashboard and Modal

A modal is a React Native component that enables programmers to build

pop-up dialogues, notifications, alerts, and confirmations by displaying an

element or material above the currently shown screen. Modals are frequently

used to request input from individuals, display important data, or request

confirmation of operations. Fig 4.3 shows the Home Screen and a “Modal”

opening over the screen showing the number of features to the user of this

application as mentioned in table 4.1. This “Modal” is a react native

component which provides us with an animation to a particular view. When a

user clicks on the menu icon this “Modal View” will make itself visible. It

also provides a number of props which helps us make our application more

effective, user friendly and more responsive. For e.g. onRequestClose()

function provided by this lets the user dismiss the modal when he clicks the

back button of his device.

40

Fig 4.6 Home screen of application

Google Maps

I have integrated Google Maps in my project, the user can select the pick-up

location and he will see the auto-fill feature with the help of google maps, with

the help of auto-fill feature the user can better locate the pick-up and

destination points. Moreover he is able to set a marker on the locations and

also get to pin-oint the current location. It gives users access to a wide range

of features and capabilities, including interactive maps, geotagging, directions,

and locations. When the user is on the Order Tracking screen after making the

payment he would be able to see the direction of the delivery person right on

the screen with the help of Google Maps API[3, 4].

Other options for integrating maps into our application is MapBox and

MapView .The React Native’s react-native-maps library's MapView

component enables us to include maps GUI in this project. To track down the

path of the delivery partner I am taking the latitude and longitude of the

delivery person, each time the latitude and longitude changes we update the

41

position in our array, we have put a logo on the map as the rider moves the

latitude and longitude changes so as the image of bike shown in the map[10].

Fig 4.7 Order tracking using MapView

Order Details Screen

Once the user confirms the pickup and drop location and presses on the

“Submit” button he will be taken to the next screen where he would be getting

the order details, here by clicking on the map marker he can change the pick

up and drop location. As shown in fig 4.7, he can also add some instructions

that he wants to tell the delivery driver. The user of this application will get a

detailed screen of the invoice. The fare for delivering the item from one place

to another totally upon the distance between the two points. The distance

between the pickup and drop location can be calculated with the help of

Google API which will first fetch the latitude and longitude of the source and

destination and return the fastest route between these two locations.

42

Fig 4.8 Order details screen

All the order and user related information is getting stored on the backend of

the application. If a new user creates a new account all his details will be

saved at the servers. If the user makes any changes or edit his profile it gets

saved at the backend of the application. We are fetching all that information

and displaying it at the front-end of the application. For fetching this we have

a built-in function called “Fetch” provided by React Native.

Fig 4.9 Syntax of fetch function to GET from API

43

The response object that is returned by the fetch request function resolves a

Promise. Response data, including the content of the response, its status, and

headers, is stored in the Response object. The data may then be extracted from

the response using techniques like.json(),.text(), and.blob().

Online Payment

Leading payment service Stripe enables entities to take transactions online. An

array of processes are taken in the back end when an end user makes an online

payment on a mobile application or website that makes use of Stripe. Fig 4.9

shows what happens at the backend when somebody initiates a transaction.

Fig 4.10 Backend of user initiated online payment

In my project I have made only card payment options to make payments

online using Stipe. To initiate a payment, the new user first needs to add a card

to the application to make payment. This card payment can be done via credit

card or debit card. The user has to fill out the following information.

● Card Number ,Card Holder’s name, CVV, Expiry Date

● This Information get validated first on the front-end

● If the information is validated by the Stipe.

44

Fig 4.10 shows that when the user clicks on the “Add New Card” a dialogue

box opens up and shows the card details that are needed to be entered by the

user to add a new card for making payment.

Fig 4.11 Payment Screen of application

After making the payment the user is done with his side of the application,

now, when a delivery partner accepts the request to pick up the stuff he will

get all the information regarding the item that is to be delivered with the

pickup and drop location with this.

45

Chapter - 5

Conclusion

5.1 Conclusion

The building of a fully functioning full-stack application is developed at the

best level which is resolving a lot of problems that are not available in the

application similar to this. It can also become a better alternative as it would

be providing a customer service, chat option, live tracking and a lot of options

that are not provided by other leading applications.

This application was integrated with the backend and we are able to get and

fetch the responses from there, every response, rejection and error was

handled in such a way that it didn’t slow down the application. In this report,

we've addressed the main components and functionality of this product

delivery application, such as push alerts, tracking in real time, and how to

make payments. The advantages of utilising React Native for the development

of applications, including code reuse, quicker development cycles, and a big

designer community as a whole have also been emphasised.

This product delivery application that uses React Native is an outstanding

instance of how people can use smartphone and tablet technology to

streamline processes, boost customer happiness, and ultimately improve

revenue. We can anticipate seeing more cutting-edge applications created

utilising React Native and other advanced technologies as the mobile

environment stays ongoing to change. Through this application the users

whether the customer or the driver both would be able to add their images for

better experience and recognition. For this we have used “ImagePicker”,

another powerful library supported by react native. This library helps us in

adding an image through our device. For doing any of these above mentioned

functionality Android and iOS devices require a permission to do so, this

makes the application more secure for the user.

46

Google Firebase where the users are stored is also counting the number of

reads and writes we are making each day. As shown in Fig 4.1 and Fig .2 , we

can see the count of reads and writes. The dotted lines also show the average

number of reads and writes per week.

Fig 5.1 Reads per day underdeveloped.

Fig 5.2 Writes per day underdeveloped

At the initial stage we started to work on the dummy data and in fig 5.3 that

the user is getting stored at the backend and is handled very efficiently. The

delivery partner is getting stored at the backend of the application along with

47

all their details, how many orders they have ever got out of which how many

of them were successfully delivered.

Fig 5.3 Dashboard of admin-side

5.2 Future Scope

This project can be made more sophisticated and we can add more

functionalities to this application. The list of the functionalities which can be

added to make our application more efficient and user friendly are given

below:

● More Payment Options : As of now I have only added card payment

methods (credit card/ debit card) in my application. But further, we can

add google play, paytm and other UPI options for making payment.

● Tutorial Supports : We can add an animation-based intro for the first

time user in the application. This service is also available on any

google application to new users.

48

● More login options : The user of the application can only sign-in only

using a phone number, but in future we will integrate email login with

phone number, so that the user can have more options to sign-in.

● More transport options : we can add more vehicle options based on

the kind of product we want to deliver, for more heavy goods and

items the user will have an option of booking a bike or mini-truck.

49

REFERENCES

[1] Setting up the development environment · REACT NATIVE (2023) React

Native RSS. Available at: https://reactnative.dev/docs/environment-setup.

[2] Running on device · REACT NATIVE (2023) React Native RSS. Available

at: https://reactnative.dev/docs/running-on-device.

[3] Masiello, Eric, and Jacob Friedmann. Mastering React Native. Packt

Publishing Ltd, 2017.

[4] Kiano, J.G., 2018. A Mobile application to improve tracking and

verification of products in supply chain logistics using blockchain technology

(Doctoral dissertation, Strathmore University).

[5] Wu, Wenhao. "React Native vs Flutter, Cross-platforms mobile application

frameworks." (2018).

[6] Boduch, A. and Derks, R., 2020. React and React Native: A complete

hands-on guide to modern web and mobile development with React. js. Packt

Publishing Ltd.

[7] Kaushik, V., Gupta, K. and Gupta, D., 2019. React native application

development. International Journal of Advanced Studies of Scientific

Research, 4(1).

[8] Hansson, N. and Vidhall, T., 2016. Effects on performance and usability

for cross-platform application development using React Native.

[9] Create a custom website: No-code website builder (no date) Webflow.

Available at: https://webflow.com/ .

50

[10] Svennerberg, G., 2010. Beginning google maps API 3. Apress.

[11] Mueller, J.P., 2006. Mining Google web services: building applications

with the Google API. John Wiley & Sons.

[12] Markovich, S., Achwal, N. and Queathem, E., 2017. Stripe: Helping

money move on the internet. Kellogg school of management cases, pp.1-12.

[13] Sullivan, R.J., 2013. The US adoption of computer-chip payment cards:

Implications for payment fraud. Economic Review-Federal Reserve Bank of

Kansas City, p.59.

[14] Soininen, V., 2021. Jetpack Compose vs React Native–Differences in UI

Development.

[15] Tilkov, S. and Vinoski, S., 2010. Node. js: Using JavaScript to build

high-performance network programs. IEEE Internet Computing, 14(6),

pp.80-83.

51

