

LINUX MEMORY MANAGER

Project report submitted in partial fulfillment of the

requirement for the degree of Bachelor of Technology

in

Computer Science and Engineering

By

KASHIK BAGLWAN 191255

Under the supervision of

Dr. DEEPAK GUPTA

to

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology Waknaghat, Solan

173234, Himachal Pradesh

 i

 Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Linux

Memory Manager” in partial fulfillment of the requirements for the award

of the degree of Bachelor of Technology in Computer Science and

Engineering submitted in the department of Computer Science &

Engineering and Information Technology, Jaypee University of Information

Technology Waknaghat is an authentic record of my own work carried out

over a period from August 2022 to May 2023 under the supervision of

Dr. Deepak Gupta of Computer Science and Technology. The matter

embodied in the report has not been submitted for the award of any other

degree or diploma.

Kashik Baglwan (191255)

This is to certify that the above statement made by the candidate is true to the

best of my knowledge.

Supervisor Name: Prof. Dr. Deepak Gupta

Designation: Professor

Department Name: Computer Science and Information Technology

Dated: 01-05-2023

 ii

 iii

ACKNOWLEDGEMENT

Firstly, I would like to express our heartiest thanks and gratefulness to almighty

god for his divine blessing makes it possible to complete the project work

successfully. I am really grateful and wish our profound indebtedness to Dr.

Deepak Gupta, Professor of the department of CSE & IT, Jaypee University of

Information Technology, Waknaghat. Deep knowledge & keen interest of my

supervisor has helped me a lot to carry out this project. His endless patience,

scholarly guidance, continual encouragement, constant and energetic

supervision, constructive criticism, valuable advice, reading many inferior

drafts and correcting them at all stages have made it possible to complete this

project. In this unique situation, I might want to thank the various staff

individuals, both educating and non-instructing, which have developed their

convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patients

of my parents.

Regards,

Kashik Baglwan 191255

CSE | JUIT

 iv

Table of Contents

1 Chapter 1-Introduction 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objectives 3-5

1.4 Methodology 7

1.5 Organization 8

2 Chapter 2-Literature Survey 9-16

3 Chapter 3-System Development 17

3.1 Architecture and Design 17

3.2 Algorithm 18-20

3.3 Analytical Development 20-21

4 Chapter 4-Performance Analysis 22

4.1 VM Page De(Allocation) 22-24

4.2 Page Family Registration 24-26

4.2.1 Page Family Instantiation 26-28

4.3 Meta Blocks and Data Blocks 29-30

4.4 Block Merging and Splitting 31-32

4.4.1 Block Merging 32-34

4.5 VM Page Management 35-37

4.5.1 VM Page Deletion 38

 v

4.5.2 VM Page Insertion 38-39

4.6 Free Data Block Management 39-41

4.7 Final Push-Implement Xmalloc 42

4.7.1 Xmalloc Algorithm Discussion 42

4.7.2 Xmalloc Implementation 42-45

4.7.3 Hard Internal Fragmentation 46

4.8 Testing Our Project 47

4.8.1 Explanation of Output 47-50

4.9 Implementation of Xfree 51

4.9.1 Algorithm Flowchart 51

4.9.2 Implementing Xfree 52-57

5 Chapter 5-Conclusions 58

5.1 Conclusions 58-59

5.2 Future Scope 60

6 References 61

 vi

LIST OF FIGURES

S.No. Title Page

1 Fig 1.3. Hard and Soft If 6

2 Fig 1.4. Flow Chart of Project Phases 8

3 Fig 2.1. Heap Block 10

4 Fig 2.2. Heap Blocks Rearrangement 11

5 Fig 3.1. Project Design 18

6 Fig 4. Code De(allocation) 23

7 Fig 4.1 Output 24

8 Fig 4.2. Example of User Application 25

9 Fig 4.2.1. Code Snippet Phase 2 27

10 Fig 4.2.2 Code Snippet Phase 2 27

11 Fig 4.2.3 Code Snippet Phase 2 28

12 Fig 4.3.4 Code Snippet Phase 2 28

13 Fig 4.3 Meta Block 30

14 Fig 4.3.1 Meta Block 30

15 Fig 4.4 Xcalloc 31

16 Fig 4.4.1 Block Merging 33

17 Fig 4.4.2 Code Snippet Block Merge 34

18 Fig 4.5 VM Page Management 36

19 Fig 4.5 a Mm.h File 36

20 Fig 4.5 b Looping Macros 37

21 Fig 4.5 c Iterating Acros 37

 vii

22 Fig 4.5 d Allocations Deallocations 37

23 Fig 4.5.1 VM Page Insertion 38

24 Fig 4.5.2 VM Page Deletion 39

25 Fig 4.6 Block Management 41

26 Fig 4.7 Flow Chart 42

27 Fig 4.7.2. Hard and Soft IF 44

28 Fig 4.8.1 Output of Xcalloc Implementation 46

29 Fig 4.9 Flow Chart 50

30 Fig 4.9.2 a Code Xfree 51

31 Fig 4.9.2 b Output Xfree 57

32 Fig 4.9.2 c Output Xfree 57

 viii

ABSTRACT

LMM acquires and frees memory from kernel space on behalf of the

application in virtual memory pages. The system calls mmap() and

munmap() were used for this purpose. Cache vm pages and use them as a

reservoir for future memory requests issued by application until the future

memory pages are completely exhausted. The vm side kernel when the

application frees enough memory that the vm side has noy occupied or

allocated for use by the application. Linux memory management subsystem

is responsible, as the name implies, for managing the memory in the system.

This includes implementation of virtual memory and demand paging,

memory allocation both for kernel internal structures and user space

programs, mapping of files into processes address space and many other

cool things. The goal of this project is to help you control the memory

requirements of your processes by creating your own heap memory

manager. By reducing or eliminating internal and external fragmentation

issues and avoiding pointless system calls from allocating/deallocating

memory, the memory manager enhances process speed. The LMM may also

show users statistics regarding memory utilization by each process

structure. These statistics can be used to examine how much memory your

application uses and offer suggestions for improving how much memory

your processes need. Her LMM can also identify memory leaks.

1

CHAPTER-1 INTRODUCTION

1.1 Introduction

This project is regarding designing your own heap memory manager which

will manage the process's memory requirement. Memory manager will get

rid or minimize the internal and external fragmentation problems, and boost

performance of the process by preventing unnecessary system calls for

allocating/releasing the memory. Not only that, linux memory manager

(LMM) can display the user with the statistics regarding the memory usage

by each structure of the process. From this stat, application memory usage

can be analyzed and can provide hints to further optimize the memory

requirements of the process. Memory leak can also be discovered using

Linux Memory Manager (LMM).

LMM acquires and frees memory from kernel space on behalf of the

application in virtual memory pages. The system calls mmap() and

munmap() were used for this purpose. Cache vm pages and use them as a

reservoir for future memory requests issued by application until the future

memory pages are completely exhausted. The vm side kernel when the

application frees enough memory that the vm side has occupied or allocated

for use by the application.

Linux memory management subsystem is responsible, as the name implies,

for managing the memory in the system. This includes implementation of

virtual memory and demand paging, memory allocation both for kernel

internal structures and user space programs, mapping of files into processes

address space and many other cool things.

2

Linux memory management is a complex system with many configurable

settings.

The goal of this project is to help you control the memory requirements of

your processes by creating your own heap memory manager. By reducing

or eliminating internal and external fragmentation issues and avoiding

pointless system calls from allocating/deallocating memory, the memory

manager enhances process speed. The LMM may also show users statistics

regarding memory utilization by each process structure. These statistics can

be used to examine how much memory your application uses and offer

suggestions for improving how much memory your processes need. Her

LMM can also identify memory leaks.

LMM that, on behalf of applications in virtual memory pages, requests and

releases memory from kernel space. For this, the system calls mmap() and

munmap() were employed. vm pages should be cached and used as a until

all of the vm pages are used, the application's memory requests will be

stored in a reservoir. When the programmer releases enough memory that

the vm side has not used or allocated for use by the application, the vm side

exits to the kernel.

1.2 Problem Statement

This project is regarding designing own Heap memory manager which will

manage the process's memory requirement. Memory manager will get rid

or minimize the internal and external fragmentation problems, and boost

performance of the process by preventing unnecessary system calls for

allocating/releasing the memory. Not only that, Linux memory manager

(LMM) can display the user with the statistics regarding the memory usage

by each structure of the process. From this stat, application memory usage

3

can be analyzed and can provide hints to further optimize the memory

requirements of the process. Memory leak can also be discovered using

Linux Memory Manager (LMM).

The memory manager will be able to:

• Allocate and free the memory.

• Catch memory leaks.

• Address memory fragmentation problems.

 1.3 Objectives

The main objective of this project is to successfully create a linux based

heap memory manager in c.

The memory manager will be able to:

• Allocate and free the memory.

This will be done using xmalloc() and xfree() functions for allocation and

freeing respectively. The application will generate a xmalloc() call to our

Linux memory manager, the LMM will allocate the required memory by

the application in the form of blocks (meta and data blocks).

• Catch memory leaks.

Our LMM will be able to detect any memory leaks in the system. Memory

leaks usually occur when the user the LMM creates memory in the form of

virtual memory pages and forgets to return it to the kernel. The same can

occur if the memory allocated to the application by our LMM is not freed

or returned back to it.

4

• Address memory fragmentation problems.

LMM will also address the issues related to fragmentation hard internal

fragmentation (not enough space for meta block) and soft internal

fragmentation (not enough space for data block).

The case one and case two both show the problem of internal fragmentation

the data block which is grey in color is block is subjected to the problem of

internal fragmentation it means that this portion represents some memory

which is internally fragmented and is not usable and the same goes with the

second diagram.

So, briefly describe the difference between the two internal fragmentation

is that when you take the free data block which undergo split of size equal

to 66 bytes then the internal fragment in memory which we opt in was

eighteen bytes and this internally fragmented memory was guarded by the

meta block. So, when internally fragmented memory is guarded by a block

then such type of fragmentation is called soft internal fragmentation.

Whereas if we assume that the free data block which undergoes split was of

size forty-six bytes and twenty bytes of memory was claimed by the

application then after the split the amount of memory which was left was

not big enough to accommodate it in a meta block. So, it produced the

internally fragmented memory which was not guarded by a meta block.

Such type of internal fragmentation is called hard internal fragmentation.

When our free data block undergoes a split, internal fragmentation can be

produced and that internal fragmentation could be either soft internal

fragmentation or it could be hard internal fragmentation.

5

soft internal fragmentation happens as a result of splitting free data block of

size 66 Bytes a new meta block MB two dash was produced because

internally fragmented memory was guarded by a new meta block. So, the

link between these meta blocks will be arranged as usual. In other words,

the soft internally fragmented memory is just treated as any other free data

block.

However, it's a different thing that the size of this internally fragmented

memory is so small that it cannot be used for any memory allocation by the

application for the given page family. You can see in the diagram number

one there is no special change in the linkages between the menta blocks but

this is not true with the hard internal fragmentation. In the hard internal

fragmentation, the linkages are between meta blocks since this is internally

fragmented memory and it is not guarded by its own meta block therefore

the meta blocks on the either side of this internally fragmented memory that

is meta block number three and meta block number two will have linkages

bypassing this hard internal fragmented memory.

So, when we will guide an api to handle the blocks splitting, we need to

consider that if fragmentation is produced whether the fragmentation is a

type soft internal fragmentation or whether the fragmentation is of type hard

internal fragmentation and accordingly we have to manage the linkages

between the meta blocks and this virtual memory data page.

6

 Fig 1.3b Hard and Soft If

7

1.4 Methodology

Methodologies used in this project are purely based on the knowledge of

operating systems. Apart from this the concepts of data structures and been

implemented in c language to meet the needs and requirements of the

project.

The Linux memory manager constantly contacts with the system’s kernel

for the allocation and deallocation of virtual memory pages for fixed sizes.

Instead of dealing with small data block or independent data blocks, The

LMM requests for complete virtual memory pages from the kernel and then

performs multiple functions to split the pages into chunks of memory as per

the requirements of the application which is using our Linux memory

manager.

The application invokes the xalloc() calls to the LMM and LMM registers

the size and name of the structures of the application in the form of page

families, this process keep happening as many times as the xcalloc()

function is invoked. As a result the virtual memory pages keep registering

the page families starting from bottom to top in a contiguous manner in

order to provide information to the LMM to allocate memory to the

application. These page families are accessed within the virtual memory

pages with the help of the linked lists and a pointer to them. The Linux

memory manager will also deal with the problems of fragmentation (hard

and soft internal fragmentation).

The use of priority queues has been made to know the availability of the

free blocks and their particular sizes. This was done for the management of

free blocks in the virtual memory pages and how the new memory request

8

for the application has to be carried out (from the data block of largest free

memory- naïve approach).

The concept of meta blocks and data blocks has been used for the allocation

of memory to the application in the form of blocks of memory/data. The

task of a meta block is to keep a record of the following or succeeding data

block. This information includes the Boolean expression for Is_free, the size

of the data block, the previous and the next pointers to the meta blocks.

 1.5 Organization

The project has been organized in 10 phases and the methods used are

various data structures such as linked list, doubly linked list, priority queues,

etc. to fulfill needs of those particular phases.

The following flow chart depicts the different phases of the project and their

order of progress in the respective shown manner.

Fig 1.4 Flow chart of project phases

9

Chapter-2 LITERATURE SURVEY

Heap memory is also known as dynamic memory. Alternative to heap

memory, sometimes known as "dynamic" memory, is local stack memory.

Local storage is mostly automated. Local variables are automatically

created after a function is called and released after the function completes.

Heap memory has a number of variations.[1] In C or Java, programmers can

directly request memory allocation by using the new operator. The size of

this "block of memory" is usually determined by the size of the object you

are automatically creating. This memory (object) block is allocated and will

stay that way until it disappears for whatever reason. In some languages

items on the heap only disappear when the programmer explicitly requests

releasing.

The programmer therefore has more responsibility but also more control

over the memory because it requires active management.[5] The principal

cause of problems, known as "memory leaks," is deleting without releasing

all references to a memory location. (In reality, many commercial C

programmers include memory leaks that cause them to crash eventually.)

java automatically deal spaces memory via garbage collection. to address

the root of this problem. The drawback is that garbage collection is a

laborious procedure that occurs sporadically.

The management of heap memory is done by heap memory manager. The

main memory operations performed by heap memory manager:

• Allocation (using malloc and calloc)

• Deallocation (using free)

• Reallocation (using realloc)

A program's available memory space is called a heap. For use within the

heap, a software may allocate memory "blocks" or sections of memory. A

10

program explicitly requests the allocation of a block of a specific size by

invoking a heap allocation procedure. This new operator is available in C++

or Java. A reference to the memory block that the allocation function created

on the heap, which was typically the size of the desired object, was returned.

Consider a software that sends out three requests for memory allocation and

allots space on the heap for three different gif pictures, each of which needs

1024 bytes. Three allocation requests later, the memory appears as follows:

 Fig.2.1 Heap block

Each allocation request returns a reference to the new block to your program

along with a contiguous area of the heap of the requested size.[2] A program

always manipulates its heap blocks by reference because each block is

always referenced by reference and thus always acts as a "pointer". Since

heap block references by convention lead to the block's base, they are

sometimes referred to as "base address" pointers (lowest address byte). In

this illustration, three blocks are progressively allocated from the heap's

end, and each block is given the desired 1024 bytes. [5]In fact, as long as

the blocks don't overlap and are as least the specified size, the heap manager

can allocate them anywhere in the heap. A portion of the heap is always

reserved for the program and is hence "in use." Other regions are "free" and

available to satisfy allocation requests since they have not yet been defined.

The heap manager keeps track of which portions of the heap are used and

11

for what purposes at any given moment using its own internal data structure.

Each allocation request from the free memory pool is approved by the heap

manager, who also updates private data structures to track which heap

regions are in use.

Some programming languages demand that a memory block be explicitly

released when a programmer has finished utilizing it. The block is identified

as unused in this instance. When a space in Java is not mentioned, it is often

"enabled."[5] This instructs java's garbage collector to clear this space.

Implicit garbage collection releases unneeded memory blocks from the

heap. The block's previously occupied memory space is now free and

available to be used to fulfil upcoming allocation requests, according to the

heap manager's update to private data structures. When the second of three

blocks is released by the trash collector, the heap will appear as follows:

 Fig.2.2 Heap block rearrangements

The reference keeps pointing to a block that has previously been released

after being set free. Freed points are no longer accessible to programmers.

12

Programmers must make sure that outdated references to deallocated blocks

are not followed in languages (like C++) that lack explicit deallocation and

garbage collection.[2] The pointer is shown in grey because of this.

Although present, the pointer cannot be used. To inform the garbage

collector that an item is no longer in use, Java code naturally sets a reference

to null or refers to another object. This is a major factor in the safety of Java

references compared to C++ pointers.

The identification and correction of programming errors in large-scale

software systems is a crucial resource-demanding procedure that may

seriously jeopardize the initial production schedules and jeopardize the final

quality of the delivered software products. [6]Memory corruption tends to

spread quickly during execution, dispersing inaccurate material broadly and

naturally interfering with program units' proper behavior, even in confined

regions that only influence data content on a small scale. Such gradual data

infection, which results in a cascade of incorrect data processing and

disturbs the normal system behavior, may continue in silence for a

protracted length of time before it is externally detectable.[4] After

recurring system executions have confirmed the presence of symptoms for

erroneous program behavior, the tracing of the offending code is started as

a methodical debugging procedure. There are actually two crucial problems

in this process that might make debugging procedures a nightmare:

• In most instances, the time lag between running malicious code and

seeing fault symptoms is (a) non-zero, (b) unstable, and (c) not

connected in a way that aids in bug discovery.

• When debugging at the source code level, the problem can only ever be

replicated during regular program execution (example. real-time

systems, multi-threaded systems).

13

The described work in this regard focuses on effectively automating the

detection process utilizing built-in memory inspection and monitoring

methods while decreasing the time between dynamic memory corruption

episodes and runtime detection. Ignore it. [2]The proposed heap manager is

an adapter to the native heap manager that incorporates extensive memory

corruption prevention, and it resolves a few challenging programming

issues to assist the practical deployment of the in development of real-world

systems. The following are a some of the sophisticated features absent from

the current heap manager recipe:

• Accommodating user address displacement for class instance arrays that

are dynamically allocated by the compiler.

• Support for defect monitors, which simultaneously scan heap-memory

areas for errors, thereby doing away with the necessity for manual

insertion of thorough validation checks into the application source code.

• Delivery of a technique using delayed memory disposal and content

monitoring to efficiently catch post-disposal memory overwrites.

• Defensive copies are used to encapsulate the capacity to detect

corruption in the internally preserved memory-block information.

• Support for concurrent logging tools with minimum impact on

allocation processes and a focus on off-line data analysis.

• Allocation and disposal operators were completely re-implemented to

minimize conflicts in the event that third-party libraries already

provided overloaded versions.

The proposed heap manager makes only minor changes to the source code

from the perspective of programming usability, just needing allocation

expressions to use the enhanced macro versions.[1] Using standard text-

editor features, this task is easy automatable. For instance, in the MS Visual

14

Studio TM IDE, replacing the regular expressions new:b+;(:i);[.+];

(dynamic arrays), new:b+;(:i);(.*); (dynamic instances with function

Object() { [native code] } arguments), and new:b+;(:i); (dynamic instances

with default function Object() { [native code] }) with DNEWARR(1,2),

DNEWCLASS(1,2), and DNEW(1, respectively, substitutes the defensive

versions of the standard allocation expressions automatically.[4] The

provided defensive features can then be implemented in the source code

depending on the specific requirements for memory-error checking, such as

adding explicit validation tests before pointer use, confirming the size of

heap-memory regions before content write, or turning on particular defect

monitors. The fact that text context tags before and after user memory

blocks offer information on the source file, source string, allocation

representation, and memory size () of the area of memory being scanned

also makes it possible to scan memory more effectively. provide.

Additionally, the additional contents of the text tag are used to immediately

identify any memory space allocated within a program () that does not

employ allocation macros (for instance, third-party code or files that have

not yet been refactored).

The context tag "$,0, $,80" is present in an 80-byte block that was allocated

using the default new expression, for instance.

The memory management system provided by the compiler is basically a

base layer protected by the given heap manager.[5] The most well-known

heap-memory checking feature included in current compilers is the delayed

detection of post-disposal overwrites for recycled blocks by a check done

before their reallocation. The latter is achieved using the following

technique: memory blocks that have been disposed of are painted with a

standard byte pattern, and when they are allocated again, their contents are

15

compared to this byte pattern; any discrepancy signals a post-disposal

overwrite. It is obvious that even while this approach can identify

overwrites, it cannot guarantee that the fault is always found (only if the

offending block is finally recycled), and it does not provide direct defect

detection (there is no indication of when the overwrite happened).

[2]The original heap manager used by C++ compilers is said to directly

contain the capabilities included in the claimed defensive heap manager. In

this manner, once the standard allocation functions include the defensive

functionality and the code generation caters to introduce explicit validation

tests for pointers engaged in de-reference (i.e., arrow or dot operator)

expressions, the need for deployment of the allocation macros and the

injection of explicit pointer validation checks in the source code is

effectively eliminated. Since the development complexity of heap-manager

adapters is significantly increased when advanced features for intensive bug

defense are accommodated, as is the case with the reported development

recipe, it is thought to be more effective if bug defense is eventually

encapsulated in the standard compiler functionality.

The challenge of monitoring memory policies inside the memory

management framework has been addressed, and we have developed a

memory management interface that permits a variety of new memory

technologies that are entering the market. The proposed method is fully

implemented in user space. To a higher level in the software stack, the

interface exposes the variety of functionality made accessible by linux

system calls. When compared to a solution without buffer reuse, our

technique reduces the total number of necessary system calls, improving

overall speed. The technique allows for the efficient separation of client-

specific requirements from the reused buffers.

16

Supports through a decorator interface allocation tracking, accounting, and

profiling for all customers. [3] The middleware solution is heavily used by

the HPC community to streamline scientific applications. These

middleware options are anticipated to leverage the mankind interface for

memory allocation, enabling user applications to benefit from cutting-edge

memory technologies and policies without requiring changes to the

application software or operating system.

17

Chapter-3 SYSTEM DEVELOPMENT

3.1 Architecture and Design

Now let us try to understand the overall design of our project in a little bit

broader perspective. So, you can see that we can have any random user

space process or application. Any C program can be served as a User space

application and we have a standard glib C library in which we have a

standard implementation of malloc, free and other memory management

related functions. Therefore, it's a standard C library. The third component

of our project is the kernel memory management unit which is the part of

the operating system. The virtual address space of the application running

in user space resides in the kernel space.

It is the responsibility of the memory management unit in the kernel space

to allocate and to deallocate virtual Memory pages to the user space

application

We have three components in our project.

● user space application.

● The standard C library or in other words we can call this a standard C

library as memory allocator in the context of our course.

● The third component is the kernel memory management unit for

memory allocation and deallocation.

So, in a simple C program where you can always request memory of X

bytes. There is no restriction on the value of X. You can request 10 bytes,

12 bytes, 14 bytes depending on the need. And it is the responsibility of the

standard C library or in other words the memory allocators which is malloc

or free to satisfy the need of the user space application.

18

 Fig.3.1 Project Design

3.2 Algorithm

In the diagram shown above, the Malloc implementation of the standard C

library is providing Xbytes of memory to the user space application. So,

memory allocation and deallocation between standard C library and kernel

Management Unit happens only in units of pages sizes.

using System calls such as Sbrk and Mmap the Malloc and other related

functions which are implemented in the standard C library request integral

number of virtual memory pages from the kernel MMU. The question is

that why not the standard C library he can request any x number of bytes

from the kernel MMU for allocation or deallocation.

The answer is the system calls as sbrk or mmapare expensive system calls.

The idea is that that the standard C library caches the vm page allocated by

19

kernel mmu and then allocates small chunks from this virtual memory page

to a process. The virtual memory page is then cached by the standard C

library.

And from this cached virtual memory page the standard C library then

provided the number of bytes which are requested by the user space

application. It means that when the user space application again issues the

request to allocate a memory of say y bytes and if there is a scope that y

bytes of memory can be provided from vm page, then this is standard C

library does not request the kernel mmu to allocate another virtual memory

page because the vm page which is already cast by the standard C library is

sufficient enough to satisfy the new request of bytes to the use of space

application. So this is how the whole algorithm works.

When a standard C library detects that process has freed all memory in a

given virtual memory page. Glib c returns the page to the kernel mmu and

this release of the memory is achieved using(sbrk/munmap) system calls. If

user space application invokes certain free calls one after the another such

that there is no memory left to allocate in vm page which is being used by

this user space application then in such a condition the standard C library

can return this vm page back to the kernel space.

Now defining the main objective of this project, in this project we will

replace the standard memory management unit of the standard C library that

is the set of memory related functions which are implemented in standard

C library such as malloc or free with our own Linux memory manager

In other words we will have to implement our own version of malloc called

xmalloc So basically we are reinventing the wheel instead of using standard

C library for memory allocation to the user space application. We will write

20

our own memory manager which will have its own implementation of

memory management related api such as malloc and free and provide the

memory management services to the user space application.

 3.3 Analytical Development

The project deals with analyzing issues related to memory leaks,

fragmentation, memory allocation and deallocation to the user space

applications.

If you develop a memory manager that dynamically allocates memory,

you're also responsible for tracking any memory that you allocate whenever

a task is performed, and for releasing that memory when you no longer need

it. If you fail to track the memory correctly, you may introduce “memory

leaks” or unintentionally write to an area outside of the memory space.

Conventional debugging techniques usually prove to be ineffective for

locating the source of corruption or leaks because memory-related errors

typically manifest themselves in an unrelated part of the program. Tracking

down an error in a multithreaded environment becomes even more

complicated because the threads all share the same memory address space.

The analysis tools support these four tasks:

• monitoring memory and resource consumption — you can view real

time data about memory usage for a system or a single process and

about resource usage for a process; this feature helps you determine

which processes should be further analyzed or optimized

• analyzing heap memory usage — you can see which areas of a

program use the most dynamic (heap) memory, to learn which

sections of code need to be optimized to improve performance

21

• finding memory corruption — you can find and fix the bad memory

operations that cause a program to crash or behave improperly

• finding memory leaks — you can find and fix memory leaks, to

improve an application's long-term stability and performance.

22

Chapter-4 PERFORMANCE ANALYSIS

 4.1 Virtual memory page de(allocation)

This is basically the first phase of the development of linux memory

manager. Here the linux memory manager interacts with the kernel to

allocate and de-allocate the virtual memory pages in accordance with the

requirements of the user space application.

The user space application will request say x bytes from our linux memory

manager, the linux memory manager will in turn request a vm page from

the kernel mmu of fixed size. After receiving the page it will then divide

the vm page into memory blocks and allocate the memory required by the

user space application.

In the same pattern if the user space application has freed all the memory

which is no longer in use of the application (xfree()), the vm page is now

empty and is being returned to the kernel mmu. These functions are

performed with the help of two major system calls, i.e. Xcalloc() and

xfree().

Let us now take a look at the api to implement these system calls.

System_page_size defines the size of the vm page extracted from the

kernel mmu.

The argument to the function mm_get_new_vm_page_from_kernel(int

units), defines the number of pages to be requested from the kernel by the

LMM.Similarly, the pages have to be returned to the kernel, in a bottom-

up fashion.

23

In the first phase we have shown the implementation of mmap and

munmap system call to allocate and deallocate the vm pages.

Below is the screenshot attached of the linux terminal (vim) where the c

code has been implemented followed by the output of the code written.

Fig .4.1 Output

24

The output of the above code snippet is as follows.

Fig. 4.1.2 Output of above code

The output generated depicts the size of the vm page requested from the

kernel which comes out to be a standard 4096 bytes.

The next line of the code shows the no of vm pages and their respective

addresses.

4.2 Page Family Registration

Family registration means that user space application which is relying on

our Linux memory manager for memory allocation and deallocation, such

an application during its initialization phase is supposed to tell our Linux

memory manager the details of the structures which application is using.

These are those the structures which application wishes to perform

dynamic memory allocation and deallocation.

So, in the diagram below you can see that we have a user space application

on the right-hand side and we have Linux memory manager library which

is integrated with our application. In the registration process user space

application is telling the Linux memory manager the information about

the structures which application is using. let us suppose that the

application is using the structure person, occupation structure and the

student structure and against each of these a structure is the size of the

structure So, the application has to tell the name of the structure and the

25

size of the structure in the registration process to the Linux memory

manager. Application may be using hundreds of a structure.

This registration of structure information with Linux memory manager is

essential because Linux memory manager needs to know how many bytes

to be allocated to the application, if application issues request for memory

allocation for a structure.

It is for this reason that user space application has to convey the structures

and their corresponding sizes to the Linux memory manager at the time

of initialization of the application. Information comprises of name of the

structure and the size of the structure.

Our Linux memory manager needs to have a memory in order to store this

structure information, that memory will come from our Linux memory

manager itself that has the responsibility to allocate and deallocate

memory for the user space application. But what will our Linux memory

manager do if it has to use some memory in order to store this structured

information. The entity which is responsible to provide the memory to the

application itself needs memory to operate.

Linux memory manager uses vm pages as requested from the kernel to

store the registration information. We have already done in the phase one

Our own

memory

manager

User space

process/

Application

Person_t, 60B

Occupation_t, 120B

Student_t, 75B

Fig 4.2 Example of user application

26

that how our Linux memory manager can request vm pages from the

kernel those virtual memory pages will be used by our Linux memory

manager in order to store applications structure information. So, this

process is called Page family registration. Structure name plus the size of

the structure together is called Page family.

4.2.1 Page Family instantiation

It basically means that how our user space application will interact with our

LMM. This will be done with help of an api mm_instantiate_vm_page().

Where it will accept two arguments i.e., the name of the structure and the

size of the structure.

Whenever the application wants to access the memory from the LMM, it

will invoke this api and the LMM will accept the above-mentioned

arguments for the page family registrations.

All the data structures, looping macros and also the api’s have been defined

in the mm.h (header file) for the internal usage of the LMM. Apart from this

we have created another file uapi_mm.h which will act as an interface

header file between the LMM and the user application. To make use of our

LMM the application has to include the uapi_mm.h in its particular code.

27

Fig 4.2.2 Code snippet phase 2

Fig.4.2.1 Code snippet phase 2

Fig.4.2.3 Code snippet phase 2

28

Fig. 4.2.3 Code snippet phase 2

Fig.4.2.4 Code snippet phase 2

Fig.4.2.3 Code snippet phase 2

 Fig.4.2.4 Code snippet phase 2

Fig.4.2.3 Code snippet phase 2

29

4.3 Meta Block and Data Block

This is the phase 3 of our project where we talk in detail about the meta

block and data block present in the vm pages. Basically, a virtual memory

page is divided into chunks of memory called data blocks which have to be

assigned to the user space application. These data blocks are preceded by

the meta blocks which are nothing but all the information regarding the

succeeding data block. It consists of a Boolean for Is_free, which tells if the

data block present is free or not, the next information is regarding the size

of the data block and then the pointers to the previous and next meta blocks.

The pointer to next meta block is null if the data block succeeding that meta

block is the topmost block of the vm page. Similarly, the pointer the

previous meta block is null if the data block succeeding that particular meta

block is the bottom most block of the virtual memory page.

Meta Block data structure is as follows:

Typedef struct block_meta_data{

Vm_bool_tis_free; //free or allocated

Uint32_t struct_size; //size of the block

Struct block_meta_data_ *prev_block; //ptr to the next meta block

downward in data VM page

Struct block_meta_data_ *next_block; //ptr to the next meta block upward

in data VM page

} block_meta_data_t;

30

Fig.4.3 Meta block

Fig.4.3.1 Meta block

31

4.4 Block Merging and Splitting

Now as we are entering into the phase 4 of our project, which includes

block splitting and block merging. Just as we know that our LMM

requests a fresh vm page from the kernel, it is completely free of size 4096

Bytes. Now as the user application asks for memory allocation for say a

structure (foo_t) of size 20 Bytes, this particular free data block of 4096

bytes will be split into 2 blocks with their respective meta blocks.

Fig. 4.4 Xcalloc

Xcalloc

32

As it can be observed in the above diagram, the white blocks represent the

free data blocks, blocks which have not yet been allocated. On the other

hand the yellow blocks represent the data blocks which are not free or the

amount of memory which has been allocated to the user space application.

The blue blocks are the meta blocks which contain all the necessary

information regarding the data blocks. When a free data block experiences

a split, a new meta block is also created for that particular data block.

Therefore, it can be concluded that,

● for every malloc, a free block is splitted into allocated block and

remaining area left is a smaller free block,

● If vm page does not have free block to satisfy malloc request, a new data

vm page is requested from kernel and same exercise is repeated.

4.4.1 Block Merging

Whenever the application wants to release the block of memory, the linux

memory manager may require to perform block merging. The diagram on

the left hand side shows the snapshot of the virtual memory page.

Let us say that at this point of time the data block MB4 and MB1 is a free

data block. All of the data blocks which are in yellow colour are the data

blocks which are being used by the application. That is, they are allocated

data blocks. Now suppose the application does not need the data block MB5

anymore and therefore the application issues the request to free the memory.

Here we have not shown the blue coloured meta blocks but assume that they

are always there and also assume that the size of the meta block is

negligible. We have done this in order to simplify our calculations and

understand the concept of block merging in a simplified way.

33

Suppose the application does not need the data block MB5 anymore and it

wants to free the data block and for that purpose the application issues the

request Xfree, passing the pointer to the data block. Finally, our vm page

would look like shown in the figure

MB7

MB2

MB3

MB1

MB4

MB5

MB6

Block

Merging

Fig. 4.4.1 Block merging

34

As you can see, the data block mB5 has changed to white, indicating that it

has been released after the data block. The block merging method needs to

be run after that because it detects when there are two or more consecutive

data blocks in a virtual memory page that need to be combined to make a

single, larger free data block.

Therefore, in this instance, the data blocks MB4 and MB5 will be combined

to create the data block MB45. Block merging is the process of combining

free contiguous data blocks into two; this is prohibited in a virtual memory

page. Due to the free data blocks in the centre diagram, this rule is actually

more likely to be violated.

Therefore, in order to follow this rule, we must combine these two free data

blocks to create MB45, a single larger free data block. In the third vm page,

you can observe that no two free data blocks are sequential to one another.

Please find below the code to perform the union of two free data blocks.

Fig. 4.4.2 Code snippet block merge

35

4.5 VM Page Management

Entering into the phase 5 of our project Linux memory Manager i.e. the Virtual

page management. This section talks about how the LMM manages and

organizes the vm pages which are requested from the kernel. After the LMM

accepts the vm page from the kernel it needs to perform certain operations such

as,

• Allocation of memory to the application

• Deallocation of the memory from the application

• If a vm page is completely free then return it back to the kernel memory

management unit.

• If a vm page is exhausted, the request another vm page from the kernel.

• Maintain collection of vm pages.

• Collect certain statistics. (These statistics will give us idea about the

memory usage of an application)

Data structure needed to manage and organize the vm pages in LMM is

vm_page_t + which is used to represent single data vm page.

We know that our LMM requests the vm pages from the kernel when the vm

page already present in the LMM is completely exhausted. Every vm page has

to appended at the beginning of the list. All these vm pages and the pointer to

the page family registered are connected to each other with the help of a doubly

linked list. The pointers next and previous are used to organize virtual memory

pages in the form of a doubly linked list. The bottom part of each data virtual

memory page will be used to store the objects of type virtual memory page.

36

Declaration: mm.c

Define: mm.h

Macros in mm.h for iterating over virtual memory pages which are present

in a doubly linked list,

Fig.4.5 VM page management

Fig. 4.5 a mm.h file

37

Macro for iterating over vm page per family,

Fig. 4.5 b Looping macros

Fig. 4.5 c Iterating macros

Fig. 4.5 d Allocations deallocations

38

4.5.1 VM Page Deletion

Returning the vm page back to the kernel,

4.5.2 VM Page Insertion

Using the allocate function to request a fresh vm page from the kernel and

declaring it in the mm.c file, file m am dot c and i have already defined the

prototype of this function in the file mmd attach. So now i have already

explained that what this function is supposed to do the very first thing that

 we need to do is to request a fresh new watch on memory page from the

kernel.

So, for that you can simply invoke this api and we are requesting only one

world trial memory page from. We are not requesting any giant virtual

memory page which is a concatenation of two or more virtual memory

Fig. 4.5.1 VM page insertion

39

pages. We will discuss more about giant virtual memory pages when we

will be modifying our linux manually.

4.6 Free Data Block Management

Entering into the phase 6 of our project which will deal with the

management of a free data block in the virtual memory page. This section

will talk about how to choose a free data block for memory allocation to our

application. Question arises, which vm page to be chosen for meeting the

Fig. 4.5.2 VM page deletion

40

xcalloc() request from the user space application? The worst fit case would

be selecting the page which has the largest free data block available.

The way by which we can find the biggest free data block amongst the

various virtual memory pages is by using the data structure, priority queue.

Each page family must maintain a max-priority queue of free data blocks.

Priority queue of free data blocks the free data blocks will be arranged in

this max priority queue in the decreasing order of their block sizes, meaning

the largest free data block will be the head of the queue

The solution to this question is that that each page family that in this

particular data structure must maintain a max priority queue of free data

blocks. It means that we will maintain a doubly linked list of free data blocks

and these data blocks will be arranged in the decreasing order of their block

sizes. Now the Page family data structure have to have an additional

member which will point to the head of this priority queue. this additional

member is nothing but we will call it as free blog priority list head. This is

the new member of the data structure Page family which will point to the

head of this doubly linked list.

Now let us see with this concept in place how our Linux memory manager

will be able to satisfy the malloc request issued by the application. Now

having received this malloc request our Linux memory manager will pick

up the first free data block which is present in this priority queue and that

free data block will be used for memory allocation to the application.

Now a new largest free data block will be created as a result of splitting the

older free data block and the other blocks will be rearranged in the priority

queue such that the fresh newly created block is inserted in this doubly

linked list at an appropriate place.

41

The time complexity to process the malloc request issued by the application

by our Linux memory manager is order of N because choosing the largest

free data block from the head of this linked list is order of one. But once this

free data block is split it up to form a smaller free data block and the

insertion of this free data block in this doubly linked list is an order of N

operation.

But remember here we are implementing the priority queue using doubly

linked list, we implement this prior to queue using max heap data structure.

Then we can improve the time complexity of memory allocation to the

application by log base 2 which shall be the great improvement.

Fig. 4.6 Block Management

42

4.7Final Push-Implement Xmallloc

4.7.1 Xmalloc Algorithm Disscussion

4.7.2 Xmalloc Implementation

The seventh stage of our project is the implementation of X malloc api.

The return value of the xmalloc api is a void * pointer because it is up to

the application to decide that how it is going to use that chunk of memory

which is allocated by our Linux memory manager. So it is for that reason

that we return void*. The very first thing that Linux memory manager

Fig. 4.7 Flow chart

43

must do is to search for Page family corresponding to the structure which

is provided by the application.

And if such a page family do not exist then in that case our Linux memory

manager should simply print an error and return null.

returning a null will be an indication to the application that memory

allocation has failed and let us go forward and assume that such a Page

family exist. Now the second thing that all Linux memory managers

should check that weather application is demanding from our Linux

memory manager a chunk of memory that exceeds the size of vm page.

So if you multiply the units with the structure size that will give you the

total amount of memory which application is demanding from the Linux

memory manager And if this much memory exceeds the size of one

complete virtual memory data page.

Then we will presume that in such scenario our Linux memory manager

cannot certify application request from memory. So, in that case simply

print an error or null. So, it simply means that Linux memory manager

does not have the capability to allocate memory to the application whose

size exceeds the size of virtual memory data page. Now let us assume that

our Linux memory manager passes put these restrictions and now it is in

a position to perform memory allocation. So, what we need to do is to

invoke an API M.M. allocate free data block.

44

So, remember this is the api which represents the circle in our flowchart.

Fig 4.7.1

Fig. 4.7.1 api code

45

The logic to search of free data block which is big enough to satisfy a

memory request of the application and then perform a splitting of that

particular free data block in order to perform memory allocation within

this function. So, you can see that this function accepts two argument page

family and the total amount of memory to be allocated to the application.

The return value of this function is a pointer to the meta block which is a

guardian of free data block which will be allocated to the application for

use. So once this api returns, we will have a pointer to the betablockade

now what we need to do we simply have to initialize the free data block

which will be assigned to the application for use. And then simply return

the starting address of the free data block to the memory. Meta block is

always there, but what we return to the application is the starting address

of data block which is to be allocated to the application for use. Right

now, at this point of time, this metal block represents a guardian of the

data block which has been allocated to the application. So this Meta block

is a guardian of occupied data block at this point of time and not a guardian

of free data block it means that is free member will be set to false in this

meta block. And if for some reason this particular api returns null it means

that we have no choice other than to return now to the application which

represents that for some x you this is the complete implementation of this

Malloc function and you can see it is very simple and short and all the

logic of this Xmalloc function lies in this api and therefore we will

implement this api next.

46

4.7.2 Hard Internal Fragmentation

66B

MB3

MB2’

MB2

46B

MB3

MB2

MB1

Case 1
Soft IF

Case 2
Hard IF

Fig. 4.7.2 Hard and soft If

47

4.8 Testing Our Project

A lot of functionality has been implemented in our project and here we

verify and test the project. Some printing functions are written which shall

dump the state of linux memory manager.

4.8.1 Explanation of output API

So, in order to test the functionality of a project remember we wrote a file

desktop dot c which represent the application right. So let us open this file

and from this file we will try to claim some memory from our Linux

memory manager

Remember we defined two structure supply and student. And we have

registered these two structures with Linux memory manager and we have

already implemented this api to print the registered families. Now going

further since we have completed the implementation of our exe malloc

therefore, we will clear memory from our Linux memory manager for the

object of type employee and student. Now here if you check the

implementation of xcalloc it does nothing but it is just a wrapper or what

x log function which we had implemented right. We have done this so that

the call to the X function from our application would resemble as closely

as possible to the standard clock function right. So, we have just wrote a

macro xcalloc which does nothing but just a wrapper over the xcalloc api

which we wrote so you can see in this example that the application is

claiming the memory for free objects of type employee and two objects

of type student.

Creating an executable after compiling the program and it can be seen that

first that the very first thing the program prints is the base families which

are registered with the Linux memory manager. So, this output is coming

48

from functions which we have implemented long before. And now at this

point of time the application is halted at this line. It means that the

application has already requested these five objects from our Linux

memory manager. And as soon as I press any key then our application

will invoke these api which will print the internal state of our Linux

memory manager.

Now we will implement to explain why this output is now let me explain

the output which is coming from this fast function that is an imprint

memory usage. The functionality of the first api that is an imprint memory

use such as that it is played or all the its families which are registered with

our Linux memory manager.

And for each page family it prints the information about each watchful

memory database which is present in the doubly linked list for that its

family. Right now, what is that information that is contained in each watch

on memory data page for each watch all memory data page.

We also print each matter a block present in a watch on memory data page

and we print this information for all the virtual memory data pages present

in this doubly linked list. So basically, this function is used to dump the

entire content of a page family. So, you can see here that first of all we

print the page size that is supported on your system.

And then I tripped over each page families which is registered with our

Linux memory manager and for each family then be outraged over all the

virtual memory data pages which is present in a doubly linked list of that

page family. Now in this case there is only one virtual memory data page

which is present in a doubly linked list because only one virtual memory

data page is suffice to meet the requirement of an application for memory.

So, we are printing the Page family which we optimized from the watch

49

on memory data page. Remember each watch will memory data page has

a bad pointer to the page family. So, from virtual memory database we are

printing this information right. And in the application, you can see that for

the structure of type imply our application requester three objects from

our Linux memory manager. So it is for this reason that we I treat or all

the metal blocks in this virtual memory data page and you can see that the

block 0 1 and 2 are allocated so we tripped over all the meta blocks which

is present in the watch of memory data page.

Starting from the lower most meta block and looping over metal blocks

towards the metal block which is present in the higher memory address of

a virtual memory data page. This value is the starting address of a metal

block and if the metal block is allocated to the application, then we print

allocated. Otherwise, we print freed and this is the size of a data block

which is being guarded by this metal block. So, you can see that this block

size must match with the structure size of a piece family and this

represents the offset of a metal block. And since it is a first metal block of

a virtual memory data page that is the lower most metal block therefore

the previous pointer of this metal block is no. And the next pointer points

to the next metal block present in a watch remember memory data page

so you can see that this should be the address of block number one. So, in

your outward you should take care there D when news matches so block

number 0 1 and 2 are allocated blocks and block number three is a metal

block which is in the free to state and its block size is 3 7 7 2 bytes. So, if

your application request more memory from the Linux memory manager

for the page family of type imply your Linux memory manager will going

to perform a split of the block number three to meet the memory

requirement of the application and because the block number three is the

uppermost matter block in a virtual memory data page therefore its next

50

pointer is no and the similar output is printed for the page family of type

student right. So, you must notice all these statistics in your output and

see that all these statistics are should be asked for that expectation if

you've seen any anomalies in these statistics it means you’re The next

memory manager implementation is buggy and any unexpected behaviour

could we observe and you can also see that we are also printing the total

number of virtual memory pages which is being used by our Linux

memory manager. So basically, this is the total number of virtual memory

data pages which are assigned to the ps families one virtual memory data

page has been assigned to the page family imply and one virtual memory

database has been assigned to the page family student therefore total

number of data virtual memory pages that limits memory manager has

requested from the kernel is to. So, this is the output that is coming from

the first api.

Fig 4.8.1 Output of xcalloc implementation

51

4.9Implementing xfree

4.9.1 xfree algorithm flowchart

Fig. 4.9 Flow chart

52

4.9.2 Xfree implementation

Xfree in the file mm.c accepts only one argument. And this argument is a

pointer to the data block which was assigned to the application for use.

This data block must be data block, which is present somewhere in some

virtual memory page. So, the very first thing that we need to do is to obtain

a pointer or access to the meta block, which protects this particular data

block. So, you can simply opt in a pointer to the protecting metal block

by simply decreasing the address, which is pointed by this application

data, which is nothing but a data block, and reduce the size of this pointer

by the size of the meta block.

You will get the pointer to the matter block, which is protecting this

particular data block. And now, henceforth, we will perform all the

operations on this meta block. since this particular meta block is a block

which is requested by the application to free, therefore is free member of

this particular matter, block must be set to. At this point of time, this meta

block or data block has been assigned to the application for use. So, it's

just a sanity check to ensure that we are doing the right thing. And the

next thing is that simply the free api invokes the api M-m free blocks and

this api will do rest of the thing. That is, we will implement that entire

logic of freeing a particular data block from a virtual memory data page.

And doing all the merging algorithm. The scenario one and scenario two

that we discussed for handling hard internal fragment and memory will be

implemented within this function itself. So now, max, let us discuss the

implementation of this function. So, guys, now we will discuss the

implementation of this api. This api accepts one argument, which is

nothing but a pointer to the matter block, which is to be freed. So, guys,

the very first thing that we will going to do is to obtain a pointer to the

virtual memory data page in which this particular matter block lies. So,

53

for that, you can simply use the macro and look at page from the metal

block. We have already discussed how we can implement this macro in

our previous sections. So, hosting page is a pointer to the virtual memory

data page in which this particular free metal block lies. And once we get

the pointer to this hosting page, it is not difficult to get a pointer to the

pease family every which will memory did a page has appointed to the

page family.

And therefore, you can easily opt in the pointer to the virtual memory page

family. Basically, you can guard the access to the what type of a structure

this particular matter block is being used for memory allocation or the

allocation. And now roadblock is a local variable, which will hold the

address of the matter block, which is to be returned by this api. This api

will return the matter block, which will be formed after performing all the

marching right. Now, since this is the metal block, which is to be freed,

therefore are allotted to must set that is free member to true meaning that

this metal block has been marked as free by our Linux memory manager.

Now we will be going to covered the snapdeal one and scenario two. And

therefore, it's a time for us to test whether this particular matter block is

the last metal block towards higher address of the virtual memory page

boundary or not. So for that, we will going to obtain the pointer off

immediate next metal block, which is present in a virtual memory data

page towards higher address in a virtual memory data page. You can

simply opt in this pointer using the macro next metal block on our to be

free to block.

If this next block is not known, it means that a block which is to be freed,

is not the last metal block in a virtual memory data page. In the upper

space boundary. And therefore, we enter into the scenario number one.

So, if this is a scenario number one, then as discussed, we will going to

54

add just the block size of this matter block. We have already discussed the

scenario.

We just have to invoke this api to add just the block size of the metal

block, which is being freed. The hard internal, fragmented memory will

be taken into account by using this api. So here you can see that I'm doing

the same thing. I am simply in walking this api and any hard internal

fragmented memory with the sandwiched between Automator block,

which is to be freed and the next batter block will be accommodated in

this block size. So, this covers the scenario number one.

And going further now, it's a time to cover the scenario number two. So,

if next block pointer is null, then we will enter into the 1st case, meaning

that our meta block is the last metal block in the upper space boundary of

a virtual memory data page. So, it simply means that we need to now take

care of the scenario number two. The block, which is to be freed in this

example, was Amber three. So I have written a fairly good comment to

explain the scenario number two.

And remember, in order to cover the scenario number two, the very first

thing that we need to do is to find the size of hard internal fragment and

memory, which is present in the appropriate boundary of a virtual memory

data page. And that can be opt in if you just subtract the end address of

this watch memory data page from the end address of the data block,

which is being freed. So now let's see how we can compute them. So first

of all, let us obtain the very end address of a virtual memory data page.

We can simply opt ended by adding the system page size to the starting

address of the virtual memory data page.

So, hosting page is actually the address of the start of the virtual memory

data page. And we are adding the system page size to this value to obtain

55

the end address of the words of memory data page. So, this is what we are

doing here. And the second thing that we need to do is to obtain the end

address of the free data block, meaning that we are trying to get the end

address of the data block, which is being freed. So you can simply opt

ended by using this equation, the metal block, which is to be freed, simply

incremented by one and add the block size to this equation to get the end

address of the free data block.

So now that we have opt in board the values now, we can simply subtract

these two addresses to get the size of hard, internal, fragmented mammary,

which is present, which is present at the uppermost region of habitual

mammary decoupage. Remember, you should always typecast the address

to unsigned long while performing the automatic addition or subtraction.

Now that we have now opt in the size of internal, fragmented memory, we

can now accommodate this internal fragmented memory to the block size

which is being freed. And discovers the scenario number two, right?

So you can see that the algorithm of X free walks in three simple steps where

most of the logic is implemented in the step number two and three, the step

number two and three will be implemented inside this function. And the

argument to this function is a pointer to the matter block, which is to be

freed, though, in our project. We do not use the return value of this API, but

still we choose to return the pointer to the matter block, which has been

marked free by Linux memory manager, and all the necessary merging has

already been performed. So the goal of this section of the course is to

implement this particular API. That is M m three blocks. The overall goal

of this API is to free the memory and if required, return the free or empty

virtual memory data page.

56

So, at this point of time, we have covered the scenario number one as well

as the scenario number two, in order to accommodate any hard, internally

fragmented.

Fig 4.9.2 a Code xfree

57

Fig 4.9.2 b Output xfree

Fig 4.9.2 c Output xfree

58

Chapter-5 CONCLUSIONS

5.1 Conclusions

In virtual memory pages, linux memory manager purchases and releases

memory from the kernel for the benefit of the application. For this, the

system calls mmap() and munmap() were employed. Cache vm pages and

utilize them as a storage space for application requests for additional

memory up until all of the additional memory pages have been used. when

the programmer releases enough memory that the vm side has not been used

by the application or allocated for use by the application, the vm side kernel.

As its name suggests, the Linux memory management subsystem is in

charge of overseeing the system's memory. This covers the implementation

of demand paging and virtual memory, memory allocation for both kernel

internal structures and user space programs, mapping of files into processes

address space, and many other awesome things.

The aim of this project is to assist you create your own heap memory

manager to help you manage the memory needs of your processes. The

memory manager improves process speed by minimizing or eliminating

internal and external fragmentation problems and preventing needless

system calls from allocating/deallocating memory. Users may also view

statistics on how much memory each process structure uses via the linux

memory manager. These statistics can be used to analyses the memory

requirements of your application and provide recommendations for

reducing those requirements. Her linux memory manager can detect

memory leaks as well.

59

The allocation and deallocation of virtual memory pages with fixed sizes is

handled by the Linux memory manager in continual communication with

the system's kernel. Instead of dealing with little data blocks or independent

data blocks, the linux memory manager asks the kernel for entire virtual

memory pages, which are subsequently divided into memory chunks based

on the needs of the application using our linux memory manager.

As long as the xcalloc() method is called, the programmer calls the linux

memory manager's xalloc() function, which causes the linux memory

manager to register the size and name of the application's structures as page

families. Because of this, the virtual memory pages continue registering the

page families in a contiguous way from bottom to top in order to give the

linux memory manager information it needs to allocate memory to the

application. With the use of linked lists and a pointer to them, these page

families are accessible within virtual memory pages.

This concludes that we are successful able to buil a linux memory manager

which is able to allocate and the free the memory using the functions

xmalloc() and xfree() will be used for allocation and freeing, respectively,

in this. The application will call our linux memory manager with an

xmalloc() request, and the linux memory manager will allocate the needed

memory in the form of blocks (meta and data blocks).Catch memory leaks

,if there are any memory leaks in the system, can be found using our linux

memory manager. Memory leaks typically happen when a user creates

virtual memory pages using the linux memory manger and then forgets to

pass those pages back to the kernel. The similar thing can happen if the

memory that our linux memory manager allotted to the application is not

released or given back to it. And address memory fragmentation problems

both hard internal fragmentation (not enough space for meta block) and soft

60

internal fragmentation will also be addressed by linux memory manger (not

enough space for data block).

5.2 FUTURE SCOPE

Our heap memory manager can handle a variety of tasks, such malloc and

free memory, find memory leaks, and deal with the issue of memory

fragmentation. But there are some future enhancements that can be done to

make this memory manager efficient.

There is no such method of displaying the stats obtained by the Linux

memory manager in a way such that it is easy for the user to understand it

and work upon it. The best method of representing data or stats in such a

way that it is very useful for the user and he can understand it and work

upon it is pictorial representation i.e., to represent the data in a pictorial way

most commonly used are graphs. Therefore, a GUI (Graphical User

Interface) can be made which can get the stats of the usage of memory from

the linux memory manager and display it in the form of graphs so that it is

easy for the user to understand it and work upon it.

Most of the memory manager have a very big computational and execution

time so there is a very big delay in the processes carried out by the memory

manager. Therefore, there can be made a very efficient memory manager

which has less computational time and less execution time. This will be very

beneficial for the user and the ram.

The content monitoring can be added to the memory manager so that its

performance can be easily studied and managed by the user as by

monitoring the content on regular intervals can help the user to understand

the working of the memory manager.

61

REFERENCES

[1] S.Poornima, Chakunta Venkata Guru Rao, Nazia Thabassum, Dr.S.P.

Anandaraj, “Memory Management by Using the Heap and the Stack in

Java,” December 2014

[2] Xutong Ma, Jiwei Yan, Wei Wang, Jun Yan, Jian Zhang, Zongyan Qiu,

“Detecting Memory-Related Bugs by Tracking Heap Memory Management

of C++ Smart Pointers,” November 2021

[3]Yu Ding, Tao Wei, TaiLei Wang, Zehnkai, Wei Zou, “Heap Taichi :

exploiting memory allocating granularity in heap spraying attacks,"June

2010

[4] C.Cantalupo, Vishwanath Venkatesan, Jeff R. Hammond, Krzyszt of

Czuryło, Simon Hammond, “Mmemkind: An Extensible Heap Manager for

Heterogeneous Memory Platforms and Mixed Memory Policies,"

September 2015

[5] Anthony Savidis, “Development Recipe for a Heap Manager

Embedding Advanced Bug Defence," January 2004

[6] T Printezis, R Jones, “GCspy : an adaptive heap visualization

framework,"March 2004

