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ABSTRACT 

 

 

 

Malware poses a significant threat to today's infrastructure. Malware is a computer code 

designed to gain unauthorized access, exploit vulnerabilities and cause overall harm to digital 

systems all around the world. Today, malware poses a big threat to any country's critical 

infrastructure such as banks, defense systems, stock markets, etc. Although working in the 

digital space, the consequences of its actions can reflect in the physical world too. In order to 

detect and prevent malware from affecting infra, many techniques such as signature-based 

detection are used but with the advancements in technology, these old strategies are rendered 

obsolete by ever-evolving malware threats. 

Here machine learning has emerged as a powerful agent for detecting and analysing malware, 

semi-automating the process on a large scale. By training algorithms on a dataset of known 

malware files, Machine learning models can learn to recognize patterns and features that 

distinguish malware from a legit file. Machine learning models learn constantly and evolve with 

each training set, thus countering the evolving threat of malware to some extent. 

This project aims to explore the application of machine learning to malware analysis. The report 

first provides an overview of what malware is and how it affects infrastructure, and then it 

would introduce machine learning and its potential in malware detection. By training the models 

on a dataset containing malware and benign files, models would learn to analyze patterns and 

features these files have and finally we evaluate the effectiveness of the machine learning-based 

malware detection methods. 
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Chapter 01: INTRODUCTION 
 

 

 

 

 

1.1 INTRODUCTION 

 
Malware is a short form for "Malicious software" which refers to any piece of software which 

is designed with harmful intent. The general purpose of malware is to find vulnerabilities within 

a system and then exploit it. Generally, malware is deployed on a computer where it can exploit 

the vulnerabilities and then provide the controls of the computer to the intruder. Malware may 

work incognito as spyware, or in a loud way like ransomware, in both cases, giving control of 

the computer to the malware and its developer. 

Malware can be classified into many categories based on their roles. Some are viruses, worms, 

trojan horses, ransomware, spyware and adware. Each type of malware has a unique way of 

operating and infecting a device. 

 

 

Figure 1.1 - Types of malware [21] 
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The history of malware dates back to the 1970s when the first computer viruses were created. 

These early malware were relatively harmless and generally designed for research purposes. 

However, with the rise of the Internet, malware evolved into a more significant threat. In the 

late 90s and early 2000s, worms like the Melissa virus and ILOVEYOU virus caused millions 

of dollars in damages [1]. 

The threat of malware is ever growing and today, it poses an ever-increasing threat to our 

modern infrastructure. From national banking systems and military and defence systems to 

regular computers, every system is vulnerable. For example, in 2017, WannaCry Ransomware 

infected over 200,000+ computers around the world, causing billions of dollars in damage [2]. 

Another notable example of malware being used to exploit the bank is the 2016 Bangladesh 

Bank heist. Allegedly the North Korea-funded Lazerous group used malware to gain access to 

one of the employee's computer system and then into the mainframe computer of the bank with 

careful planning where the bank was closed because of holidays, they were able to steal over 

$700+ million from the bank's Federal Reserve Bank of New York account. Although most of 

the money was recovered, $81 million was stolen. These hacker groups target third-world 

countries and their financial infrastructures which are poorly maintained and secured and cause 

hundreds of millions of dollars in heists every single year. 

Despite the increasing threat of malware, many individuals and organizations continue to ignore 

security practices. This ignorance stems from a lack of awareness. However, the cost of a big 

heist can be far more significant than the cost of implementing security measures. 

1.2 PROBLEM STATEMENT 

 
Malware is one of the biggest threats to computer systems and networks, an ever-evolving one 

with its destructive capabilities increasing every day. Therefore, studying malware analysis 

using machine learning can help tackle these threats. The traditional methods of malware 

detection are still powerful but they are not scalable. On a large scale, analysts cannot check 

every file while malware is constantly evolving, and here machine learning comes to take the 

baton of responsibility by automating the process and analysing a large amount of data and 

detecting patterns in the malware to identify unknown ones. The amount of malware being 

developed is growing at an alarming rate, and traditional ways of analysis are time-consuming 
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and not efficient. Machine learning can automate the process and can help speed up the process 

and provide more accurate results and learn from its mistakes. 

1.3 OBJECTIVES 

 
The goals of this project are 

 
1. To identify and understand the behaviour and capabilities of different types of malware. 

2. To build machine learning models to automatically detect and classify malware with 

high accuracy. 

3. Improving the overall understanding of the cyber threat space and enhancing 

cybersecurity practices. 

1.4 METHODOLOGY 

 
The project's methodology involves using a dataset of behavioural analysis of both malware 

and benign Android applications which is created in a controlled environment. The dataset 

contains system calls made by both Malware and Benign files. After pre-processing, to train 

and test the models, the dataset is split into training and testing splits at the ratio of 80-20. The 

training data is used to train four machine learning models: Support Vector Machine, Logistic 

Regression, Random Forest, and Linear Regression. These models are chosen because they 

work well for binary classification tasks like dividing unknown data into malicious and benign 

types. 

Following training, the performance of each classifier is compared. Then A voting classifier is 

developed upon three base classifiers, Support Vector Machine, Random Forest, and Logistic 

Regression. These base classifiers are trained on a loop on subsets of the training data and then 

stored in an estimator list. This list is then used to train the voting classifier. Then the voting 

classifier and the previously trained individual base classifiers are tested on the testing data and 

their performance is evaluated and compared. 
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1.5 ORGANIZATION 

 
To achieve the goal of malware analysis with high accuracies, the requirements to make 

the project work have been mentioned below: 

1.5.1 Python 

 
Python is a garbage-collected, interactive, dynamically typed programming language. 

Developed by Guido Van Rossum between 1985-1990. It is a high-level language that is used 

for a variety of works including automating tasks, data analysis, etc. The features of python 

have been mentioned below: 

• Readability- Python was designed to be more user-friendly, and easy to code but also 

allows us to make intelligent models. 

• Versatility - Python is a very versatile language as it can be used for a variety of tasks. 

Python helped us in creating and training machine-learning models. 

• Robust variety of support libraries - Because Python is open source, the developers have 

created countless helpful libraries that help in increasing the scope of usability of Python. 

In our project, Libraries like Numpy, Seaborn, TensorFlow, matplotlib, and Pandas. 

1.5.2 NumPy “Numerical Python” 

 
● NumPy was developed by Travis Oliphant in 2005. It is an open-source Python library 

which is used to manipulate arrays and provide other functions for working with linear 

algebra, matrix operations, and the Fourier transform. 

● Numpy is a Python library that handles large datasets efficiently. It has support for large, 

multi-dimensional arrays and matrices. 

● It provides researchers with a wide range of mathematical functions that are essential for 

Machine learning tasks that may include Linear algebra, matrix evaluation, and many more 

advanced mathematical functions. 
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1.5.3 Pandas (Python data analysis package) 

 
● Pandas is an open-source Python library which was developed by Wes McKinney in 2008 

in response to the need for a trustworthy and adaptable tool for doing quantitative 

research. Since then, Pandas has developed into one of the most well-known Python 

libraries. 

● Pandas is a Python library that is used for data manipulation and analysis. It is capable of 

handling and organizing large amounts of data. 

● Pandas provides two classes for storing and manipulating data, The data frame and the 

series. 

● Pandas can be used for data cleaning, grouping, filtering, merging, etc. 

 
1.5.4 Sklearn 

 
● Sklearn short form for Scikit-learn is a machine learning open-source library in Python 

that includes a wide range of supervised and unsupervised learning algorithms as well is 

capable of pre-processing, feature extraction, model selection and evaluation tools. 

● Sklearn is a library that takes the aid of other scientific computing libraries like NumPy, 

SciPY, matplotlib and hence works like a charm when used along with other machine 

learning tools. 

● Sklearn consists of a range of supervised learning algorithms like Linear Regression, 

Logistic regression, K Nearest Neighbor, Random Forest, and Support vector machines to 

name a few. It also supports a range of unsupervised learning algorithms too such as 

clustering, cross-validation, etc. 

● Sklearn enabled us to train supervised learning algorithms like Support Vector Machine, 

Logistic Regression, Random Forest, and Linear Regression in the project. 

1.5.5 Google Collaboratory 

 
Researchers and developers can write, run, and collaborate on Python code for machine learning 

and data analysis tasks using Google Colaboratory (Colab), a cloud-based Jupyter Notebook 

environment provided by Google. Colab offers a variety of potent tools and services, including 

free use of GPUs, TPUs, and other hardware accelerators, pre-installed libraries like 
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TensorFlow and PyTorch, and integration with other Google services like Drive and Sheets. 

Some benefits of using google colab are mentioned below: 

• Colab is simple to set up and use, and it enables real-time collaboration between multiple 

users on a single notebook. 

• Free GPU Access: Colab offers free access to GPUs, which can greatly accelerate the 

development of machine learning models. 

• Pre-installed Libraries: TensorFlow and PyTorch, two pre-installed libraries that are 

frequently used in machine learning research, are included with Colab. 

• The seamless integration of Colab with other Google services, such as Drive and Sheets, 

makes it simple to access and manage data. 

• Reproducibility: Colab notebooks are simple to share and duplicate, which is crucial for 

verifying research results and fostering openness in the industry. 

1.6 DELIVERABLES OF THE MAJOR PROJECT 

 
An application with the following key features: 

 
● Machine Learning Models: Developed machine learning models to use them in predicting 

whether a given file is malware or not. 

● A comprehensive report detailing the research and findings of the project, including a 

literature review, methodology, analysis and conclusion 
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Chapter 02: MAJOR PROJECT SDLC 

 

 

 

2.1 FEASIBILITY STUDY 

 
Researchers have found that there is a need to defend highly dependent societies on software 

from malware. All the military, and strategic, finances of the country are closely linked with a 

different type of software. Recently, a lot of research has been carried out to find and recognize 

the existence of malware, as well as the amount of risk that they pose to software assets and 

operations performed using them. Security experts and analysts have prepared a set of security 

tools. Systems nowadays come with pre-installed antivirus and firewalls. Antivirus detects 

particular malware uniquely based on the hashes this is called signature-based analysis, another 

method used by antivirus is a heuristic method in which malware is analysed based on a 

predefined set of rules which are determined by analysts that how the malware behaves in the 

infected device. Malware is created in such ways that they bypass detection and analysis. As 

the number of malware is increasing exponentially, There is a need of automating the detection 

of such malicious codes. This is what this project aims at. 

2.2 LITERATURE SURVEY 

 
When it comes to Malware detection, many Machine Learning and Data Mining techniques 

have been proposed by researchers all around the world. Each methodology proposes methods 

for a specific purpose, some methods proved to have performed better than others. Some of 

these methodologies have been discussed below. 

Hani et al.[3] their research showed a similar view of machine learning algorithms for Android 

malware. They used a large dataset consisting of 11,598 APK collected from several sources 

and provided by CLCMalDroid2020, a repository by the Canadian Institute for Cybersecurity 

at the University of New Brunswick. The paper shows that algorithms like K-NN achieve a 

much better F1 score when the dataset used for training is balanced and that the LightGBM 

algorithm is the best-performing algorithm in the research with an F1 score of 95.47%. 
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Zhang et al. [4] proposed a malware classification method based on the n-gram feature. To 

explain the N-gram, one can say that it is simply a sequence of n-words that occur together in 

a sentence or a document. It is a way to represent data in a form such that a computer can 

analyze and process it effectively. The researcher first used information gain methods for 

selecting the best n-gram features among all. Then Probabilistic Neural Network (PNN) is used 

to build the classifier followed by combining the individual predictions made by PNN 

classifiers through Dempster-Shafer Theory. The methodology was evaluated on a dataset 

containing 450 Malware and 423 Benign samples and results show better ROC scores for the 

ensemble of PNNs. 

Menahem et al. [5] in their research used three categories of features which are n-gram, 

function-based and portable executable(PE) features. For evaluation, they constructed five 

different datasets and considered five base classifiers, namely, OneR, VFI, KNN, Naive Bayes, 

and C4.5 decision trees to process these datasets. The experimental results showed that troika 

and stacking which were used to combine the base classifiers, outperformed the base classifiers. 

Mukkamalaa et al. [6] proposed a methodology that made use of a majority voting method to 

ensemble the prediction of various classifiers for detecting malware in network traffic. The base 

classifiers used by the researchers were SVM, MARS and three types of Artificial Neural 

Networks (RP, SCG and OSS). The dataset used was taken from Defense Advanced Research 

Projects Agency (DARPA) for evaluation purposes. The results proved that the majority voting 

method implemented by the researcher improves the accuracy of the detection of malware. 

Landage and Wankhade [7] in their research used opcode sequences of malware samples to 

train three base classifiers and combined the predictions using majority and veto-based voting. 

Their research show that veto based voting method had a better detection rate when compared 

to the majority voting method, but increased the false positive rate as a result. 

Ye et al. [8] in their methodology used API calls and strings as features. By constructing eight 

base classifiers on combinations of features and combining them through a simple voting 

method, the results proved the usage of the voting classifier as the method outperformed the 

base classifiers. 
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Guo et al. [9] used API calls where categorized them into seven classes and trained their base 

models upon them. The predictions made by these base models were combined and results are 

compared. 

Ozedemir and Sogukpinar [10] proposed a method for the detection of Android malware. 

Based on API calls made by the malware, they build different base classifiers whose 

predictions are combined using the majority voting method. The results reveal that the 

proposed ensemble learning method has improved the accuracy of detecting malware. 

For the detection of Android malware, another method [11] is proposed where the researchers 

used permissions and API calls made by these Android files. Six base classifiers are then 

trained upon the prepared dataset and then the predictions are combined by a collaborative 

decision fusion method. The authors in their research claim that this method of ensemble 

learning gave better results as compared to traditional methods like Adaboost and Bagging. 

Sheen et al. [12] used API calls and features extracted from the PE header to build a set of 

heterogeneous base classifiers. In their research, they proposed two ensemble methods that 

were used to select and combine a set of base classifiers. These methods attained a 99.7% 

malware detection rate which was better compared to traditional methods of bagging, boosting 

and stacking. 

Yerima and Sezer [13] proposed a multilevel architecture technique called "Droidfusion" for 

combining the predictions of base classifiers. In their proposed methodology, they used four 

ranking algorithms to rank the base classifiers and later combined the results of base 

classifiers. They used four different datasets to prove that Droidfusion showed better results 

than traditional ensemble methods. 

Kuncheva [14] shed light on the importance of having diversity in the classifiers to make 

ensemble learning more effective. Diversity is achieved by making use of different kinds of 

classifiers. Since each classifier has an explicit or implicit bias in its prediction, The 

combination of such types of classifiers achieves better accuracy than that of an individual 

classifier. 

Krawczyk et al. [15] proposed an approach features are divided into subspaces and each one 

of these subspaces is used to train a base classifier. A voting method is used to combine the 
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based classifiers which were selected by an evolutionary algorithm. The results show that this 

method provides better results. 

The aforementioned discussed studies point out that combining multiple Machine learning 

models outperform a single ML model, by producing a strong model that benefits from the 

strengths of all the base classifiers it is built upon. 

2.2.1 Malware Definition 
 

Malware is an abbreviation for malicious software, that refers to any software or code that is 

specifically designed to cause harm or damage to a targeted computer system. It is designed 

by criminals to gain unauthorized access to confidential information, steal data, or extort 

money. 

Malware can be classified into various types - 

 

 
Figure 2.1 - Classification of malware [17] 

 

 
 

• Adwares are created to serve unwanted advertisements to users in many ways like 

popups, browser redirects, hyperlinks, etc on unusual pages to promote malicious or 

fraudulent products. Adware creators gain revenue from the number of visitors or clicks. 

Sometimes they act as Spyware. 

• Botnets are a network of computers which are used to carry out a number of malicious 

activities. Generally, computers that are part of a Botnet are used to perform DDoS 
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(Distributed Denial of Service Attack). They can also be used auto Render and Click on 

ads to benefit its creator. 

• Ransomware is a type of malware which used to encrypt victim computer’s sensitive 

data by strong encryptions and then demanding a ransom for decryption key. It’ is created 

in such a way that makes it impossible to decrypt the files without the decryption key. 

WannaCry is one of the famous ransomwares in modern cybercrime history. 

• Rootkits are malware whose purpose is to provide remote access of victim computer to 

the attacker without getting detected. Rootkits can further be used to disarm the victim 

computer by changing system settings and are also used to steal sensitive data. 

• Spyware is a type of malware which is used to monitor user activity without the 

knowledge of the victim. It actively monitors users' actions, records browsing history, 

search history, financial details, Bank login details, and credit card details. Keylogger is 

a subtype of spyware as it records users' keystrokes which are then sent to its makers. 

• Trojan Horse enters the user's computer by masquerading itself as a normal file and then 

performs malicious tasks set by its developer. A Trojan Horse then can be used to perform 

other malicious activities such as taking control over, downloading other malware, and in 

general compromising the computer’s security. 

• Virus is a malware that copies itself and spreads to other computers. Once it takes control, 

it spreads and replicates itself by attaching itself to other files. A Virus needs to be 

executed by the user to begin it’s actions. It can corrupt or delete system files and make 

the computer unusable. 

• Worms are similar to viruses, but they don’t need user to execute its code to spread itself. 

It can spread by exploiting network or system vulnerabilities and is designed to overload 

servers by consuming bandwidth. 



12  

 

2.2.2 Malware Analysis Phases 
 

Malware analysis can be divided into the following phases 

 
Discovery phase: The discovery phase of malware analysis is the stage where the new and 

previously unknown malware samples are identified and analyzed. One of the critical phases, 

the Discovery phase is where the malware's behavior is analysed, its purpose, and the impact it 

may have on the system. It is within this phase, that means such as static analysis, and dynamic 

analysis are used. The sample is taken either from a malware repository or identified within the 

targeted system through analysis of the process running. It can also be acquired by means of 

network traffic analysis, email attachments, and infected files. This phase is taken place within 

a safe and controlled environment to understand the behaviour of the malware. 

Forensic analysis phase: This is the phase where the analysis of a captured malware sample is 

done. The goal of this phase is to gain a deep understanding of the malware's behaviour, 

including how it enters a system, how it spreads, and what data it targets. This information can 

help analysts identify the intents of the malware, its potential source and the damage it may 

have caused. Through this analysis, the analysts get to know more about vulnerabilities in the 

system to prevent future malware infections. 

Feature extraction - The feature extraction phase of malware analysis involves identifying and 

extracting relevant features of the malware that can be used for further analysis. Later on, while 

training machine learning models, the data combined by feature extraction is used. There are 

two types of techniques which are static analysis where the binary code and metadata of the 

malware sample are analysed without executing it, and dynamic analysis where the analysis is 

done on a running sample within a controlled environment. 

In their research [16] the authors make use of multiple features obtained through static and 

dynamic malware analysis. After performing dynamic and static malware analysis in an 

automated environment, the generated reports are stored and then processed using Apache 

Spark to extract malware features. They put emphasis on various features such as File metadata, 

Packer detection, Dynamically Linked Libraries, Windows API Calls, and Registry activities, 

to name a few. 



13  

 

2.2.3 Challenges of Malware Detection 

 
 

Malware evolution rate grows exponentially which means there is so much malware that could 

not be detected and classified due to which signature-based detection failed very badly [18]. 

Then behavioural analysis was introduced, and some malware even evaded it by countering the 

traditional detection techniques. One of the most challenging hurdles it posed was when it 

started masquerading its behaviour in an analysis environment. Furthermore, A small data set 

can generate biased predictions. If the dataset doesn’t have diversity, it may not be able to train 

the models accurately with modern malware behaviour and features. Also, If the same dataset 

is used for both training and testing, the results show abnormally high accuracies which might 

be an indicator of overfitting. To fix this, separate datasets must be used for training and testing 

[19]. 
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Chapter 03: IMPLEMENTATION 

 

 

 

3.1 DESIGN OF THE PROJECT 

 
The Malware Analysis project follows a structured development process, which is divided into 

several key stages. The primary objective is to develop a system that can accurately classify 

files into malware and benign by behavioural analysis. This chapter provides an overview of 

the methodology used with a focus on the dataset used, the flowgraph of the project, and the 

evaluation of the results. 

3.1.1 Dataset 

 
The dataset is a behavioural analysis of Android files in a controlled environment that contains 

system calls made by malware and benign processes. It contains the observation data of over 

100,000 Android files and 35 features which is present in the form of a CSV file. The feature 

columns include Process ID, and Classification Label, and the rest columns are system call 

columns, which represent the different types of system calls made by the processes. The system 

calls provide an insight into how the malware executes its code on the victim machine. The 

columns provide detailed information about the processes, including the number of child 

processes that were spawned, the amount of CPU and memory resources that were used and the 

number of system calls that were made. 

The dataset [20] used contains a total of 100,000 data points corresponding to different processes 

and the details associated with them. The files contained in the dataset are Android files and are 

studied in a controlled environment and analysed by Cuckoo Sandbox. The dataset features are 

as follows: 

1. Hash: Hash column contains SHA256 hash value. The hash function has a special feature 

that makes it one of the most essential tools to ensure integrity across the internet. Basically, 

a hash function produces a fixed and unique output for a given input. Given the input isn’t 

changed or altered; the generated hash is exactly the same. The hash value can be used to 

uniquely identify the files, and it provides a way to verify the integrity and authenticity of 



15  

 

the files. By computing the hash value of an suspected file, in some cases, we can directly 

compare it to a database of well-known and updated malicious hashes to determine the file 

type and intent. This process is called Hash-Based Detection and is the first basic step in 

malware detection. 

2. Millisecond: The millisecond column in the dataset represents the time stamp of each system 

call made by the processes in milliseconds. It is calculated from the time the system has 

started and the time when the call has been made. The timestamp is provided in 

sequential/chronological order of system calls made by each process. Unusual system call 

times can be a factor through which checkers can find anomalies. The Significance of this 

parameter is that it can be used to correlate the system calls made by a process with other 

significant events or activities happening on the system. 

3. Classification: The Classification column depicts the category of each process. The entire 

dataset is divided into two possible values, 1 and 0, where 1 means the process is malware 

and 0 denotes that it is a benign process. The classification column is critical because it is 

used as the target variable when training the ML models for Malware detection. Its relevance 

is solely for the researchers to train and evaluate ML models for malware detection. 

4. State: The state column in the dataset shows the current state of the process at the time of 

the system call. In an operating system, Linux in our case, a process can have many different 

states, including running, sleeping, stopped and terminated. The state column provides us 

with the behaviour of the processes and their interactions with the OS. Malware present can 

execute their codes on different occasions say an event, and for the time being they can 

disguise as a sleeping process, etc. If the process is in a "running" state then we can determine 

that the process code is being executed on the CPU. For example, '0' as a state indicates that 

the process is in the TASK_RUNNING state. '4096' Process state means that the process is 

in the TASK_DEAD state. 

5. usage_counter: Theusage_counter column in Linux/Unix-based Systems shows the number 

of times a process has been used. It is a metric that can help us in tracking the frequency with 

which a process is executed which in turn could help us in identifying processes that are 

executed more frequently than others. Although malware developers try masquerading the 

executable code into some benign process and keep the actual usage_counter of malware 

low, still the param can help us in identifying the frequency. 
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6. dynamic_prio: The 'dynamic_prio' column in the dataset refers to the dynamic priority of 

the process. In operating systems such as Linux, dynamic_prio reflects the process's current 

scheduling priority for execution on the CPU. In our dataset, the dynamic priorities 

mentioned are the ones that were at the time the analysis data was taken. The lower the value, 

the higher the priority. 

7. static_prio: The static_prio column in the dataset represents the static priority of the process. 

Static priority is a fixed priority value assigned to a process that remains constant throughout 

the process’ lifetime. It can be used to analyze the scheduling behaviour of the system and 

to identify the processes that may be using resources more who might be causing 

performance issues. 

8. normal_prio: The normal_prio refers to the priority of the process without considering any 

priority inheritance. It is the base priority of the process and determines the order in which 

the scheduler chooses to run the process. If a process has a higher normal_prio, it will be 

executed before a process with a lower normal_prio. 

9. policy: Policy refers to the scheduling rules that a process uses. There are several different 

scheduling procedures, including Round Robin, Completely Fair System, and Real-Time. 

The policy field contains integer values, such as 0 and 1, to indicate which policy the process 

is using. 

10. vm_pgoff: The offset of the process memory page in the virtual memory area of the process 

is contained in the dataset's vm_pgoff column. By dividing the value of "vm_pgoff" by the 

page size, it is used to determine the address of the page in the memory. This specific feature 

aids in our analysis of process memory consumption patterns. A researcher can determine 

how a process is allocating and managing memory by looking at the values in this column. 

The more memory it uses, the larger the vm_pgoff. 

11. vm_truncate_count: The vm_truncate_count is a metric that tells us how many times a 

process's virtual memory has been reduced in size. It is a useful metric for understanding 

how a process is utilizing its virtual memory. A high-value count may show that a process 

is repeatedly using and truncating the memory, which might be an indicator of poorly 

optimized and inefficient use of the memory. 

12. task_size: the task_size column in the dataset represents the virtual memory size of the 

process. Adding more to the previous points about Virtual memory, the virtual memory size 

of a process includes the memory used by the process itself and by any shared libraries it 
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uses. The Task_size feature provides us with information about the virtual memory that is 

allocated to a particular process at a given time. The value is measured in KiloBytes (KB). 

13. cached_hole_size: cached_hole_size column in the dataset refers to the amount of memory, 

in kilobytes the process is allocated but is currently not in use. It shows the size of the hole 

of the process's cached memory. Cached data is stored in memory by the system to be 

accessed quickly in future if needed. This Metric helps us in understanding the memory 

usage patterns of a process and identify inefficiencies in the program. 

14. free_area_cache: free_area_cache column in the dataset represents the amount of memory 

in KB, that is available in the memory management's free memory cache for a specific 

process. Based on this metric one can know how much memory is available to the kernel for 

allocation if in case a process requests memory. Generally, the information received by this 

metric is used to optimize the performance of a system. In general, the higher the value of 

this metric, the more memory is available for allocation. 

15. mm_users: the mm_users column in the dataset provides information regarding the number 

of users of the memory management structure associated with the process. In the Linux 

kernel, each process has its memory management structure, and the structure contains 

information about the process's memory mappings, page tables and other details related to 

memory management. A high value of mm_users may indicate that a process is using a lot 

of memory or that there are multiple references to the same memory structure in others. 

16. map_count: map_count column in the dataset refers to the number of virtual address space 

areas that are currently mapped by the process. Each process in Linux during execution has 

its own virtual address space that it uses to store its code and data. This particular metric 

provides us with an insight into the amount of virtual address space that is currently being 

used by the process. 

17. hiwater_rss: the hiwater_rss column represents the peak resident set and the size of the 

process in KB. It shows the highest amount of memory a process has held in the RAM and 

how much physical memory is being used by it during its lifetime. 

18. total_vm: the total_vm metric here represents the total size of the Virtual memory for a 

given process. In Linux/Unix systems, the total_vm column is used to keep track of the 

virtual memory used by each process. Used by the kernel of the Operating system, if a 

process exceeds a set limit, the kernel then terminates the process or takes action to prevent 
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the system from running out of available memory. Abnormally high usage of memory can 

be a sign of malicious activity which can be analysed using this metric. 

19. shared_vm: shared_vm column in the dataset represents the total size of the shared memory 

in bytes that is used by the process. Shared memory is the memory part that can be accessed 

by multiple processes. For example, malware may inject its code and masquerades itself in 

a benign process, in such cases, the shared_vm metric may show unusually high amounts of 

shared memory being used by a seemingly benign process. 

20. exec_vm: the exec_vm metric in the dataset is indicating the size of the process's virtual 

memory area that is used for the executable code. When the malware is executing its code, 

the executable code's virtual memory area would increase and therefore it can be used to 

detect the presence of malware in the system. If the exec_vm is suddenly increasing without 

any particular event, then it is an indication of malware. 

21. reserved_vm: the reserved_vm metric represents the total size of virtual memory reserved 

for the process. Oftentimes, Malware uses process injection to allocate virtual memory 

within another process's address space for execution. How this helps is that the reserved_vm 

metric can identify abnormal memory allocation that could potentially indicate the presence 

of malware. Along with other metrics, Reserved_vm can be used to determine the presence 

of malware. 

22. nr_ptes: the nr_ptes metric is an abbreviation of the Number of page table entries. This 

metric indicates the number of page table entries used by a process. Since malware has 

unusual memory usage, they are bound to have significantly high page table entries, which 

indicates that it is trying to evade detection techniques by manipulating its memory 

manipulation. Hence nr_ptes aids us in finding suspicious behaviour. 

23. end_data: the end_data metric used in the dataset indicates the virtual address right after the 

end of the data segment of the process. To avoid detection, malware may try to modify or 

execute code outside of their assigned memory segments, including the data segment. Thus 

any suspicious activity beyond the authorized limits may aid the malware identification 

process. 

24. last_interval: the last_interval column in the dataset shows the time interval between the 

last time the process was scheduled and the current time. Malware may execute very actively 

and this metric may help us filter out some processes which are scheduling unusually high 

as they may have very short last_interval values. 
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25. nvcsw:nvscw means many voluntary context switches, performed by the process. Context 

switching is a scenario where the Kernel of the operating system, Linux in our case, switches 

the CPU from executing one process to executing another. A voluntary context switch may 

occur when a process explicitly calls for example the 'sleep()' command. This may be useful 

because some malware may use this command to avoid detection while the antivirus is 

actively working and usually may have a high nvscw count. Along with other aspects, nvscw 

can help us in identifying anomalies. 

26. nivcsw: nivcw stands for the number of involuntary context switches, which measure the 

number of times a process has been forced to give up the CPU before it was finished with 

its time slice. A malware running may have high context switches which is a sign that a 

process is causing a lot of involuntary context switches. a high nivcsw value may be a sign 

that the process is taking up resources and causing starvation for other processes. 

27. min_flt: min_flt means minor page faults. A minor page fault occurs when a process tries 

to access a page memory that is not currently loaded into the physical memory and may need 

a page fault to retrieve it from the disk. A malware that tries to hide its activity by using 

multiple memory pages and rapidly switching between them thus increasing the probability 

of page faults and increasing the min_flt. 

28. maj_flt: maj_flt means major page faults that have occurred for a process. A major page 

fault is an expensive operation that requires the CPU to fetch the missing memory page in 

the memory from the disk. Unusually high major page faults for a process can be an 

indication of malicious activity. Malware may try to load a large amount of data from a hard 

disk or execute malicious code that requires a lot of memory, thus increasing the major page 

fault for the process. Malware may process itself into small chunks in the memory while 

attempting to execute a large amount of code. This may lead to higher page faults new pages 

are loaded from the disk continuously. 

29. fs_excl_counter: fs_excl_counter is a metric that represents the count of times the process 

has been granted exclusive access to a file system object. If malware attempts to manipulate 

or modify important system files, this metric may come in handy as it may result in the 

process ( malware in our case) holding exclusive excess to these files. By monitoring 

fs_excl_counter, security analysts can detect abnormal behaviour such as processes gaining 

exclusive access to important system files, which can then be further investigated. 
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30. lock: The lock metric refers to the number of locks held by any process. A lock is used by a 

process to prevent multiple processes from accessing a shared resource simultaneously, thus 

avoiding race conditions. Malware may often use locks to control access to resources or to 

prevent other applications/processes from interfering with its operations say an antivirus. A 

process with a high number of locks is suspicious. If along with other suspicious activities, 

a process has a high lock count, it is worth investigating. 

31. utime: utime is a metric that shows us the amount of CPU time consumed by a process. 

Malware that performs extensive actions, may consume a high amount of user CPU time. A 

process with high utime value ( in jiffies in Linux kernel) which actually is running for a 

short duration, might come as a suspicious activity as this may be a signal for high 

computation being done by CPU for the process. 

32. stime: The stime metric refers to the number of times ( in jiffies) that a process has been 

scheduled in kernel mode. If a process has a high stime value relative to utime, this may 

indicate that process is spending a lot of time in the kernel mode or performing actions on a 

system level, performing malicious activities. If multiple processes have a high stime this 

may indicate a swarm of malware that has infected the entire system. 

33. gtime: the gtime metric in the dataset refers to the cumulative time spent by all the threads 

in the process executing in the kernel mode. A process that is consuming a high amount of 

kernel resources, may have high gtime. If in case a seemingly benign process has a high 

gtime, it is concerning as it may be performing unauthorized activities on the kernel level. 

Although one cannot declare a process as malware based on gtime alone, it surely can be a 

factor. 

34. cgtime: cgtime is a short form of cumulate group time or cumulative system CPU time of a 

process in Jiffies (1/100th of a second) spend on executing and waiting for other processes 

to complete. It includes both kernel and user-space execution time. A process with a sudden 

spike in cgtime over a short period of time could indicate a sign of malicious activity. 

35. signal_nvcsw: the signal_nvcsw metric indicates the number of times a process was context- 

switched involuntarily due to a signal being received. This is a very important metric for 

malware detection as a process that is trying to evade detection by constantly interrupting its 

execution with signals. Malware may have an abnormally high number of context switches 

by signals. 
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3.1.2 Flowchart of the Major Project 

 
First, the dataset is imported and contains information on various malicious and benign 

software instances. The initial data-processing is done on the data, with the most important one 

being mapping data entries into malware and benign. This enabled us to convert this 

classification metric into a numeric form where malware is given 1 and benign is given. The 

data is then shuffled randomly. To evaluate the performance of models on unseen data, the next 

step is to split the training data into training and testing sets. By using an entirely unseen set of 

testing data, we can get an estimate of the model's future performance on new data. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

Figure 3.1: Flowchart of the project 

 

 

 
Then four different Machine learning models, a Random Forest classifier, Support Vector 

Machine, and Logistic Regression along with a Linear regression model are trained on the 

training dataset. Their performances are evaluated using metrics such as Accuracy, Precision, 

F1 score, etc. 
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Additionally, A Voting Classifier is trained on the data. The three base classifiers selected for 

the voting classifiers include the Random Forest classifier, Support Vector Machine, and 

Logistic Regression. The training dataset is sub divided into four subsets and these base 

classifiers are trained on in a loop on each subset of the training data. A list of estimators is 

created, which contained the trained base classifiers. The voting classifier is then created which 

takes the estimators list as training input to combine the predictions of individual classifiers. 

Then the individual classifiers are trained on the same training data. The voting classifier is 

then tested on the testing data along with the individual classifiers and the performance of each 

individual classifier is compared to that of the voting classifier. 

 
 

3.2 TRAINING AND TESTING OF MODELS 

 
This section of the report discusses the models implemented in this project along with the 

motivation to choose these particular models and the parameters taken for each one of them. 

The detailed explanation for each model is mentioned below: 

3.2.1 Random Forest Classifier 

 
To learn what a random forest classifier is, we need to learn what a decision tree is. To put it in 

normal terms, a decision tree is a model which uses a tree-like model of decisions and decides 

an outcome. In our case, based on the dataset it is trained on, it decides during testing that 

weather if a data entry is malware or benign. A Random Forest classifier is an algorithm that 

has a large number of decision trees. The predictions made by the individual trees are combined 

to provide a final prediction. Each decision tree is trained on a random subset of the training 

data and a random subset of features, which improves generalization. 
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Figure 3.2: Depiction of a random forest classifier. [22] 

 

 

 
In the context of malware analysis, a random forest classifier can be used to classify dataset 

entries as either malware or benign based on features present in the training data. If the model 

is trained on a large dataset of known malware and benign, it can learn to identify patterns and 

features that differentiate both classes and use this knowledge to classify the test data provided 

into the aforementioned two classes of malware and benign. Random forest classifiers have 

several advantages for malware analysis, as they are relatively fast, and scalable even on large 

datasets with many features. 

Implementation of the Random Forest classifier begins by defining a set of parameters to try 

for the model including the number of parameters like n_estimators, max_depth, 

min_samples_split, min_samples_leaf. Each one of these parameters is important for the model 

to work. 

To give a basic explanation, n_estimators define the number of trees in the forest, max_depth 

is the maximum depth of the tree, min_samples_split is the number of samples required to split 

an internal node, min_samples_leaf is the minimum number of samples required to at a leaf 

node. 
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To fine-tune the model, one can use GridSearchCV to find the best combination of input 

parameters for the Random Forest classifier by running a number of combinations of the 

parameters provided in the parameters dictionary. Once the best possible combination is found, 

it is then fed into the final random Forest classifier which outputs the best possible accuracy. 

3.2.2 Support Vector Machine model 

 
Support Vector Machine is a machine learning algorithm that is used for classification and 

regression tasks. To make predictions, it finds the optimal decision boundary called hyperplane 

that maximizes the margin between the two classes in the dataset. To keep it simple, SVM finds 

a line separating the two classes in the dataset, like in our case malware and benign, then when 

new data is to be classified, it is classified into either group based on their features. 

As we just discussed, SVM can make really accurate predictions when it comes to binary 

classification. One of the best features of SVM is that it can work with imbalanced datasets. An 

example of an imbalanced dataset can be a dataset containing more benign files than malware 

and vice-versa. It also works efficiently while handling large and complex datasets. All these 

and more characteristics make SVM one of the most powerful tools for detecting new and 

unknown types of malware just based on their behaviours and features. 

 

Figure 3.3: Scientific diagram of SVM. [23] 
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We implemented the SVM model using the Scikit-learn library in Python. The model uses the 

SVM algorithm with a linear kernel and a regulation parameter C set to 1.0. Roc_auc_score 

function from sklearn's metrics library is used to calculate the accuracy of the model. 

3.2.3 Logistic Regression Model 

 
Logistic Regression is a binary classification algorithm that predicts the probability of an input 

belonging to two possible categories. To explain it, Logistic Regression is like a Yes or No 

machine. Logistic regression in our case would classify a sample input into benign or malware. 

The model uses a math formula to calculate the probability. Logistic Regression works by 

modelling the relationship between the input variables and the binary output. It is a supervised 

learning algorithm and requires labelled training data to train and then estimate the model 

parameters. 

 

Figure 3.4: Logistic Regression Sigmoid Function Curve. [24] 

 

 

 
Logistic Regression in the context of Malware Analysis can be used to build a model which 

predicts whether a given file is malicious or benign. It trains on many features such as system 

calls,  size,   type   etc,   and   calculates   the   probability   of   the   file   being   malicious.   

In the research, Logistic Regression using the SkLearn library in Python. It begins by importing 

the classes and then instantiating a Logistic Regression object with a regulation parameter C of 

0.2. The Regularization parameter C helps us to prevent overfitting by shrinking the model 



26  

 

coefficients towards zero. The Model is then trained on the training data and then makes 

predictions on test data. The accuracies are then calculated and a ROC score is generated. 

3.2.4 Linear Regression Model 

 
Linear Regression is a regressor type model that predicts the value of a variable based on one 

or more independent variables. It helps us in understanding the relationship between the 

dependent variable and the independent variables by finding the best-fit line that explains the 

variation in the dependent variable. To get the basic idea behind linear regression is to find the 

line that minimizes the distance between the predicted values and the actual values of the 

dependent variable. The aforementioned line is called the regression line which is defined by 

the equation y=mx+b. where y is the dependent variable and x is the independent variable, m is 

the slope of the line and b is the y-intercept. Here, to find the best values for m and b, the 

regressor uses an Ordinary least squares (OLS) method. 

 

 
Figure 3.5: Best fit line as devised under linear regression 

 

 

 
In the context of Malware analysis, a Linear Regression model can be used to analyse the 

relationship between different variables and to predict whether a file is malware or benign. 
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To implement linear regression, we use sklearn's Python library. The necessary classes are 

imported and then a Linear Regression object is created which is then fitted with the training 

data and is then fed test data to make predictions. The accuracy is calculated using the R-squared 

value, which is a statistical measure that represents the proportion of variance in the dependent 

variable that is explained by independent variables. 

3.2.5 Ensemble Learning 

 
Ensemble learning is a machine learning technique that combines the prediction of multiple 

models to improve the overall performance of the system. Ensemble learning is mainly of two 

types: Bagging and Boosting. 

Bagging: Bagging is a method of creating multiple models, each of which is trained on a 

random subset of the training data. The output of the base classifiers are averaged to find final 

prediction. 

Boosting: In boosting multiple ML models are created and each of them are trained on a 

modified version of the training data. Boosting reduces the bias of the model. 

 

 

 

 
Figure 3.6: Ensemble learning voting model depiction 
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Since malware is a constantly evolving threat, it can be difficult to build a model that is accurate 

over a long period of time. By combining the output of multiple models, ensemble learning can 

help us create a more robust system of prediction. Each base classifier used in Ensemble 

learning has its own strength and weaknesses, but combining the outputs of all the models helps 

us in creating a more accurate and reliable system. 

To implement ensemble learning, we decided to use three different base classifiers namely 

Random Forest, K-Nearest Neighbor, and Logistic Regression. We decided to split the data into 

training and testing subsets and then the classifiers were created and trained on different subsets 

of the training data. We created subsets to improve the accuracy of the predictions and reduce 

overfitting. 

A voting Classifier is created which combines the prediction of all three classifiers. This is done 

using VotingClassifier() which takes in the list of tuples where each tuple contains a unique 

name and a classifier object. An estimator list is created by looping through each subset of 

training data and creating a new classifier object for each subset. 

When the voting classifier is trained, the individual classifiers are evaluated on the test set along 

with the voting classifier to see how well they performed, and their accuracy is compared. 
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Chapter 04: RESULTS 
 

 

 

 

4.1 DISCUSSION 

 
On the Internet, various forms of malware are distributed. Every computer connected to the 

Internet is vulnerable to Malware infection. To fight this vulnerability, it is crucial to practice 

information security practices. And with the growing density of the cyber world, it is important 

to automate the process of Malware detection. For this, machine learning is very crucial to be 

optimized for the task. 

In the project, we used different machine learning algorithms whose results varied in a range 

from 54% accuracy to 95% for different models. 

4.2 EVALUATION 

 
Evaluation is one of the crucial steps in machine learning projects that involves assessing the 

performance of a trained model. The purpose of this step is to see how well a model is making 

predictions on new data. 

The evaluation process in our project is done by splitting the available data into training and 

testing data. The models are initially trained using the training data, and their performance is 

then assessed using the testing data. Evaluation is a key stage since it gives us important 

knowledge about the weaknesses, biases, and overfitting that the models may be experiencing. 

Utilising criteria like accuracy, precision, recall, and F1-score, we assessed the performance. 

The evaluation procedure makes use of a variety of metrics which are: 

 
Accuracy: Accuracy is determined by dividing the proportion of cases that were properly 

predicted by the overall number of instances. The accuracy calculation formula is 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
(𝑇𝑃 + 𝑇𝑁) 

 
 

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 

𝐹𝑁) 



30  

 

Precision: We divide the number of real positive values by the total number of expected 

positive values when calculating precision. The precision calculation formula is 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

 
 

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 
 

Recall: The percentage of genuine positives and the overall number of actual positives are 

found when computing the recall score. The Recall formula is 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = 

𝑇𝑃 

(𝑇𝑃 + 

𝐹𝑁) 
 

F1 Score: This is the harmonic mean of precision and recall, and it provides a balanced measure 

of both parameters. The formula for calculating F1 Score is 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 
𝐹1 = 2 ∗ 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 

Area Under the Receiver Operating Characteristics (ROC) Curve (AUC) Score: This 

tells us how effective the model is in predicting the values. The higher the ROC AUC, the 

better the model's performance at classifying between the positive and negative classes. 

Confusion matrix: A matrix that visualize the number of true positives, false positives, true 

negatives, and false negatives. These parameters of the confusion matrix are used to evaluate 

other metrics such as precision, recall and f1 score etc. A confusion matrix for our project may 

look like this 
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Table 4.1: Confusion matrix illustration. 

 

True Positive (TP): 

Actual: Malware 

ML model predicted: Malware 

Values: 

False Positive (FP): 

Actual: Benign 

ML model predicted: Malware 

Values: 

False Negative (FN): 

Actual: Malware 

ML model predicted: Benign 

Values: 

True Negative (TN): 

Actual: Benign 

ML model predicted: Benign 

Values: 

 

 

Mean Squared Error (MSE): Measures the average of the squared differences between 

predicted and actual values. 

 
𝑁 

1 
𝑀𝑆𝐸 =
 
∑ 

𝑁 
𝑖=1 

 

(𝑦𝑖 

 
− 𝑦 𝑖)2 

 

Mean Absolute Error (MAE): measures the average of the absolute differences between 

predicted and actual values. 

∑𝑛 |𝑦𝑖 − 𝑥𝑖| 
𝑀𝐴𝐸 =   𝑖=1  

𝑛 
 

Root Mean Squared Error (RMSE): This is the square root of MSE and gives a measure of 

how close the predicted values are to the actual values. Smaller the value the better. 

 

∑𝑁 (𝑋𝑖 − 𝑥̂)2 
𝑅𝑀𝑆𝐷 = √

  𝑖=1 𝑖 
 

𝑁 
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4.2.1 Visualized Results 

 

Table 4.2: Evaluation Metrics of Models. 
 

 

Metrics Random Forest (%) SVM (%) Logistic Regression (%) 

Accuracy 94.55 94.62 93.75 

Precision 99.33 94.00 92.98 

Recall 89.82 95.46 94.79 

F1 Score 94.34 94.62 93.74 

ROC-AUC Score 94.60 94.62 93.74 

TP Rate 89.82 95.46 94.79 

FP Rate 0.62 6.23 7.31 

FN Rate 10.10 4.54 5.21 

 

 

Table 4.1 depicts the evaluation metrics (i.e., Accuracy, Precision, Recall, F1 score, ROC 

Score, TP rate, FP rate, FN rate) of the models that are used in the analysis. Table 4.2 shows 

the evaluation scores of the linear regression model i.e., MSE, MAE, RMSE. 

Table 4.3: Evaluation Metrics of Linear Regression Model. 
 

 

Evaluation Metrics Linear Regression Model 

Accuracy achieved 55.276% 

Mean Squared Error (MSE) 11.32% 

Mean Absolute Error (MAE) 28.87% 

Root Mean Square Error (RMSE) 33.64% 
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Figure 4.1: Confusion matrix of random forest. 
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Figure 4.2: Confusion matrix of SVM. 
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Figure 4.3: Confusion matrix of logistic regression. 

 
 

Fig. 4.1, 4.2, and 4.3 are the visual representation of the confusion matrices for the classifiers. 

Fig. 4.1 depicts the confusion matrix for the random forest classifier, followed by the Confusion 

matrix of SVM in Fig 4.2, and finally the confusion matrix of Logistic regression in Fig 4.3 



35  

 

4.2.2 Accuracy of the Base Classifiers 
 

 

 

 
Figure 4.4: Accuracies of the Models 

 
 

Fig. 4.4 is the visual representation of the prediction accuracies for the classifiers Random 

Forest, SVM, Logistic Regression and Linear Regression. The figure clearly shows that among 

the base classifiers, SVM shows the highest prediction accuracy of 94.61% followed by 

Random Forest at 94.60% and Logistic Regression and Linear Regression at 93.73% and 

55.27%. One of the reasons for the lower accuracy of Linear Regression is that, unlike 

classifiers which are excellent in binary classification tasks, Linear Regression is incapable of 

outputting binary outputs. It is excellently suited for cases where output is a continuous 

numerical value for example predicting the prices of houses, or revenue prediction etc. 



36  

 

 

  
 

 

Figure 4.5:  Recall Score comparison Figure 4.6: F1 Score comparison 
 

 

 

Figure 4.7:  Precision Score comparison Figure 4.8: ROC-AUC Score comparison 

 
 

Fig. 4.7-4.11 are the evaluation metrics of classifiers visualized. The red bar represents the 

scores of Random Forest, the blue one represents the scores of SVM and the Green one 

represents the score of Logistic Regression, Figure 4.5 are the Recall score of the classifiers 

with SVM having a Recall score of 95.46%, followed by Logistic Regression at 94.79%. and 

random forest at 89.82%. Figure 4.6 represents the F1 score of the classifiers where SVM has 

the highest score of 94.62% followed by Random Forest at 94.34% and then Logistic regression 

at 93.74%. Figure 4.7 represents the Precision score visualization for the classifiers where the 
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classifier with the highest precision score is Random Forest at 99.33% followed by SVM at 

94% and logistic regression at 92.98%. Figure 4.8 shows the ROC score comparison for the 

classifiers, where SVM has the highest score of 94.62%, followed by Random Forest at 94.34% 

and Logistic Regression at 93.74%. 

 

 

 
Figure 4.9:  TPR comparison of Classifiers Figure 4.10: FPR comparison of Classifiers 

 

 
 

 

 
Figure 4.11: FNR comparison of the Classifiers 

 
 

Fig 4.9 is the representation of TPR of the classifiers where SVM has the highest true positive 

rate of 95.46% followed by Logistic regression at 94.79% and Random Forest at 89.82%. Figure 
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4.10 represents the False positive rate for the classifiers where Random Forest excels at 0.62% 

followed by SVM at 6.23% and logistic regression at 7.31%. Figure 4.11 is the visual 

representation of the False negative rate of the classifiers, where FNR of Random Forest, SVM 

and logistic regression is 10.10%, 4.52% and 5.21% respectively. 

4.2.3 Accuracy of the Voting Classifier 
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Figure 4.13: Accuracies of Ensemble learning model and its Base Classifiers 

 
 

Table 4.3 shows the evaluation metrics of the Ensemble learning classifier when compared to 

the base classifier. It is clearly shown that the Voting classifier has higher scores when 

compared to the base classifiers. Figure 4.13 is the visual representation of the evaluation 

metrics of all three base classifiers compared to the voting classifier. We can clearly see that 

ensemble learning increases the performance when compared to the base classifiers, but the 

score is slightly better than the base classifiers. One of the reasons can be that the base classifiers 

are already very diverse and highly accurate, or the high degree of randomness in the data. 
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Table 4.3: Accuracies of Ensemble learning model and its base classifiers 
 

 

Classifiers Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Random 

Forest 

94.01 94.69 94.27 94.20 

SVM 94.62 94.64 94.62 94.62 

Logistic 

Regression 

93.75 93.77 93.74 93.75 

Voting 

Classifier 

95.74 94.85 94.93 94.74 
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Chapter 05: CONCLUSION 
 

 

 

 

 

5.1 CONCLUSION 

 
In conclusion, this project provided an opportunity to get hands-on experience in malware 

detection and machine learning. The project was made possible by the use of publicly accessible 

datasets using well-known classifiers. The dataset used in the project helped in training four 

different classifiers and a voting classifier to achieve the maximum possible prediction 

accuracy. 

Overall, the results demonstrate the effectiveness of machine learning when it comes to malware 

analysis and detection by behavioural analysis. This project provides a foundation for future 

research and development of more sophisticated models for malware detection and analysis in 

Android systems. 

5.2 APPLICATION OF MAJOR PROJECT 

 
There are several practical applications that can be used, some of these are as mentioned below: 

 

• Malware Detector: Increasing the scope of the project, a malware detector can be designed 

to work on real-time data. 

• Anti-viruses: Anti-virus software is quite popular among computer enthusiasts as they can 

work on a variety of domains, including the internet, local, etc. An Anti-virus is an even 

more powerful version of a Malware Detector which can perform multiple tasks. 

• Reverse engineering Malware: Using analysers like these can be used to study malware’s 

characteristics and also learn how malware masquerades within the tasks. 

 

 
 

5.3 LIMITATIONS 

 
• The biggest limitation of the project was a lack of diverse and representative datasets. 

The accuracy and reliability of malware prediction depend largely on the quality and 
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diversity of the dataset used for training the models. In our case, the dataset caused 

overfitting because of the low-quality dataset. 

• Overfitting is another limitation where a model learns to fit the training data too well 

and becomes overly sensitive to noise and outliers. 

• Evolving Malware: Malware is constantly evolving and adapting to new security 

measures. Newer malware can render the current prediction models obsolete. 

5.4 FUTURE WORK 

 
• This project has provided us with valuable information in the domain of Cyber security. 

It opens the doors for research in the aforementioned field as a domain. This small 

project helped in building the fundamentals of Machine learning and malware analysis. 

• Malware analysis can be used to improve the effectiveness and accuracy of anti-viruses 

and anti-malware software. 

• This project can lay grounds for malware research, as one of the critical steps involved 

in malware analysis is threat analysis through static and dynamic analysis. Malware 

research can help in strengthening our countermeasures for cyber threats. 
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