
MALWARE ANALYSIS USING MACHINE LEARNING

Major project report submitted in partial fulfilment of the requirement

for the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

GAUTAM GUPTA (191311)

UNDER THE SUPERVISION OF

Dr. Deepak Gupta

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology, Waknaghat, Solan-

173234, Himachal Pradesh

i

DECLARATION

I hereby declare that this project has been done by me under the supervision of (Dr Deepak

Gupta, Associate Professor, Deptt. Of CSE & IT), Jaypee University of Information

Technology. I also declare that neither this Project nor any part of this Project has been

submitted elsewhere for the award of any degree or diploma.

Supervised by:

Dr. Deepak Gupta

Associate Professor

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology

Submitted by:

Gautam Gupta - 191311

Computer Science & Engineering Department Jaypee University of Information Technology

ii

CERTIFICATE

This is to certify that the work which is being presented in the Project report titled “Malware

Analysis using Machine Learning” in partial fulfilment of the requirements for the award of

the degree of Bachelor of Technology in Computer Science & Engineering and submitted to

the Department of Computer Science & Engineering, Jaypee University of Information

Technology, Waknaghat is an authentic record of work carried out by “Gautam Gupta

(191311)” during the period from August 2022 to May 2023 under the supervision of Dr.

Deepak Gupta, Department of Computer Science and Engineering, Jaypee University of

Information Technology, Waknaghat.

(Student Signature)

Gautam Gupta, 191311

The above statement made is correct to the best of my knowledge.

(Supervisor Signature)

Dr Deepak Gupta

Associate Professor

Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat

iii

PLAGIARISM CERTIFICATE

iv

ACKNOWLEDGEMENT

First, I express my gratitude to god who provided me with the courage and fortitude to complete

the project.

I am grateful and wish my profound indebtedness to Supervisor Dr Deepak Gupta, Associate

Professor, Department of CSE Jaypee University of Information Technology, Wakhnaghat.

Deep Knowledge & keen interest of my supervisor in the field of "Machine Learning" to carry

out this Project. His endless patience, scholarly guidance, continual encouragement, constant

and energetic supervision, constructive criticism, valuable advice, reading many inferior drafts

and correcting them at all stages have made it possible to complete this Project.

I would like to express my heartiest gratitude to Dr Deepak Gupta, Department of CSE, for his

kind help to finish my Project.

I would also generously welcome each one of those individuals who have helped me

straightforwardly or in a roundabout way in making this project a success. In this unique

situation, I might want to thank the various staff individuals, both educating and non-

instructing, which have developed their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patience of my parents.

Gautam Gupta

191311

v

TABLE OF CONTENTS

DECLARATION i

CERTIFICATE ii

PLAGIARISM CERTIFICATE iii

ACKNOWLEDGEMENT iv

TABLE OF CONTENTS v

LIST OF FIGURES vii

LIST OF TABLES viii

LIST OF ABBREVIATIONS ix

ABSTRACT xi

Chapter 01: INTRODUCTION 1

1.1 INTRODUCTION 1

1.2 PROBLEM STATEMENT 2

1.3 OBJECTIVES 3

1.4 METHODOLOGY 3

1.5 ORGANIZATION 4

1.5.1 Python 4

1.5.2 NumPy “Numerical Python” 4

1.5.3 Pandas (Python data analysis package) 5

1.5.4 Sklearn 5

1.5.5 Google Collaboratory 5

1.6 DELIVERABLES OF THE MAJOR PROJECT 6

Chapter 02: MAJOR PROJECT SDLC 7

2.1 FEASIBILITY STUDY 7

2.2 LITERATURE SURVEY 7

2.2.1 Malware Definition 10

vi

2.2.2 Malware Analysis Phases 12

2.2.3 Challenges of Malware Detection 13

Chapter 03: IMPLEMENTATION 14

3.1 DESIGN OF THE PROJECT 14

3.1.1 Dataset 14

3.1.2 Flowchart of the Major Project 21

3.2 TRAINING AND TESTING OF MODELS 22

3.2.1 Random Forest Classifier 22

3.2.2 Support Vector Machine model 24

3.2.3 Logistic Regression Model 25

3.2.4 Linear Regression Model 26

3.2.5 Ensemble Learning 27

Chapter 04: RESULTS 29

4.1 DISCUSSION 29

4.2 EVALUATION 29

4.2.1 Visualized Results 32

4.2.2 Accuracy of the Base Classifiers 35

4.2.3 Accuracy of the Voting Classifier 38

Chapter 05: CONCLUSION 40

5.1 CONCLUSION 40

5.2 APPLICATION OF MAJOR PROJECT 40

5.3 LIMITATIONS 40

5.4 FUTURE WORK 41

REFERENCES 42

vii

LIST OF FIGURES

Figure No. Description

1.1

2.1

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Types of malware

Classification of malware

Flowchart of the project

Depiction of a random forest classifier

Scientific Diagram of SVM

Logistic Regression Sigmoid Function Curve

Best fit line as devised under linear regression

Ensemble Learning Voting Model Depiction

Confusion Matrix of Random Forest

Confusion Matrix of SVM

Confusion Matrix of Logistic Regression

Accuracies of the Models

Recall Score comparison

F1 Score comparison

Precision Score comparison

ROC-AUC Score comparison

TPR comparison of Classifier

FPR comparison of Classifiers

FNR comparison of the Classifier

Accuracies of Ensemble Learning Model and its base

Classifiers

viii

LIST OF TABLES

Table No. Description

4.1

4.2

4.3

4.4

Confusion matrix illustration

Evaluation Metrics of Models

Evaluation Metrics of Linear Regression Model

Accuracies of Ensemble Learning model and its Base Classifiers

ix

LIST OF ABBREVIATIONS

Numpy Numerical Python

SVM Support Vector Machine

KNN K- Nearest Neighbors

ANN Artificial Neural Networks

Pandas Panel Data

Sklearn Scikit-learn

GPU Graphics Processing Unit

TPU Tensor Processing Unit

ML Machine Learning

APK Android Application Package

LightGBM Light Gradient-boosting Machine

PNN Probabilistic Neural Network

ROC Receiver Operating Characteristic curve

ROC-AUC Area under the ROC Curve

PE Portable Executable

OneR One Rule

VFI Voting Feature Interval

MARS Multivariate Adaptive Regression Splines

SGC Simplifying Graph Convolutional Networks

OSS Open-Source Software

DARPA Defense Advanced Research Projects Agency

API Application Programming Interface

RAM Random Access Memory

GB GigaBytes

x

CSV Comma-separated Values

CPU Central Processing Unit

SHA Secure Hash Algorithm

CFS Completely Fair Scheduler

RR Round-robin

NVCSW Number of voluntary context switches

NIVCSW Number of involuntary context switches

CNN Convolutional neural network

OLS Ordinary least squares

RELU Rectified linear activation function

TP True Positives

FP False Positives

FN False Negatives

TN True Negatives

MSE Mean Squared Error

MAE Mean Absolute Error

RMSE Root Mean Squared Error

DDoS Distributed Denial of Service Attack

xi

ABSTRACT

Malware poses a significant threat to today's infrastructure. Malware is a computer code

designed to gain unauthorized access, exploit vulnerabilities and cause overall harm to digital

systems all around the world. Today, malware poses a big threat to any country's critical

infrastructure such as banks, defense systems, stock markets, etc. Although working in the

digital space, the consequences of its actions can reflect in the physical world too. In order to

detect and prevent malware from affecting infra, many techniques such as signature-based

detection are used but with the advancements in technology, these old strategies are rendered

obsolete by ever-evolving malware threats.

Here machine learning has emerged as a powerful agent for detecting and analysing malware,

semi-automating the process on a large scale. By training algorithms on a dataset of known

malware files, Machine learning models can learn to recognize patterns and features that

distinguish malware from a legit file. Machine learning models learn constantly and evolve with

each training set, thus countering the evolving threat of malware to some extent.

This project aims to explore the application of machine learning to malware analysis. The report

first provides an overview of what malware is and how it affects infrastructure, and then it

would introduce machine learning and its potential in malware detection. By training the models

on a dataset containing malware and benign files, models would learn to analyze patterns and

features these files have and finally we evaluate the effectiveness of the machine learning-based

malware detection methods.

1

Chapter 01: INTRODUCTION

1.1 INTRODUCTION

Malware is a short form for "Malicious software" which refers to any piece of software which

is designed with harmful intent. The general purpose of malware is to find vulnerabilities within

a system and then exploit it. Generally, malware is deployed on a computer where it can exploit

the vulnerabilities and then provide the controls of the computer to the intruder. Malware may

work incognito as spyware, or in a loud way like ransomware, in both cases, giving control of

the computer to the malware and its developer.

Malware can be classified into many categories based on their roles. Some are viruses, worms,

trojan horses, ransomware, spyware and adware. Each type of malware has a unique way of

operating and infecting a device.

Figure 1.1 - Types of malware [21]

2

The history of malware dates back to the 1970s when the first computer viruses were created.

These early malware were relatively harmless and generally designed for research purposes.

However, with the rise of the Internet, malware evolved into a more significant threat. In the

late 90s and early 2000s, worms like the Melissa virus and ILOVEYOU virus caused millions

of dollars in damages [1].

The threat of malware is ever growing and today, it poses an ever-increasing threat to our

modern infrastructure. From national banking systems and military and defence systems to

regular computers, every system is vulnerable. For example, in 2017, WannaCry Ransomware

infected over 200,000+ computers around the world, causing billions of dollars in damage [2].

Another notable example of malware being used to exploit the bank is the 2016 Bangladesh

Bank heist. Allegedly the North Korea-funded Lazerous group used malware to gain access to

one of the employee's computer system and then into the mainframe computer of the bank with

careful planning where the bank was closed because of holidays, they were able to steal over

$700+ million from the bank's Federal Reserve Bank of New York account. Although most of

the money was recovered, $81 million was stolen. These hacker groups target third-world

countries and their financial infrastructures which are poorly maintained and secured and cause

hundreds of millions of dollars in heists every single year.

Despite the increasing threat of malware, many individuals and organizations continue to ignore

security practices. This ignorance stems from a lack of awareness. However, the cost of a big

heist can be far more significant than the cost of implementing security measures.

1.2 PROBLEM STATEMENT

Malware is one of the biggest threats to computer systems and networks, an ever-evolving one

with its destructive capabilities increasing every day. Therefore, studying malware analysis

using machine learning can help tackle these threats. The traditional methods of malware

detection are still powerful but they are not scalable. On a large scale, analysts cannot check

every file while malware is constantly evolving, and here machine learning comes to take the

baton of responsibility by automating the process and analysing a large amount of data and

detecting patterns in the malware to identify unknown ones. The amount of malware being

developed is growing at an alarming rate, and traditional ways of analysis are time-consuming

3

and not efficient. Machine learning can automate the process and can help speed up the process

and provide more accurate results and learn from its mistakes.

1.3 OBJECTIVES

The goals of this project are

1. To identify and understand the behaviour and capabilities of different types of malware.

2. To build machine learning models to automatically detect and classify malware with

high accuracy.

3. Improving the overall understanding of the cyber threat space and enhancing

cybersecurity practices.

1.4 METHODOLOGY

The project's methodology involves using a dataset of behavioural analysis of both malware

and benign Android applications which is created in a controlled environment. The dataset

contains system calls made by both Malware and Benign files. After pre-processing, to train

and test the models, the dataset is split into training and testing splits at the ratio of 80-20. The

training data is used to train four machine learning models: Support Vector Machine, Logistic

Regression, Random Forest, and Linear Regression. These models are chosen because they

work well for binary classification tasks like dividing unknown data into malicious and benign

types.

Following training, the performance of each classifier is compared. Then A voting classifier is

developed upon three base classifiers, Support Vector Machine, Random Forest, and Logistic

Regression. These base classifiers are trained on a loop on subsets of the training data and then

stored in an estimator list. This list is then used to train the voting classifier. Then the voting

classifier and the previously trained individual base classifiers are tested on the testing data and

their performance is evaluated and compared.

4

1.5 ORGANIZATION

To achieve the goal of malware analysis with high accuracies, the requirements to make

the project work have been mentioned below:

1.5.1 Python

Python is a garbage-collected, interactive, dynamically typed programming language.

Developed by Guido Van Rossum between 1985-1990. It is a high-level language that is used

for a variety of works including automating tasks, data analysis, etc. The features of python

have been mentioned below:

• Readability- Python was designed to be more user-friendly, and easy to code but also

allows us to make intelligent models.

• Versatility - Python is a very versatile language as it can be used for a variety of tasks.

Python helped us in creating and training machine-learning models.

• Robust variety of support libraries - Because Python is open source, the developers have

created countless helpful libraries that help in increasing the scope of usability of Python.

In our project, Libraries like Numpy, Seaborn, TensorFlow, matplotlib, and Pandas.

1.5.2 NumPy “Numerical Python”

● NumPy was developed by Travis Oliphant in 2005. It is an open-source Python library

which is used to manipulate arrays and provide other functions for working with linear

algebra, matrix operations, and the Fourier transform.

● Numpy is a Python library that handles large datasets efficiently. It has support for large,

multi-dimensional arrays and matrices.

● It provides researchers with a wide range of mathematical functions that are essential for

Machine learning tasks that may include Linear algebra, matrix evaluation, and many more

advanced mathematical functions.

5

1.5.3 Pandas (Python data analysis package)

● Pandas is an open-source Python library which was developed by Wes McKinney in 2008

in response to the need for a trustworthy and adaptable tool for doing quantitative

research. Since then, Pandas has developed into one of the most well-known Python

libraries.

● Pandas is a Python library that is used for data manipulation and analysis. It is capable of

handling and organizing large amounts of data.

● Pandas provides two classes for storing and manipulating data, The data frame and the

series.

● Pandas can be used for data cleaning, grouping, filtering, merging, etc.

1.5.4 Sklearn

● Sklearn short form for Scikit-learn is a machine learning open-source library in Python

that includes a wide range of supervised and unsupervised learning algorithms as well is

capable of pre-processing, feature extraction, model selection and evaluation tools.

● Sklearn is a library that takes the aid of other scientific computing libraries like NumPy,

SciPY, matplotlib and hence works like a charm when used along with other machine

learning tools.

● Sklearn consists of a range of supervised learning algorithms like Linear Regression,

Logistic regression, K Nearest Neighbor, Random Forest, and Support vector machines to

name a few. It also supports a range of unsupervised learning algorithms too such as

clustering, cross-validation, etc.

● Sklearn enabled us to train supervised learning algorithms like Support Vector Machine,

Logistic Regression, Random Forest, and Linear Regression in the project.

1.5.5 Google Collaboratory

Researchers and developers can write, run, and collaborate on Python code for machine learning

and data analysis tasks using Google Colaboratory (Colab), a cloud-based Jupyter Notebook

environment provided by Google. Colab offers a variety of potent tools and services, including

free use of GPUs, TPUs, and other hardware accelerators, pre-installed libraries like

6

TensorFlow and PyTorch, and integration with other Google services like Drive and Sheets.

Some benefits of using google colab are mentioned below:

• Colab is simple to set up and use, and it enables real-time collaboration between multiple

users on a single notebook.

• Free GPU Access: Colab offers free access to GPUs, which can greatly accelerate the

development of machine learning models.

• Pre-installed Libraries: TensorFlow and PyTorch, two pre-installed libraries that are

frequently used in machine learning research, are included with Colab.

• The seamless integration of Colab with other Google services, such as Drive and Sheets,

makes it simple to access and manage data.

• Reproducibility: Colab notebooks are simple to share and duplicate, which is crucial for

verifying research results and fostering openness in the industry.

1.6 DELIVERABLES OF THE MAJOR PROJECT

An application with the following key features:

● Machine Learning Models: Developed machine learning models to use them in predicting

whether a given file is malware or not.

● A comprehensive report detailing the research and findings of the project, including a

literature review, methodology, analysis and conclusion

7

Chapter 02: MAJOR PROJECT SDLC

2.1 FEASIBILITY STUDY

Researchers have found that there is a need to defend highly dependent societies on software

from malware. All the military, and strategic, finances of the country are closely linked with a

different type of software. Recently, a lot of research has been carried out to find and recognize

the existence of malware, as well as the amount of risk that they pose to software assets and

operations performed using them. Security experts and analysts have prepared a set of security

tools. Systems nowadays come with pre-installed antivirus and firewalls. Antivirus detects

particular malware uniquely based on the hashes this is called signature-based analysis, another

method used by antivirus is a heuristic method in which malware is analysed based on a

predefined set of rules which are determined by analysts that how the malware behaves in the

infected device. Malware is created in such ways that they bypass detection and analysis. As

the number of malware is increasing exponentially, There is a need of automating the detection

of such malicious codes. This is what this project aims at.

2.2 LITERATURE SURVEY

When it comes to Malware detection, many Machine Learning and Data Mining techniques

have been proposed by researchers all around the world. Each methodology proposes methods

for a specific purpose, some methods proved to have performed better than others. Some of

these methodologies have been discussed below.

Hani et al.[3] their research showed a similar view of machine learning algorithms for Android

malware. They used a large dataset consisting of 11,598 APK collected from several sources

and provided by CLCMalDroid2020, a repository by the Canadian Institute for Cybersecurity

at the University of New Brunswick. The paper shows that algorithms like K-NN achieve a

much better F1 score when the dataset used for training is balanced and that the LightGBM

algorithm is the best-performing algorithm in the research with an F1 score of 95.47%.

8

Zhang et al. [4] proposed a malware classification method based on the n-gram feature. To

explain the N-gram, one can say that it is simply a sequence of n-words that occur together in

a sentence or a document. It is a way to represent data in a form such that a computer can

analyze and process it effectively. The researcher first used information gain methods for

selecting the best n-gram features among all. Then Probabilistic Neural Network (PNN) is used

to build the classifier followed by combining the individual predictions made by PNN

classifiers through Dempster-Shafer Theory. The methodology was evaluated on a dataset

containing 450 Malware and 423 Benign samples and results show better ROC scores for the

ensemble of PNNs.

Menahem et al. [5] in their research used three categories of features which are n-gram,

function-based and portable executable(PE) features. For evaluation, they constructed five

different datasets and considered five base classifiers, namely, OneR, VFI, KNN, Naive Bayes,

and C4.5 decision trees to process these datasets. The experimental results showed that troika

and stacking which were used to combine the base classifiers, outperformed the base classifiers.

Mukkamalaa et al. [6] proposed a methodology that made use of a majority voting method to

ensemble the prediction of various classifiers for detecting malware in network traffic. The base

classifiers used by the researchers were SVM, MARS and three types of Artificial Neural

Networks (RP, SCG and OSS). The dataset used was taken from Defense Advanced Research

Projects Agency (DARPA) for evaluation purposes. The results proved that the majority voting

method implemented by the researcher improves the accuracy of the detection of malware.

Landage and Wankhade [7] in their research used opcode sequences of malware samples to

train three base classifiers and combined the predictions using majority and veto-based voting.

Their research show that veto based voting method had a better detection rate when compared

to the majority voting method, but increased the false positive rate as a result.

Ye et al. [8] in their methodology used API calls and strings as features. By constructing eight

base classifiers on combinations of features and combining them through a simple voting

method, the results proved the usage of the voting classifier as the method outperformed the

base classifiers.

9

Guo et al. [9] used API calls where categorized them into seven classes and trained their base

models upon them. The predictions made by these base models were combined and results are

compared.

Ozedemir and Sogukpinar [10] proposed a method for the detection of Android malware.

Based on API calls made by the malware, they build different base classifiers whose

predictions are combined using the majority voting method. The results reveal that the

proposed ensemble learning method has improved the accuracy of detecting malware.

For the detection of Android malware, another method [11] is proposed where the researchers

used permissions and API calls made by these Android files. Six base classifiers are then

trained upon the prepared dataset and then the predictions are combined by a collaborative

decision fusion method. The authors in their research claim that this method of ensemble

learning gave better results as compared to traditional methods like Adaboost and Bagging.

Sheen et al. [12] used API calls and features extracted from the PE header to build a set of

heterogeneous base classifiers. In their research, they proposed two ensemble methods that

were used to select and combine a set of base classifiers. These methods attained a 99.7%

malware detection rate which was better compared to traditional methods of bagging, boosting

and stacking.

Yerima and Sezer [13] proposed a multilevel architecture technique called "Droidfusion" for

combining the predictions of base classifiers. In their proposed methodology, they used four

ranking algorithms to rank the base classifiers and later combined the results of base

classifiers. They used four different datasets to prove that Droidfusion showed better results

than traditional ensemble methods.

Kuncheva [14] shed light on the importance of having diversity in the classifiers to make

ensemble learning more effective. Diversity is achieved by making use of different kinds of

classifiers. Since each classifier has an explicit or implicit bias in its prediction, The

combination of such types of classifiers achieves better accuracy than that of an individual

classifier.

Krawczyk et al. [15] proposed an approach features are divided into subspaces and each one

of these subspaces is used to train a base classifier. A voting method is used to combine the

10

based classifiers which were selected by an evolutionary algorithm. The results show that this

method provides better results.

The aforementioned discussed studies point out that combining multiple Machine learning

models outperform a single ML model, by producing a strong model that benefits from the

strengths of all the base classifiers it is built upon.

2.2.1 Malware Definition

Malware is an abbreviation for malicious software, that refers to any software or code that is

specifically designed to cause harm or damage to a targeted computer system. It is designed

by criminals to gain unauthorized access to confidential information, steal data, or extort

money.

Malware can be classified into various types -

Figure 2.1 - Classification of malware [17]

• Adwares are created to serve unwanted advertisements to users in many ways like

popups, browser redirects, hyperlinks, etc on unusual pages to promote malicious or

fraudulent products. Adware creators gain revenue from the number of visitors or clicks.

Sometimes they act as Spyware.

• Botnets are a network of computers which are used to carry out a number of malicious

activities. Generally, computers that are part of a Botnet are used to perform DDoS

11

(Distributed Denial of Service Attack). They can also be used auto Render and Click on

ads to benefit its creator.

• Ransomware is a type of malware which used to encrypt victim computer’s sensitive

data by strong encryptions and then demanding a ransom for decryption key. It’ is created

in such a way that makes it impossible to decrypt the files without the decryption key.

WannaCry is one of the famous ransomwares in modern cybercrime history.

• Rootkits are malware whose purpose is to provide remote access of victim computer to

the attacker without getting detected. Rootkits can further be used to disarm the victim

computer by changing system settings and are also used to steal sensitive data.

• Spyware is a type of malware which is used to monitor user activity without the

knowledge of the victim. It actively monitors users' actions, records browsing history,

search history, financial details, Bank login details, and credit card details. Keylogger is

a subtype of spyware as it records users' keystrokes which are then sent to its makers.

• Trojan Horse enters the user's computer by masquerading itself as a normal file and then

performs malicious tasks set by its developer. A Trojan Horse then can be used to perform

other malicious activities such as taking control over, downloading other malware, and in

general compromising the computer’s security.

• Virus is a malware that copies itself and spreads to other computers. Once it takes control,

it spreads and replicates itself by attaching itself to other files. A Virus needs to be

executed by the user to begin it’s actions. It can corrupt or delete system files and make

the computer unusable.

• Worms are similar to viruses, but they don’t need user to execute its code to spread itself.

It can spread by exploiting network or system vulnerabilities and is designed to overload

servers by consuming bandwidth.

12

2.2.2 Malware Analysis Phases

Malware analysis can be divided into the following phases

Discovery phase: The discovery phase of malware analysis is the stage where the new and

previously unknown malware samples are identified and analyzed. One of the critical phases,

the Discovery phase is where the malware's behavior is analysed, its purpose, and the impact it

may have on the system. It is within this phase, that means such as static analysis, and dynamic

analysis are used. The sample is taken either from a malware repository or identified within the

targeted system through analysis of the process running. It can also be acquired by means of

network traffic analysis, email attachments, and infected files. This phase is taken place within

a safe and controlled environment to understand the behaviour of the malware.

Forensic analysis phase: This is the phase where the analysis of a captured malware sample is

done. The goal of this phase is to gain a deep understanding of the malware's behaviour,

including how it enters a system, how it spreads, and what data it targets. This information can

help analysts identify the intents of the malware, its potential source and the damage it may

have caused. Through this analysis, the analysts get to know more about vulnerabilities in the

system to prevent future malware infections.

Feature extraction - The feature extraction phase of malware analysis involves identifying and

extracting relevant features of the malware that can be used for further analysis. Later on, while

training machine learning models, the data combined by feature extraction is used. There are

two types of techniques which are static analysis where the binary code and metadata of the

malware sample are analysed without executing it, and dynamic analysis where the analysis is

done on a running sample within a controlled environment.

In their research [16] the authors make use of multiple features obtained through static and

dynamic malware analysis. After performing dynamic and static malware analysis in an

automated environment, the generated reports are stored and then processed using Apache

Spark to extract malware features. They put emphasis on various features such as File metadata,

Packer detection, Dynamically Linked Libraries, Windows API Calls, and Registry activities,

to name a few.

13

2.2.3 Challenges of Malware Detection

Malware evolution rate grows exponentially which means there is so much malware that could

not be detected and classified due to which signature-based detection failed very badly [18].

Then behavioural analysis was introduced, and some malware even evaded it by countering the

traditional detection techniques. One of the most challenging hurdles it posed was when it

started masquerading its behaviour in an analysis environment. Furthermore, A small data set

can generate biased predictions. If the dataset doesn’t have diversity, it may not be able to train

the models accurately with modern malware behaviour and features. Also, If the same dataset

is used for both training and testing, the results show abnormally high accuracies which might

be an indicator of overfitting. To fix this, separate datasets must be used for training and testing

[19].

14

Chapter 03: IMPLEMENTATION

3.1 DESIGN OF THE PROJECT

The Malware Analysis project follows a structured development process, which is divided into

several key stages. The primary objective is to develop a system that can accurately classify

files into malware and benign by behavioural analysis. This chapter provides an overview of

the methodology used with a focus on the dataset used, the flowgraph of the project, and the

evaluation of the results.

3.1.1 Dataset

The dataset is a behavioural analysis of Android files in a controlled environment that contains

system calls made by malware and benign processes. It contains the observation data of over

100,000 Android files and 35 features which is present in the form of a CSV file. The feature

columns include Process ID, and Classification Label, and the rest columns are system call

columns, which represent the different types of system calls made by the processes. The system

calls provide an insight into how the malware executes its code on the victim machine. The

columns provide detailed information about the processes, including the number of child

processes that were spawned, the amount of CPU and memory resources that were used and the

number of system calls that were made.

The dataset [20] used contains a total of 100,000 data points corresponding to different processes

and the details associated with them. The files contained in the dataset are Android files and are

studied in a controlled environment and analysed by Cuckoo Sandbox. The dataset features are

as follows:

1. Hash: Hash column contains SHA256 hash value. The hash function has a special feature

that makes it one of the most essential tools to ensure integrity across the internet. Basically,

a hash function produces a fixed and unique output for a given input. Given the input isn’t

changed or altered; the generated hash is exactly the same. The hash value can be used to

uniquely identify the files, and it provides a way to verify the integrity and authenticity of

15

the files. By computing the hash value of an suspected file, in some cases, we can directly

compare it to a database of well-known and updated malicious hashes to determine the file

type and intent. This process is called Hash-Based Detection and is the first basic step in

malware detection.

2. Millisecond: The millisecond column in the dataset represents the time stamp of each system

call made by the processes in milliseconds. It is calculated from the time the system has

started and the time when the call has been made. The timestamp is provided in

sequential/chronological order of system calls made by each process. Unusual system call

times can be a factor through which checkers can find anomalies. The Significance of this

parameter is that it can be used to correlate the system calls made by a process with other

significant events or activities happening on the system.

3. Classification: The Classification column depicts the category of each process. The entire

dataset is divided into two possible values, 1 and 0, where 1 means the process is malware

and 0 denotes that it is a benign process. The classification column is critical because it is

used as the target variable when training the ML models for Malware detection. Its relevance

is solely for the researchers to train and evaluate ML models for malware detection.

4. State: The state column in the dataset shows the current state of the process at the time of

the system call. In an operating system, Linux in our case, a process can have many different

states, including running, sleeping, stopped and terminated. The state column provides us

with the behaviour of the processes and their interactions with the OS. Malware present can

execute their codes on different occasions say an event, and for the time being they can

disguise as a sleeping process, etc. If the process is in a "running" state then we can determine

that the process code is being executed on the CPU. For example, '0' as a state indicates that

the process is in the TASK_RUNNING state. '4096' Process state means that the process is

in the TASK_DEAD state.

5. usage_counter: Theusage_counter column in Linux/Unix-based Systems shows the number

of times a process has been used. It is a metric that can help us in tracking the frequency with

which a process is executed which in turn could help us in identifying processes that are

executed more frequently than others. Although malware developers try masquerading the

executable code into some benign process and keep the actual usage_counter of malware

low, still the param can help us in identifying the frequency.

16

6. dynamic_prio: The 'dynamic_prio' column in the dataset refers to the dynamic priority of

the process. In operating systems such as Linux, dynamic_prio reflects the process's current

scheduling priority for execution on the CPU. In our dataset, the dynamic priorities

mentioned are the ones that were at the time the analysis data was taken. The lower the value,

the higher the priority.

7. static_prio: The static_prio column in the dataset represents the static priority of the process.

Static priority is a fixed priority value assigned to a process that remains constant throughout

the process’ lifetime. It can be used to analyze the scheduling behaviour of the system and

to identify the processes that may be using resources more who might be causing

performance issues.

8. normal_prio: The normal_prio refers to the priority of the process without considering any

priority inheritance. It is the base priority of the process and determines the order in which

the scheduler chooses to run the process. If a process has a higher normal_prio, it will be

executed before a process with a lower normal_prio.

9. policy: Policy refers to the scheduling rules that a process uses. There are several different

scheduling procedures, including Round Robin, Completely Fair System, and Real-Time.

The policy field contains integer values, such as 0 and 1, to indicate which policy the process

is using.

10. vm_pgoff: The offset of the process memory page in the virtual memory area of the process

is contained in the dataset's vm_pgoff column. By dividing the value of "vm_pgoff" by the

page size, it is used to determine the address of the page in the memory. This specific feature

aids in our analysis of process memory consumption patterns. A researcher can determine

how a process is allocating and managing memory by looking at the values in this column.

The more memory it uses, the larger the vm_pgoff.

11. vm_truncate_count: The vm_truncate_count is a metric that tells us how many times a

process's virtual memory has been reduced in size. It is a useful metric for understanding

how a process is utilizing its virtual memory. A high-value count may show that a process

is repeatedly using and truncating the memory, which might be an indicator of poorly

optimized and inefficient use of the memory.

12. task_size: the task_size column in the dataset represents the virtual memory size of the

process. Adding more to the previous points about Virtual memory, the virtual memory size

of a process includes the memory used by the process itself and by any shared libraries it

17

uses. The Task_size feature provides us with information about the virtual memory that is

allocated to a particular process at a given time. The value is measured in KiloBytes (KB).

13. cached_hole_size: cached_hole_size column in the dataset refers to the amount of memory,

in kilobytes the process is allocated but is currently not in use. It shows the size of the hole

of the process's cached memory. Cached data is stored in memory by the system to be

accessed quickly in future if needed. This Metric helps us in understanding the memory

usage patterns of a process and identify inefficiencies in the program.

14. free_area_cache: free_area_cache column in the dataset represents the amount of memory

in KB, that is available in the memory management's free memory cache for a specific

process. Based on this metric one can know how much memory is available to the kernel for

allocation if in case a process requests memory. Generally, the information received by this

metric is used to optimize the performance of a system. In general, the higher the value of

this metric, the more memory is available for allocation.

15. mm_users: the mm_users column in the dataset provides information regarding the number

of users of the memory management structure associated with the process. In the Linux

kernel, each process has its memory management structure, and the structure contains

information about the process's memory mappings, page tables and other details related to

memory management. A high value of mm_users may indicate that a process is using a lot

of memory or that there are multiple references to the same memory structure in others.

16. map_count: map_count column in the dataset refers to the number of virtual address space

areas that are currently mapped by the process. Each process in Linux during execution has

its own virtual address space that it uses to store its code and data. This particular metric

provides us with an insight into the amount of virtual address space that is currently being

used by the process.

17. hiwater_rss: the hiwater_rss column represents the peak resident set and the size of the

process in KB. It shows the highest amount of memory a process has held in the RAM and

how much physical memory is being used by it during its lifetime.

18. total_vm: the total_vm metric here represents the total size of the Virtual memory for a

given process. In Linux/Unix systems, the total_vm column is used to keep track of the

virtual memory used by each process. Used by the kernel of the Operating system, if a

process exceeds a set limit, the kernel then terminates the process or takes action to prevent

18

the system from running out of available memory. Abnormally high usage of memory can

be a sign of malicious activity which can be analysed using this metric.

19. shared_vm: shared_vm column in the dataset represents the total size of the shared memory

in bytes that is used by the process. Shared memory is the memory part that can be accessed

by multiple processes. For example, malware may inject its code and masquerades itself in

a benign process, in such cases, the shared_vm metric may show unusually high amounts of

shared memory being used by a seemingly benign process.

20. exec_vm: the exec_vm metric in the dataset is indicating the size of the process's virtual

memory area that is used for the executable code. When the malware is executing its code,

the executable code's virtual memory area would increase and therefore it can be used to

detect the presence of malware in the system. If the exec_vm is suddenly increasing without

any particular event, then it is an indication of malware.

21. reserved_vm: the reserved_vm metric represents the total size of virtual memory reserved

for the process. Oftentimes, Malware uses process injection to allocate virtual memory

within another process's address space for execution. How this helps is that the reserved_vm

metric can identify abnormal memory allocation that could potentially indicate the presence

of malware. Along with other metrics, Reserved_vm can be used to determine the presence

of malware.

22. nr_ptes: the nr_ptes metric is an abbreviation of the Number of page table entries. This

metric indicates the number of page table entries used by a process. Since malware has

unusual memory usage, they are bound to have significantly high page table entries, which

indicates that it is trying to evade detection techniques by manipulating its memory

manipulation. Hence nr_ptes aids us in finding suspicious behaviour.

23. end_data: the end_data metric used in the dataset indicates the virtual address right after the

end of the data segment of the process. To avoid detection, malware may try to modify or

execute code outside of their assigned memory segments, including the data segment. Thus

any suspicious activity beyond the authorized limits may aid the malware identification

process.

24. last_interval: the last_interval column in the dataset shows the time interval between the

last time the process was scheduled and the current time. Malware may execute very actively

and this metric may help us filter out some processes which are scheduling unusually high

as they may have very short last_interval values.

19

25. nvcsw:nvscw means many voluntary context switches, performed by the process. Context

switching is a scenario where the Kernel of the operating system, Linux in our case, switches

the CPU from executing one process to executing another. A voluntary context switch may

occur when a process explicitly calls for example the 'sleep()' command. This may be useful

because some malware may use this command to avoid detection while the antivirus is

actively working and usually may have a high nvscw count. Along with other aspects, nvscw

can help us in identifying anomalies.

26. nivcsw: nivcw stands for the number of involuntary context switches, which measure the

number of times a process has been forced to give up the CPU before it was finished with

its time slice. A malware running may have high context switches which is a sign that a

process is causing a lot of involuntary context switches. a high nivcsw value may be a sign

that the process is taking up resources and causing starvation for other processes.

27. min_flt: min_flt means minor page faults. A minor page fault occurs when a process tries

to access a page memory that is not currently loaded into the physical memory and may need

a page fault to retrieve it from the disk. A malware that tries to hide its activity by using

multiple memory pages and rapidly switching between them thus increasing the probability

of page faults and increasing the min_flt.

28. maj_flt: maj_flt means major page faults that have occurred for a process. A major page

fault is an expensive operation that requires the CPU to fetch the missing memory page in

the memory from the disk. Unusually high major page faults for a process can be an

indication of malicious activity. Malware may try to load a large amount of data from a hard

disk or execute malicious code that requires a lot of memory, thus increasing the major page

fault for the process. Malware may process itself into small chunks in the memory while

attempting to execute a large amount of code. This may lead to higher page faults new pages

are loaded from the disk continuously.

29. fs_excl_counter: fs_excl_counter is a metric that represents the count of times the process

has been granted exclusive access to a file system object. If malware attempts to manipulate

or modify important system files, this metric may come in handy as it may result in the

process (malware in our case) holding exclusive excess to these files. By monitoring

fs_excl_counter, security analysts can detect abnormal behaviour such as processes gaining

exclusive access to important system files, which can then be further investigated.

20

30. lock: The lock metric refers to the number of locks held by any process. A lock is used by a

process to prevent multiple processes from accessing a shared resource simultaneously, thus

avoiding race conditions. Malware may often use locks to control access to resources or to

prevent other applications/processes from interfering with its operations say an antivirus. A

process with a high number of locks is suspicious. If along with other suspicious activities,

a process has a high lock count, it is worth investigating.

31. utime: utime is a metric that shows us the amount of CPU time consumed by a process.

Malware that performs extensive actions, may consume a high amount of user CPU time. A

process with high utime value (in jiffies in Linux kernel) which actually is running for a

short duration, might come as a suspicious activity as this may be a signal for high

computation being done by CPU for the process.

32. stime: The stime metric refers to the number of times (in jiffies) that a process has been

scheduled in kernel mode. If a process has a high stime value relative to utime, this may

indicate that process is spending a lot of time in the kernel mode or performing actions on a

system level, performing malicious activities. If multiple processes have a high stime this

may indicate a swarm of malware that has infected the entire system.

33. gtime: the gtime metric in the dataset refers to the cumulative time spent by all the threads

in the process executing in the kernel mode. A process that is consuming a high amount of

kernel resources, may have high gtime. If in case a seemingly benign process has a high

gtime, it is concerning as it may be performing unauthorized activities on the kernel level.

Although one cannot declare a process as malware based on gtime alone, it surely can be a

factor.

34. cgtime: cgtime is a short form of cumulate group time or cumulative system CPU time of a

process in Jiffies (1/100th of a second) spend on executing and waiting for other processes

to complete. It includes both kernel and user-space execution time. A process with a sudden

spike in cgtime over a short period of time could indicate a sign of malicious activity.

35. signal_nvcsw: the signal_nvcsw metric indicates the number of times a process was context-

switched involuntarily due to a signal being received. This is a very important metric for

malware detection as a process that is trying to evade detection by constantly interrupting its

execution with signals. Malware may have an abnormally high number of context switches

by signals.

21

3.1.2 Flowchart of the Major Project

First, the dataset is imported and contains information on various malicious and benign

software instances. The initial data-processing is done on the data, with the most important one

being mapping data entries into malware and benign. This enabled us to convert this

classification metric into a numeric form where malware is given 1 and benign is given. The

data is then shuffled randomly. To evaluate the performance of models on unseen data, the next

step is to split the training data into training and testing sets. By using an entirely unseen set of

testing data, we can get an estimate of the model's future performance on new data.

Figure 3.1: Flowchart of the project

Then four different Machine learning models, a Random Forest classifier, Support Vector

Machine, and Logistic Regression along with a Linear regression model are trained on the

training dataset. Their performances are evaluated using metrics such as Accuracy, Precision,

F1 score, etc.

22

Additionally, A Voting Classifier is trained on the data. The three base classifiers selected for

the voting classifiers include the Random Forest classifier, Support Vector Machine, and

Logistic Regression. The training dataset is sub divided into four subsets and these base

classifiers are trained on in a loop on each subset of the training data. A list of estimators is

created, which contained the trained base classifiers. The voting classifier is then created which

takes the estimators list as training input to combine the predictions of individual classifiers.

Then the individual classifiers are trained on the same training data. The voting classifier is

then tested on the testing data along with the individual classifiers and the performance of each

individual classifier is compared to that of the voting classifier.

3.2 TRAINING AND TESTING OF MODELS

This section of the report discusses the models implemented in this project along with the

motivation to choose these particular models and the parameters taken for each one of them.

The detailed explanation for each model is mentioned below:

3.2.1 Random Forest Classifier

To learn what a random forest classifier is, we need to learn what a decision tree is. To put it in

normal terms, a decision tree is a model which uses a tree-like model of decisions and decides

an outcome. In our case, based on the dataset it is trained on, it decides during testing that

weather if a data entry is malware or benign. A Random Forest classifier is an algorithm that

has a large number of decision trees. The predictions made by the individual trees are combined

to provide a final prediction. Each decision tree is trained on a random subset of the training

data and a random subset of features, which improves generalization.

23

Figure 3.2: Depiction of a random forest classifier. [22]

In the context of malware analysis, a random forest classifier can be used to classify dataset

entries as either malware or benign based on features present in the training data. If the model

is trained on a large dataset of known malware and benign, it can learn to identify patterns and

features that differentiate both classes and use this knowledge to classify the test data provided

into the aforementioned two classes of malware and benign. Random forest classifiers have

several advantages for malware analysis, as they are relatively fast, and scalable even on large

datasets with many features.

Implementation of the Random Forest classifier begins by defining a set of parameters to try

for the model including the number of parameters like n_estimators, max_depth,

min_samples_split, min_samples_leaf. Each one of these parameters is important for the model

to work.

To give a basic explanation, n_estimators define the number of trees in the forest, max_depth

is the maximum depth of the tree, min_samples_split is the number of samples required to split

an internal node, min_samples_leaf is the minimum number of samples required to at a leaf

node.

24

To fine-tune the model, one can use GridSearchCV to find the best combination of input

parameters for the Random Forest classifier by running a number of combinations of the

parameters provided in the parameters dictionary. Once the best possible combination is found,

it is then fed into the final random Forest classifier which outputs the best possible accuracy.

3.2.2 Support Vector Machine model

Support Vector Machine is a machine learning algorithm that is used for classification and

regression tasks. To make predictions, it finds the optimal decision boundary called hyperplane

that maximizes the margin between the two classes in the dataset. To keep it simple, SVM finds

a line separating the two classes in the dataset, like in our case malware and benign, then when

new data is to be classified, it is classified into either group based on their features.

As we just discussed, SVM can make really accurate predictions when it comes to binary

classification. One of the best features of SVM is that it can work with imbalanced datasets. An

example of an imbalanced dataset can be a dataset containing more benign files than malware

and vice-versa. It also works efficiently while handling large and complex datasets. All these

and more characteristics make SVM one of the most powerful tools for detecting new and

unknown types of malware just based on their behaviours and features.

Figure 3.3: Scientific diagram of SVM. [23]

25

We implemented the SVM model using the Scikit-learn library in Python. The model uses the

SVM algorithm with a linear kernel and a regulation parameter C set to 1.0. Roc_auc_score

function from sklearn's metrics library is used to calculate the accuracy of the model.

3.2.3 Logistic Regression Model

Logistic Regression is a binary classification algorithm that predicts the probability of an input

belonging to two possible categories. To explain it, Logistic Regression is like a Yes or No

machine. Logistic regression in our case would classify a sample input into benign or malware.

The model uses a math formula to calculate the probability. Logistic Regression works by

modelling the relationship between the input variables and the binary output. It is a supervised

learning algorithm and requires labelled training data to train and then estimate the model

parameters.

Figure 3.4: Logistic Regression Sigmoid Function Curve. [24]

Logistic Regression in the context of Malware Analysis can be used to build a model which

predicts whether a given file is malicious or benign. It trains on many features such as system

calls, size, type etc, and calculates the probability of the file being malicious.

In the research, Logistic Regression using the SkLearn library in Python. It begins by importing

the classes and then instantiating a Logistic Regression object with a regulation parameter C of

0.2. The Regularization parameter C helps us to prevent overfitting by shrinking the model

26

coefficients towards zero. The Model is then trained on the training data and then makes

predictions on test data. The accuracies are then calculated and a ROC score is generated.

3.2.4 Linear Regression Model

Linear Regression is a regressor type model that predicts the value of a variable based on one

or more independent variables. It helps us in understanding the relationship between the

dependent variable and the independent variables by finding the best-fit line that explains the

variation in the dependent variable. To get the basic idea behind linear regression is to find the

line that minimizes the distance between the predicted values and the actual values of the

dependent variable. The aforementioned line is called the regression line which is defined by

the equation y=mx+b. where y is the dependent variable and x is the independent variable, m is

the slope of the line and b is the y-intercept. Here, to find the best values for m and b, the

regressor uses an Ordinary least squares (OLS) method.

Figure 3.5: Best fit line as devised under linear regression

In the context of Malware analysis, a Linear Regression model can be used to analyse the

relationship between different variables and to predict whether a file is malware or benign.

27

To implement linear regression, we use sklearn's Python library. The necessary classes are

imported and then a Linear Regression object is created which is then fitted with the training

data and is then fed test data to make predictions. The accuracy is calculated using the R-squared

value, which is a statistical measure that represents the proportion of variance in the dependent

variable that is explained by independent variables.

3.2.5 Ensemble Learning

Ensemble learning is a machine learning technique that combines the prediction of multiple

models to improve the overall performance of the system. Ensemble learning is mainly of two

types: Bagging and Boosting.

Bagging: Bagging is a method of creating multiple models, each of which is trained on a

random subset of the training data. The output of the base classifiers are averaged to find final

prediction.

Boosting: In boosting multiple ML models are created and each of them are trained on a

modified version of the training data. Boosting reduces the bias of the model.

Figure 3.6: Ensemble learning voting model depiction

28

Since malware is a constantly evolving threat, it can be difficult to build a model that is accurate

over a long period of time. By combining the output of multiple models, ensemble learning can

help us create a more robust system of prediction. Each base classifier used in Ensemble

learning has its own strength and weaknesses, but combining the outputs of all the models helps

us in creating a more accurate and reliable system.

To implement ensemble learning, we decided to use three different base classifiers namely

Random Forest, K-Nearest Neighbor, and Logistic Regression. We decided to split the data into

training and testing subsets and then the classifiers were created and trained on different subsets

of the training data. We created subsets to improve the accuracy of the predictions and reduce

overfitting.

A voting Classifier is created which combines the prediction of all three classifiers. This is done

using VotingClassifier() which takes in the list of tuples where each tuple contains a unique

name and a classifier object. An estimator list is created by looping through each subset of

training data and creating a new classifier object for each subset.

When the voting classifier is trained, the individual classifiers are evaluated on the test set along

with the voting classifier to see how well they performed, and their accuracy is compared.

29

Chapter 04: RESULTS

4.1 DISCUSSION

On the Internet, various forms of malware are distributed. Every computer connected to the

Internet is vulnerable to Malware infection. To fight this vulnerability, it is crucial to practice

information security practices. And with the growing density of the cyber world, it is important

to automate the process of Malware detection. For this, machine learning is very crucial to be

optimized for the task.

In the project, we used different machine learning algorithms whose results varied in a range

from 54% accuracy to 95% for different models.

4.2 EVALUATION

Evaluation is one of the crucial steps in machine learning projects that involves assessing the

performance of a trained model. The purpose of this step is to see how well a model is making

predictions on new data.

The evaluation process in our project is done by splitting the available data into training and

testing data. The models are initially trained using the training data, and their performance is

then assessed using the testing data. Evaluation is a key stage since it gives us important

knowledge about the weaknesses, biases, and overfitting that the models may be experiencing.

Utilising criteria like accuracy, precision, recall, and F1-score, we assessed the performance.

The evaluation procedure makes use of a variety of metrics which are:

Accuracy: Accuracy is determined by dividing the proportion of cases that were properly

predicted by the overall number of instances. The accuracy calculation formula is

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 +

𝐹𝑁)

30

Precision: We divide the number of real positive values by the total number of expected

positive values when calculating precision. The precision calculation formula is

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

Recall: The percentage of genuine positives and the overall number of actual positives are

found when computing the recall score. The Recall formula is

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

(𝑇𝑃 +

𝐹𝑁)

F1 Score: This is the harmonic mean of precision and recall, and it provides a balanced measure

of both parameters. The formula for calculating F1 Score is

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝐹1 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Area Under the Receiver Operating Characteristics (ROC) Curve (AUC) Score: This

tells us how effective the model is in predicting the values. The higher the ROC AUC, the

better the model's performance at classifying between the positive and negative classes.

Confusion matrix: A matrix that visualize the number of true positives, false positives, true

negatives, and false negatives. These parameters of the confusion matrix are used to evaluate

other metrics such as precision, recall and f1 score etc. A confusion matrix for our project may

look like this

31

Table 4.1: Confusion matrix illustration.

True Positive (TP):

Actual: Malware

ML model predicted: Malware

Values:

False Positive (FP):

Actual: Benign

ML model predicted: Malware

Values:

False Negative (FN):

Actual: Malware

ML model predicted: Benign

Values:

True Negative (TN):

Actual: Benign

ML model predicted: Benign

Values:

Mean Squared Error (MSE): Measures the average of the squared differences between

predicted and actual values.

𝑁

1
𝑀𝑆𝐸 =

∑

𝑁
𝑖=1

(𝑦𝑖

− 𝑦 𝑖)2

Mean Absolute Error (MAE): measures the average of the absolute differences between

predicted and actual values.

∑𝑛 |𝑦𝑖 − 𝑥𝑖|
𝑀𝐴𝐸 = 𝑖=1

𝑛

Root Mean Squared Error (RMSE): This is the square root of MSE and gives a measure of

how close the predicted values are to the actual values. Smaller the value the better.

∑𝑁 (𝑋𝑖 − 𝑥̂)2
𝑅𝑀𝑆𝐷 = √

 𝑖=1 𝑖

𝑁

32

4.2.1 Visualized Results

Table 4.2: Evaluation Metrics of Models.

Metrics Random Forest (%) SVM (%) Logistic Regression (%)

Accuracy 94.55 94.62 93.75

Precision 99.33 94.00 92.98

Recall 89.82 95.46 94.79

F1 Score 94.34 94.62 93.74

ROC-AUC Score 94.60 94.62 93.74

TP Rate 89.82 95.46 94.79

FP Rate 0.62 6.23 7.31

FN Rate 10.10 4.54 5.21

Table 4.1 depicts the evaluation metrics (i.e., Accuracy, Precision, Recall, F1 score, ROC

Score, TP rate, FP rate, FN rate) of the models that are used in the analysis. Table 4.2 shows

the evaluation scores of the linear regression model i.e., MSE, MAE, RMSE.

Table 4.3: Evaluation Metrics of Linear Regression Model.

Evaluation Metrics Linear Regression Model

Accuracy achieved 55.276%

Mean Squared Error (MSE) 11.32%

Mean Absolute Error (MAE) 28.87%

Root Mean Square Error (RMSE) 33.64%

33

-4OOO

Benig n

Malware

Predicted

Figure 4.1: Confusion matrix of random forest.

8D00

6D00

— 4D00

— 2 D00

Benign Malware
Predicted

Figure 4.2: Confusion matrix of SVM.

SVNI Classifier Confusion Matrix

6.2e+02

4.6e+02

A
ct

u
a

l

34

Figure 4.3: Confusion matrix of logistic regression.

Fig. 4.1, 4.2, and 4.3 are the visual representation of the confusion matrices for the classifiers.

Fig. 4.1 depicts the confusion matrix for the random forest classifier, followed by the Confusion

matrix of SVM in Fig 4.2, and finally the confusion matrix of Logistic regression in Fig 4.3

35

4.2.2 Accuracy of the Base Classifiers

Figure 4.4: Accuracies of the Models

Fig. 4.4 is the visual representation of the prediction accuracies for the classifiers Random

Forest, SVM, Logistic Regression and Linear Regression. The figure clearly shows that among

the base classifiers, SVM shows the highest prediction accuracy of 94.61% followed by

Random Forest at 94.60% and Logistic Regression and Linear Regression at 93.73% and

55.27%. One of the reasons for the lower accuracy of Linear Regression is that, unlike

classifiers which are excellent in binary classification tasks, Linear Regression is incapable of

outputting binary outputs. It is excellently suited for cases where output is a continuous

numerical value for example predicting the prices of houses, or revenue prediction etc.

36

Figure 4.5: Recall Score comparison Figure 4.6: F1 Score comparison

Figure 4.7: Precision Score comparison Figure 4.8: ROC-AUC Score comparison

Fig. 4.7-4.11 are the evaluation metrics of classifiers visualized. The red bar represents the

scores of Random Forest, the blue one represents the scores of SVM and the Green one

represents the score of Logistic Regression, Figure 4.5 are the Recall score of the classifiers

with SVM having a Recall score of 95.46%, followed by Logistic Regression at 94.79%. and

random forest at 89.82%. Figure 4.6 represents the F1 score of the classifiers where SVM has

the highest score of 94.62% followed by Random Forest at 94.34% and then Logistic regression

at 93.74%. Figure 4.7 represents the Precision score visualization for the classifiers where the

37

classifier with the highest precision score is Random Forest at 99.33% followed by SVM at

94% and logistic regression at 92.98%. Figure 4.8 shows the ROC score comparison for the

classifiers, where SVM has the highest score of 94.62%, followed by Random Forest at 94.34%

and Logistic Regression at 93.74%.

Figure 4.9: TPR comparison of Classifiers Figure 4.10: FPR comparison of Classifiers

Figure 4.11: FNR comparison of the Classifiers

Fig 4.9 is the representation of TPR of the classifiers where SVM has the highest true positive

rate of 95.46% followed by Logistic regression at 94.79% and Random Forest at 89.82%. Figure

38

4.10 represents the False positive rate for the classifiers where Random Forest excels at 0.62%

followed by SVM at 6.23% and logistic regression at 7.31%. Figure 4.11 is the visual

representation of the False negative rate of the classifiers, where FNR of Random Forest, SVM

and logistic regression is 10.10%, 4.52% and 5.21% respectively.

4.2.3 Accuracy of the Voting Classifier

￼

Figure 4.13: Accuracies of Ensemble learning model and its Base Classifiers

Table 4.3 shows the evaluation metrics of the Ensemble learning classifier when compared to

the base classifier. It is clearly shown that the Voting classifier has higher scores when

compared to the base classifiers. Figure 4.13 is the visual representation of the evaluation

metrics of all three base classifiers compared to the voting classifier. We can clearly see that

ensemble learning increases the performance when compared to the base classifiers, but the

score is slightly better than the base classifiers. One of the reasons can be that the base classifiers

are already very diverse and highly accurate, or the high degree of randomness in the data.

39

Table 4.3: Accuracies of Ensemble learning model and its base classifiers

Classifiers Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Random

Forest

94.01 94.69 94.27 94.20

SVM 94.62 94.64 94.62 94.62

Logistic

Regression

93.75 93.77 93.74 93.75

Voting

Classifier

95.74 94.85 94.93 94.74

40

Chapter 05: CONCLUSION

5.1 CONCLUSION

In conclusion, this project provided an opportunity to get hands-on experience in malware

detection and machine learning. The project was made possible by the use of publicly accessible

datasets using well-known classifiers. The dataset used in the project helped in training four

different classifiers and a voting classifier to achieve the maximum possible prediction

accuracy.

Overall, the results demonstrate the effectiveness of machine learning when it comes to malware

analysis and detection by behavioural analysis. This project provides a foundation for future

research and development of more sophisticated models for malware detection and analysis in

Android systems.

5.2 APPLICATION OF MAJOR PROJECT

There are several practical applications that can be used, some of these are as mentioned below:

• Malware Detector: Increasing the scope of the project, a malware detector can be designed

to work on real-time data.

• Anti-viruses: Anti-virus software is quite popular among computer enthusiasts as they can

work on a variety of domains, including the internet, local, etc. An Anti-virus is an even

more powerful version of a Malware Detector which can perform multiple tasks.

• Reverse engineering Malware: Using analysers like these can be used to study malware’s

characteristics and also learn how malware masquerades within the tasks.

5.3 LIMITATIONS

• The biggest limitation of the project was a lack of diverse and representative datasets.

The accuracy and reliability of malware prediction depend largely on the quality and

41

diversity of the dataset used for training the models. In our case, the dataset caused

overfitting because of the low-quality dataset.

• Overfitting is another limitation where a model learns to fit the training data too well

and becomes overly sensitive to noise and outliers.

• Evolving Malware: Malware is constantly evolving and adapting to new security

measures. Newer malware can render the current prediction models obsolete.

5.4 FUTURE WORK

• This project has provided us with valuable information in the domain of Cyber security.

It opens the doors for research in the aforementioned field as a domain. This small

project helped in building the fundamentals of Machine learning and malware analysis.

• Malware analysis can be used to improve the effectiveness and accuracy of anti-viruses

and anti-malware software.

• This project can lay grounds for malware research, as one of the critical steps involved

in malware analysis is threat analysis through static and dynamic analysis. Malware

research can help in strengthening our countermeasures for cyber threats.

42

REFERENCES

[1] S Mohurle, M Patil, "A brief study of Wannacry Threat: Ransomware Attack 2017,"

International Journal of Advanced Research in Computer Science (Volume 8, No. 5,

May-June 2017).

[2] Peter Knight, “ILOVEYOU: Viruses, Paranoia, and the Environment of Risk,” Sage

Journals(Volume 48, Issue 2_suppl, 2000).

[3] Hani AlOmari, Qussai M. Yaseen, Mohammed Azmi Al-Betar, A Comparative

Analysis of Machine Learning Algorithms for Android Malware Detection, Procedia

Computer Science, Volume 220, 2023, P. 763-768, ISSN 1877-0509.

[4] Zhang B, Yin J, Hao J, Zhang D, Wang S. “Malicious codes detection based on

ensemble learning.” In: Proceedings of the international conference on autonomic and

trusted computing. Berlin, Heidelberg: Springer; 2007 Jul 11. p. 468–77.

[5] Menahem E, Shabtai A, Rokach L, Elovici Y. “Improving malware detection by

applying multi-inducer ensemble.” Comput Stat Data Anal 2009 Feb 15;53(4):1483–

94.

[6] Mukkamalaa S, Sunga AH, Abrahamb A. “Intrusion detection using an ensemble of

intelligent paradigms”. J Netw Comput Appl 2005;28:167-82.

[7] Jyoti Landage, MP Wankhade. “Malware detection with different voting schemes.”

Compusoft 2014;3(1):450–6.

[8] Ye Y, Li T, Jiang Q, Han Z, Wan L. “Intelligent file scoring system for malware

detection from the gray list.” In: Proceedings of the 15th ACM SIGKDD international

conference on knowledge discovery and data mining; 2009 Jun 28. p. 1385–94. ACM.

[9] Guo S, Yuan Q, Lin F, Wang F, Ban T. “A malware detection algorithm based on

multi-view fusion.” In: Proceedings of the international conference on neural

information processing. Berlin, Heidelberg: Springer; 2010 Nov 22. p. 259–66.

[10] Ozdemir M, Sogukpinar I. “An android malware detection architecture based on

ensemble learning.” Trans Mach Learn Artif Intell 2014;2(3):90–106.

43

[11] Sheen S, Anitha R, Natarajan V. “Android based malware detection using a multi

feature collaborative decision fusion approach.” Neurocomputing 2015 Mar

5;151:905–12.

[12] Sheen S, Anitha R, Sirisha P. “Malware detection by pruning of parallel ensembles

using harmony search.” Pattern Recognit Lett 2013 Oct 15;34(14):1679–86.

[13] Yerima SY, Sezer S. Droidfusion: a novel multilevel classifier fusion approach for

android malware detection. IEEE Trans Cybern 2018 Jan 3;99:1–4.

[14] Kuncheva LI. Diversity in multiple classifier systems (Editorial). Inf Fusion 2005;6(1)

2005.

[15] Krawczyk B., Woźniak M. Evolutionary cost-sensitive ensemble for malware

detection. In Proceedings of the international joint conference SOCO’14-CISIS’14-

ICEUTE’14 2014 (pp. 433–442). Springer, Cham.

[16] Deepak Gupta and Rinkle Rani, ‘‘Improving malware detection using big data and

ensemble learning,’’ Computers & Electrical Engineering, 86:106729, 2020.

[17] M. Asha Jerlin & K. Marimuthu, “Malware Detection System Using Machine

Learning Techniques for API Call Sequences”, Applied Security Research.

[18] Omar N. Elayan & Ahmad M. Mustafa, “Android Malware Detection Using Deep

Learning”, International Workshop on Data-Driven Security (DDSW 2021) March

2021, Warsaw, Poland.

[19] Sashie Dilhara, ”Malware Classification using Machine Learning and Deep

Learning”, International Journal of Computer Applications.

[20] Burak Ergenc, “Malware detection,” 2016. [Online]. Available:

https://github.com/mburakergenc/Malware-Detection-using-Machine-

Learning/blob/master/data.csv.

[21] Avast, “What is Malware & How Does it Work? | Malware Definition | Avast,” 2019

https://academy.avast.com/hs-

fs/hubfs/New_Avast_Academy/what_is_malware_academy_refresh/Types-of-

Malware-EN.png?width=1684&height=1200&name=Types-of-Malware-EN.png

[22] Davis D 2020, Random Forest Classifier, digital image, "Random Forest Classifier

Tutorial: How to Use Tree-Based Algorithms for Machine Learning"

44

https://www.freecodecamp.org/news/content/images/2020/08/how-random-forest-

classifier-work.PNG

[23] Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with

Learning Classifiers - Scientific Figure on ResearchGate. Available from:

https://www.researchgate.net/figure/Classification-of-data-by-support-vector-

machine-SVM_fig8_304611323

[24] James T 2020, Logistic Regression Sigmoid Curve, digital image, "Logistic

Regression Explained"

https://miro.medium.com/v2/resize:fit:720/format:webp/1*QY3CSyA4BzAU6sEPF

wp9ZQ.png

http://www.freecodecamp.org/news/content/images/2020/08/how-random-forest-
http://www.freecodecamp.org/news/content/images/2020/08/how-random-forest-
http://www.researchgate.net/figure/Classification-of-data-by-support-vector-
http://www.researchgate.net/figure/Classification-of-data-by-support-vector-

4

GG02

ORIGINALITY REPORT

11%
6%
INTERNET SOURCES

6%
PUBLICATIONS

5%
STUDENT PAPERS

SIMILARITY INDEX

PRIMARY SOURCES

Deepak Gupta, Rinkle Rani. "Improving

malware detection using big data and

ensemble learning", Computers & Electrical

Engineering, 2020
Publication

 2
Submitted to Middle East College of

Information Technology
Student Paper

4%

1%

 3

 5

 6

www.mdpi.com
Internet Source

Hani AlOmari, Qussai M. Yaseen, Mohammed

Azmi Al-Betar. "A Comparative Analysis of

Machine Learning Algorithms for Android

Malware Detection", Procedia Computer

Science, 2023
Publication

pubs.rsc.org
Internet Source

www.researchgate.net
Internet Source

1%

1%

<1%

<1%

1

http://www.mdpi.com/
http://www.researchgate.net/

7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

www.dtic.mil
Internet Source

arrow.tudublin.ie
Internet Source

Submitted to Middlesex University
Student Paper

Submitted to Jaypee University of Information

Technology
Student Paper

dokumen.pub
Internet Source

essay.utwente.nl
Internet Source

www.freedomtoascend.com
Internet Source

Submitted to Kuwait University
Student Paper

Submitted to University of Greenwich
Student Paper

pub.towardsai.net
Internet Source

Submitted to Bournemouth University
Student Paper

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

http://www.dtic.mil/
http://www.freedomtoascend.com/

18

 19

 20

 21

 22

 23

 24

 25

Submitted to American Public University

System
Student Paper

soe.rutgers.edu
Internet Source

www.ijraset.com
Internet Source

Submitted to Loughborough University
Student Paper

www.irjmets.com
Internet Source

Jinrong Bai, Junfeng Wang. "Improving

malware detection using multi-view ensemble

learning", Security and Communication

Networks, 2016
Publication

Submitted to University of Salford
Student Paper

Jean Petric, David Bowes, Tracy Hall, Bruce

Christianson, Nathan Baddoo. "Building an

Ensemble for Software Defect Prediction

Based on Diversity Selection", Proceedings of

the 10th ACM/IEEE International Symposium

on Empirical Software Engineering and

Measurement - ESEM '16, 2016
Publication

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

http://www.ijraset.com/
http://www.irjmets.com/

26

27

28

29

30

31

32

33

34

github.com
Internet Source

www.cse.uoi.gr
Internet Source

Submitted to Nanyang Technological

University
Student Paper

Submitted to University of Bradford
Student Paper

Submitted to University of Carthage
Student Paper

Submitted to University of Edinburgh
Student Paper

Submitted to WorldQuant University
Student Paper

digitalcommons.njit.edu
Internet Source

threatpost.com
Internet Source

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 14 words

http://www.cse.uoi.gr/

