
Microservices Architecture with Springboot.

Project report submitted in partial fulfilment of the

requirement for the degree of Bachelor of Technology

in

Computer Science and Engineering/Information

Technology

By

ROBIN (191282)

UNDER THE SUPERVISION OF

Dr. Yugal Kumar

to

Department of Computer Science &

Engineering and Information Technology

Jaypee University of Information

Technology Waknaghat, Solan

173234, Himachal Pradesh, INDIA

i

CANDIDATE’S DECLARATION

I hereby declare that the work presented in this report entitled “

Microservices Architecture with Springboot” in partial fulfillment of

the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering/Information

Technology submitted in the department of Computer Science &

Engineering and Information Technology, Jaypee University of

Information Technology Waknaghat is an authentic record of my

own work carried out over a period from January 2023 to May 2023

under the supervision of Dr. Yugal Kumar (Associate Professor),

Computer Science & Engineering and Information Technology.

The matter embodied in the report has not been submitted for the

award of any other degree or diploma.

Robin, 191282.

This is to certify that the above statement made by the candidate is

true to the best of my knowledge.

Dr. Yugal Kumar

Associate Professor

Computer Science & Engineering and Information Technology

ii

PLAGIARISM CERTIFICATE

iii

ACKNOWLEDGEMENTS

Firstly, I express my heartiest thanks and gratefulness to almighty

God for His divine blessing making it possible to complete the

project work successfully.

I am really grateful and wish my profound indebtedness to

Supervisor Dr. Yugal Kumar, Associate Professor, Department of

CSE/IT, Jaypee University of Information Technology, Waknaghat.

My supervisor has a wealth of knowledge and a genuine interest in

the "Research Area" needed to complete this assignment. This

project was made possible by his never-ending patience, academic

leadership, constant encouragement, frequent and vigorous

supervision, constructive criticism, insightful counsel, reviewing

several subpar versions and revising them at all levels. It is my

regarded joy to introduce this project and earnestly thank each and

every individual who helped me in this project.

I'm incredibly grateful to Dr. Yugal Kumar, (supervisor for the

project) for his important direction and backing. I'm likewise

thankful to the subjects of this review for their collaboration and

interest. Last however not the least I thank god and my parents for

every one of the endowments. I would also want to express my

gratitude to everyone who has directly or indirectly assisted me in

making this project a success. In this unusual scenario, I would like

to thank the numerous staff and coordinators, both teaching and non-

teaching, who have created their convenient assistance and helped

my project.

Robin

191282

iv

 Table of Content

TITLE

PAGE NO

Certificate Plagiarism

Certificate

Acknowledgement

Table of Content

List of Abbreviations

List of Figures

Abstract

 (i)

 (ii)

 (iii)

 (iv)

 (vi)

 (viii)

 (ix)

CHAPTER-1: INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 10

1.3 Objective 11

1.4 Methodology 13

1.5 Organization 15

CHAPTER 2: LITERATURE SURVEY 15

2.1 Introduction 15

CHAPTER 3: SYSTEM DESIGN AND DEVELOPMENT 17

3.1 Introduction 17

3.2 Grails 21

3.3 AJAX 25

v

3.4 Groovy 27

3.5 Hibernate 32

3.6 GSP 35

CHAPTER 4: PERFORMANCE ANALYSIS 41

CHAPTER 5: CONCLUSION 43

5.1 Conclusion 43

5.2 Goals Achieved 44

5.3 Future Scope 45

5.4 Reference 46

5.5 Appendix 47

vi

List of Abbreviations

● MVC - Model-View-Controller

● REST- Representational State Transfer

● GSP- Groovy Servers Pages

● HTTP- Hypertext Transfer Protocol

● GET- HTTP Get request methodology

● POST- HTTP Post request methodology

● GORM- Grails Object relational mapping

● HQL- Hibernate Query Language

● EDD- Event Driven Development

● TDD- Test Driven Development

● CRUD- Create Read Update Development

● AJAX- Asynchronous JavaScript And XML

● XML- eXtensible Markup Language

● CDN- Content Delivery Network

● HTML- Hypertext Markup Language

● CSS- Cascading Style Sheets

● JSON- JavaScript Object Notation

● API- Application Programming Interface

● JWT- JSON web token

● SQL - Structured Query Language

● URI- Uniform Resource Identifier

● URL- Uniform Resource Locator

● CLI- Command Line Interface

● IDE- Integrated Development Environmnet

● UI- User Interface

● JS- JavaScript

● UDP- User Datagram Protocol

vii

● TCP- Transmission Control Protocol

● ORM- Object-Relational Mapping

● JVM- Java Virtual Machine

● WAR- Web Application Archive

viii

LIST OF FIGURES

Figure No.

No

Figure Title Page.

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

Client-server Architecture

Test-driven Architecture

Event-driven Architecture

REST Architecture

MVC Architecture

Microservices Architecture

Fault Tolerance

Domain Class Structure

User Domain Class

Topic Domain Class

Resource Domain Class

Subscription Domain Class

4

5

7

9

10

11

12

17

18

19

20

21

3.1 GSP Form 44

3.2 AJAX Use Case 45

4.1 Linksharing dashboard 49

4.2 Trending Topics 50

ix

Abstract

On 21 June 1948, For the very first time a piece of program was

successfully held in an electronic memory and was executed

successfully. After this event, advancement in software development

started and multiple software development architectures were

introduced for different purposes. And with addition of new

programming languages and with multiple iterations of software

design architectures, some of the architectures got much more useful

than others.

The entire layout and structure of a software system are implied by

the term "software architecture." It covers all of the vital components,

their interrelationships, and the rules and requirements that direct their

behavior. Software development employs a wide variety of

architectures, each of which has advantages and disadvantages of its

own. In this article, we'll examine some of the most popular

architectural styles, as well as their advantages and disadvantages.

Initially, when only only goal of building software was to just do it

work then monolith software architectures were used mostly which

was mostly messy and was very complex and did not follow any

specific way to write code but as coding and programming became

more and more popular, more people found new and much better ways

to solve the problems. Thus, many new “Software Development

Architectures” were invented, each with their own merits and

demerits.

A software system's software architecture describes the general layout

and design of the software system. It includes all necessary elements,

their connections to one another, and the specifications on how they

should work. Many different architectures are used in software

development, each of which has benefits and drawbacks to take into

account. In this post, we'll look at some of the most common

architectural styles and talk about their benefits and drawbacks.

The framework specifies the system's quality characteristics, such as

efficiency, adaptability, dependability, and privacy, and offers rules

for making sure that these characteristics are met throughout the

development process. This ensures system quality. Reuse is made

easier by a designed effectively software architecture, which also

x

speeds up and lowers the expenditures of creating software by

allowing for the reuse of parts and modules in various projects. There

are multiple steps when we create or decide which architecture to use,

we use certain conditions or requirement such as Architectural

Synthesis, which is basically first iteration of ideas while creating

architecture to solve our problem. After that we have Architectural

evaluation where we make further improvements in our architecture.

This evaluation can occur at any step of planning or designing the

architecture. And to ensure quality of software architecture, this is

step is very crucial.

After completing the designing of the architecture, then we try to

compare the difference in the architecture that we planned before

actually starting working on design of architecture.

In modern times, there are multiple Architectures, which are suitable

for a number of situations, like

EDD : Event Driven Development

TDD : Test Driven Development

MVC : Model View Controller Architecture

RESTful Architecture

Microservices

1

Chapter 1

Introduction

1.1 Introduction

While building a software in modern times, developers have a

choice from a wide array of Languages, Frameworks, Databases as

well as different type of architectures needed to develop their

software according to the needs.

Some of the most architectures are listed below :

Monolith Architecture :

When creating software using the traditional approach, also referred

to as mono-lithic architecture, each component of an application

must be integrated and provided as a separate unit. This approach

makes it difficult to manage and expand a single, large codebase due

to the interdependencies between the storage, user interface, and

application coding. Despite its flaws, monolithic architecture has

been used effectively in many applications and is still an option in

some use situations.

One advantage of monolithic architecture is its simplicity. Since

every part of the programme is integrated into a single codebase, it

is straightforward to understand the program's architecture and

modify the code. Therefore, monolithic design is suitable for small-

scale applications or projects with a distinct objective.

Additionally, monolithic architecture can be used to build systems

that require an elevated degree of security or durability since each

part of the programme can be meticulously reviewed before

2

distribution.

Additionally, monolithic designs have the advantage of functioning

well even programmes with very little viewership. Because each

programme element is deployed as a single unit, monolithic design

may be less wasteful of resources than alternative approaches.

Small-scale applications may profit from this as it will likely lead to

quicker response times and cheaper server expenses.

Monolithic architecture faces a few substantial drawbacks despite

its benefits. The difficulty in scaling monolithic programming is one

of their key drawbacks. Scaling necessitates duplicating the whole

stack because all of the application's components are interrelated.

Performance problems that are expensive and time-consuming and

unavailability during scalability events can result from this.

Monolithic design also has the drawback of being challenging to

sustain as an application expands. It could get more challenging to

modify the code without adding errors or erasing already-existing

functionality as the codebase grows. Because of this, adding new

features or fixing bugs may be difficult, especially if the application

has been created by a team.

Despite these shortcomings, monolithic design has been effectively

used in many applications. One example is the free content

management system WordPress. The PHP-based WordPress

program's monolithic architecture offers a reliable and flexible

platform for content management. WordPress is a well-liked

alternative among businesses of all sizes, and millions of websites

have been created using it.

And finally, a frequent technique for developing programming that

3

excels at specific activities or applications is monolithic

architecture. It is simple to understand and appropriate for

applications that require an exceptionally high degree of security or

dependability. However, as the software grows, expanding and

regulating it can be difficult, making it less suitable for large-scale

applications.

Though monolith architectural has many limitations, it is widely

used in many applications even in these modern times. One of the

biggest biggest application that uses it successfully till date is

WordPress.

Client-Server Architecture :

The client, which makes requests from the server, plus the server,

that responds to those requests, make up the system. Client-server

architecture is a typical design for developing software. The client

device is in control of the customer's interface in this design, which

is founded on the concept of assigning responsibility, while the

computing system is in responsibility of the company's logic as well

as information storage.

In a client-server architecture, the client sends an inquiry to the

underlying server, while the server processes and answers. A client

can be a desktop machine, computer, smartphone, or tablet as long

because it has connectivity with the server. Any gadget which is

capable of sending and receiving requests, such as a server for the

internet, databases server, or application server, can function as the

server.

Scaling is easy with client-server architecture, which is one of its

benefits. According to the volume of traffic it receives, the server

can simply scale up or down because it manages requests and stores

data.

4

This implies that the server may be scaled up to handle the increased

load as the system's user base expands. Similar to this, if fewer users

are logging on, the server's capacity may be lowered down to save

resources.

Another advantage of client-server architecture is enhanced

security. The server may contain security features like access

control, encryption, and authentication to prevent unwanted access

to private information because it manages the two components of

the organization's logic and the information storage.Web

applications frequently use a client-server design, which means the

user's device is a browser for the internet and the server that hosts

the application is a web server. In this scenario, the client sends

HTTP requests to the server, which returns HTML, CSS, and

JavaScript replies that the browser can utilise to render as user

interfaces. Since it makes it simple to install online programmes and

enables customers to connect to the software from every gadget with

a web browser, this design is very well-liked.

Online gaming is another instance of client-server architecture

where the server controls the playing scene and player interactions

while the client is a computer or gaming device.

With this situation, the client asks the server for permission to alter

the environment of the game in order that it may move the player,

engage in player interaction, and perform other tasks via a user

interface that is graphical.

Client-server architecture, in general, offers a strong and adaptable

foundation for developing software that is simple to scale, has

improved security, and efficiently communicates among clients and

servers. This concept is perfect for usage in online games, web

applications, and other systems that call for regular interaction

5

across the client and server.

Fig 1.1 : Client-Server Architecture

Test-driven Architecture :

Test-driven development (TDD), a methodology for writing

software, places a high emphasis on the implementation of

automated tests before writing any code. By initially creating a test

case, programmers use this method to create a particular piece of

functionality. The developer creates the smallest amount of code

required to pass the test once it has been created, then changes it if

needed to enhance its design.

Although TDD can be used independently, it is often implemented

in tandem with other development approaches like agile or extreme

programming. TDD's primary tenet is that it aids programmers in

6

creating more modular, comprehensible code that is simpler to

preserve over time. Here, tests of the project are written even before

the code of the application is written, and after the tests are written,

we write application code keeping those tests in mind, and we keep

using those tests in between development stages to check if our

development is on correct path or not.

 Fig. 1.2 : Test Driven Development

One of the key benefits of TDD is the ability to identify errors prior to the

7

development process. Developers can find bugs and faults early on by

building tests before writing code, lest they become more complex and

time-consuming to resolve. TDD also motivates programmers to create

more flexible and code that can be reused, which may eventually conserve

time and effort.

The communication among developers and other interested parties may

be facilitated via TDD. Developers can make sure that everyone

understands what the system should do by writing tests that specifically

describe the intended behaviour of the system. This will make it easy to

prevent misunderstandings and guarantee that the system satisfies the

needs of all stakeholders.

TDD can be helpful for creating an online application that must be both

extremely responsive and scalable. TDD provides developers with the

reassurance that the software runs smoothly and efficiently. TDD can be

used to find bugs and mistakes that could lead to application crashes or

other failures while an application is under load.

TDD is a powerful methodology that can improve computer system

efficiency and maintainability on a broad scale. TDD can assist

developers in creating better software more rapidly and with fewer errors

and defects by putting an emphasis on software testing automation and

modular architecture.

Even though this architecture has its own shortcomings, but this in some

niche use cases, TDD approach shines brighter than the other type of

modular architectures.

Event-driven Architecture :

The event-driven architecture (EDA) model of software development

significantly emphasises the use of events as the major conduit for data

transfer and interaction between software components. When an event is

8

generated by a third party, such as input from users, detectors, or other

software systems, the EDA system reacts to it. When these things happen,

the system can respond quickly to input from the user and change its

course to start performing specific tasks or functions.

The capacity of the event-driven architecture to easily handle complex,

dynamic systems is one of its main advantages. To create systems that

react rapidly and successfully to changing conditions and requirements,

events might be employed as the main route of communication.

When designing distributed systems and microservices, EDA is

frequently utilised since these systems need to be able to adapt to

alteration in demand, network conditions, and other variables.

The application of event-driven messaging systems in financial trading

platforms is one illustration of EDA in action. These systems need to be

capable of handling millions of transactions per second while also being

adaptable to changes in the market and other outside variables. The

platform can process incoming data quickly and effectively, send out the

required responses, and keep up with the hectic world of financial trading

thanks to its event-driven architecture.

9

Fig. 1.3 : Event Driven Architecture

The fact that EDA is horizontally scalable makes it excellent for

cloud-based applications. Systems can be built to rapidly grow up or

down in response to variations in demand by using event-driven

communications. It renders it feasible for drivers to manage

unexpected problems or abrupt surges in traffic without the

assistance of an operator.

However, there are several significant disadvantages to EDA.

Designing and administering event-driven systems is one of the

major challenges. The event-driven architecture cannot handle

events accurately and effectively without careful design and

preparatory work. Actions can be initiated from a variety of inputs

and can communicate intimately with other system components,

making event-driven systems difficult to debug and monitor.

In general, event-based architecture is a useful method for building

10

responsive, dynamic software systems. It works especially well with

cloud-based apps, microservices architectures, and distributed

systems. The system must be carefully designed and planned in

order to operate appropriately and successfully.

REST Architecture :

REST (Representational State Transfer), a software architecture

paradigm, is used to create web-based applications that

communicate via HTTP/HTTPS. It offers a clear procedure for

creating APIs for the internet that may be used by a variety of clients,

such as smartphones and web browsers.

Clients can communicate with assets in a RESTful framework by

using GET, POST, PUT, and DELETE standard HTTP methods.

Unique URIs are used to identify resources in RESTful

architectures. The architecture places a lot of focus on statelessness,

which means each request comes with all the information the server

needs to process it. RESTful services are therefore reasonably

scalable and simple to cache.

The simplicity and utility of REST are two of its main advantages.

It does not require any particular libraries or frameworks and can be

constructed with any programming language or environment that

supports HTTP. REST is also quite flexible and may be used to build

a wide range of applications, from simple CRUD operations to

complex

relationships and processes.

11

Fig 1.4 : REST Architecture

However, there are certain limitations to REST. It can be difficult to

decide on sophisticated data models and to manage transactions

involving various resources. Because REST is based on HTTP, it

may also be less efficient than alternative protocols for specific types

of interactions, such real-time messaging.

REST is a popular and incredibly flexible architecture for creating

web APIs and is a solid option for a great deal of software

programmes that must deliver information or amenities over the

internet.

MVC Architecture :

The well-known MVC software development paradigm divides an

application into three interdependent parts: Model, View, and

Controller. By encouraging the separation of concerns, this design

is used to enhance the excellence, reliability, and reusing of code.

The Controller operates as the interface among the Model and View

to handle user input and update the Model, whereas the Model

12

contains data and the company's logic and the View provides the

presentation layer.

Fig 1.5 : MVC Architecture

Web application development is one field whereby MVC

architecture is being successfully applied. In this case, the Model

stands for the application's data, the View for the way it looks, and

the Controller is responsible for its user input. As an example, think

of an online store. The Controller would deal with the user's

inquiries for queries and the procedure for adding items to the

shopping cart. While the Model keeps every detail about those goods

and their data, the View shows the user each product and their

details.

13

MVC architecture is sometimes preferred over alternative designs

such as a monolithic structure or microservices architecture. MVC

architecture offers greater flexible and adaptable than monolithic

layout, yet it is too complex to deploy for small programmes with

limited scalability. MVC design, on the other hand, is flexible,

scalable, and promotes code reuse, rendering it suitable for an

extensive variety of applications. Furthermore, the MVC

architecture becomes simpler to maintain and test than other

solutions.

Microservices Architecture :

Microservices architecture was an application development

framework that uses small, self-contained services to generate huge

systems. Each service operates as a separate process and

communicates with its peers via lightweight protocols, the vast

majority of that being HTTP resource APIs. This design's key

advantage is that it provides scaling, flexibility, and tolerance for

failures in massive amounts application distribution.

14

Fig 1.6 : Microservices Architecture

Advantages of Microservices architecture:

Scalability: Changes to one service have no effect on the others

because each microservice is built separately and has its own API.

This enables modifications and upgrades to a particular service to be

made without affecting the entire system.

Flexibility: Since each microservice is developed independently and

has its own API, changes to one service do not affect the others. This

makes it easy to make changes and updates to a single service

without impacting the entire system.

Fault tolerance: If one of the services fails in a microservices

design, other parts of the network will continue to operate. This is

due to the fact that each service is separated and may be restarted or

replaced independently.

15

Fig 1.7: Fault Tolerance

Faster development and deployment: Because every microservice

can be created and delivered individually, new features and upgrades

may be delivered more quickly. This facilitates responding to shifts

in consumer demands or market conditions easy.

Better scalability of teams: Teams of fewer people can be in charge

of particular services with a microservices design, allowing them to

function better efficiently and autonomously. This enables more

interaction, quicker decision-making, and faster development.

Microservices design is superior to alternative architectures in the

following cases:

Netflix is a well-known example of microservices architecture.

16

Spotify has more than 200 million customers in over 190 countries

and provides more than one billion minutes of streaming content

each week. With such a massive user base and complicated business

requirements, Netflix required a scalable infrastructure that could

react to changing market conditions.

Netflix continues to be enabled to continually develop and enhance

its services since deploying microservices architecture in 2009.

When Netflix opted to reach global markets, it had to cope with a

wide range of spoken languages, currency pairs, and payment

systems. Netflix was able to swiftly develop and launch additional

services to suit these requirements due to its microservices

methodology.

For fault tolerance, Netflix also employs a microservices model. If

a certain service fails, the rest of the system can continue to function,

letting users continue viewing films and TV episodes without

interruption.

Microservices architecture has become a more and more common

strategy for large-scale, complicated applications due to its

versatility, scalability, and fault tolerance. Individual independence

in service creation and deployment facilitates speedier development

and innovation. Fault acceptance and scalability are improved by

using lightweight communication strategies and service isolation.

Netflix is a great example of a company that has effectively adopted

microservices design, allow it to react to shifting market conditions

and evolve swiftly.

1.2 Problem Statement

The problem statement is to design an application to clearly show

the advantages of Microservices Architecture.

17

Requirements of Web app :

We need to develop a link sharing application which could be used

for sharing usefullinks/documents amongst a group of subscribers.

Users can create new topics or subscribe to existing topics. A topic

can be either private or public. A public topic is visible/open for

subscription to every user. A private topic can be subscribed only

through an invitation sent by an existing subscriber. The application

should provide a solution to following stories:

1. A user should be able to login.

2. A new user should be able to register. An active valid user should

be able to login with correct credentials.

3. A user should be able to reset his/her password by clicking on the

forgot password link.

4. User can create a new topic and he will be automatically

subscribed to it with seriousness(SERIOUS, CASUAL,

VERY_SERIOUS) of Very Serious. The topic can be private or

public. Name of the topic should be unique per user.

5. User can subscribe to an existing public topic.

6. User can specify his/her seriousness to a particular topic.

7. Subscribed users can send invites for a public or private topic.

8. The user should be able to browse all the public topics.

9. The user should be able to add a resource to a subscribed topic.

10. The user cannot be deleted.

11. The user should be able to mark a resource as read/unread.

18

12. Only a Creator of a resource or admin can delete a resource.

13. Only a Creator of a topic or admin can delete a topic. Its resources

should also be deleted irrespective of the ownership status or

resources.

14. User can rate a resource. Most subscribed topic will be a trending

topic.

 1.3 Objectives

The objective of the project titled Microservices Architecture with

Spring Boot is to design and develop a microservices-based

architecture for a software application using Spring Boot

framework. The project aims to demonstrate the benefits of

microservices architecture over traditional monolithic architecture

by providing a modular, scalable and resilient system that can handle

a large amount of traffic and data.

The project will focus on building a web application that provides

various functionalities to the users. The application will consist of

multiple microservices, each responsible for a specific functionality.

The microservices will communicate with each other through well-

defined APIs, and each microservice will be independently

deployable and scalable.

The key objectives of the project are:

1. Design an Application using Microservices Architecture: The first

objective of the project is to design a microservices-based

architecture that is modular, scalable, and resilient. The architecture

will be designed to support the separation of concerns, allowing each

microservice to be independently developed, tested, and deployed.

The design will take into consideration the key principles of

19

microservices architecture, such as loose coupling, high cohesion,

and autonomy.

2. Develop Microservices: The second objective of the project is to

develop microservices using the Spring Boot framework. Spring

Boot provides an easy-to-use, lightweight, and opinionated approach

to building microservices. The project will leverage the features of

Spring Boot, such as auto-configuration, embedded servers, and

dependency injection, to build efficient and scalable microservices.

3. Implement API Gateway for necessary routes: The third objective

of the project is to implement an API Gateway that will act as a

single entry point for all the microservices. The API Gateway will

provide various functionalities such as authentication, routing, and

load balancing. The project will leverage Spring Cloud Gateway, a

lightweight API Gateway built on top of Spring Boot, to implement

the API Gateway.

4. Implement Service Discovery: The fourth objective of the project

is to implement service discovery using Spring Cloud Netflix

Eureka. Service discovery is a critical component of a

microservices-based architecture as it allows the microservices to

discover and communicate with each other dynamically. Eureka

provides a simple and efficient way to implement service discovery.

In conclusion, the objective of the project titled "Microservices

Architecture with Spring Boot" is to design and develop a

microservices-based architecture for a web application using Spring

Boot based framework. The project aims to demonstrate the benefits

of microservices architecture over traditional monolithic

architecture.

20

1.4 Methodology

To make the required Map, we need to create following tables in our domain

classes so that we

can make our web application according to given requirements. We need to map

our tables carefully to make sure that when one record in a table is deleted then

we also all the records on other tables that are dependent on deleted record.

 Fig 1.8 : Domain Classes Structure

Hence, As shown in above table, mapping of our tables will be as shown :

User Table → has many [Topics, Resources, ReadingItems, ResourceRatings,

Subscriptions]

Topics → has many [Resources, Subscription]

Subscription → belongs To [User, Topics]

Resource → has many [Reading Item]

Resource → belongs To [Topic]

Reading Item → belongs To [Resource]

Resource Rating → belongs To [User]

Link Resource → extends Resource

Document Resource → extends Resource

21

To create a domain class inside our application :

 → To go terminal

 → Write : grails create-domain-class user

Above command will create a user class in domains directory in our application,

Hibernate will create a mapped table in database, that matches user domain

class.

Fig 1.9: User domain class

After that, the URLs are routed using a number of controllers, and

inside of every controller, we are given the opportunity to build an

array of methods (also referred to as actions), which can be then used

to carry out a variety of tasks. After building a controller, you must

offer services to various controls that comply with the requirements.

The service in Grails is an object that divides programming

functionality and gives other sections of the app's code a method to

access it. To provide corporate logic and integrate with various

software components such controllers and data access objects.

22

All Domain Classes :

Topic Class :

Fig 1.10 : Topic Domain Class

23

Resource Domain Class :

Fig 1.11 : Resource Domain Class

Subscription Domain Class :

This class contains all the information regarding subscription of all the

users.

24

Fig . 1.12 : Subscription Domain Class

1.5 Organisation

Five chapters make up the substance of this project report. Several research

articles that are related to this project activity are included in the literature

review, which is detailed in chapter 2 after this introduction chapter. The Second

chapter provides an overview of the various works on similar domains that was

carried out previously by various authors. The third chapter gives an overview

of the proposed model about how the web application architecture is specifically

designed.

25

Chapter 2

 LITERATURE SURVEY

 2.1 Introduction

 Subscription-Based Web Application

Subscription-based web apps have grown in appeal in the past

decade because they provide developers with a long-term business

strategy while giving significant value to clients. Customers may

subscribe to the app's contents or services, and the creators may

charge an annual subscription fee for ongoing access. Netflix serves

as a renowned web programme that operates on a subscription basis.

Netflix is an audio streaming provider that charges clients a monthly

subscription fee to view its huge library of films and TV series. In

contrast, Spotify is a streaming music service that asks for an annual

fee to having access to its extensive song library. These apps have

grown in favour since they make it easy and affordable for clients to

access information.

Subscription-based internet applications have increased in

popularity over the last decade because they give programmers with

a strategy for the future while providing significant advantages to

clients. Clients may subscribe to the application's contents or

services, and the producers may charge a yearly cost for continuous

access. Netflix is a well-known web programme that runs on an

ongoing subscription basis. Netflix is a multimedia streaming

service that charges customers a fee per month to access its massive

repertoire of films and TV shows. In contrast, Spotify serves as a

music streaming service that charges an annual fee for access to its

huge song catalogue. These apps have gained in popularity because

they make it simple and economical for clients to obtain information.

26

Users will be able to subscribe to topics of interest in the proposed

system and will be notified when new documents on those topics are

uploaded. The concept of topic subscription is well-known on social

networking sites such as Facebook, Twitter, and LinkedIn. Users can

subscribe to or follow themes in order to receive notifications when

new content is published to specific topics. This programme keeps

users informed of the most recent trends and news in their area.

The possibility for users to add resources to the topics to which they

have subscribed is another feature of the proposed system. This

function is comparable to content sharing on social media platforms

like Reddit and Pinterest.

Users can share links and documents linked to themes with other

users who have subscribed to similar topics. This encourages users

to collaborate by sharing information and resources.

The suggested system also includes an administrator user with the

ability to delete subjects, resources, and people. This skill is required

to ensure the quality and integrity of the platform's content. The

admin user has the ability to delete any unnecessary or unsuitable

content or individuals, ensuring that the platform remains a

trustworthy source of information for its subscribers.

27

Chapter 3

 SYSTEM DESIGN AND DEVELOPMENT

3.1 Introduction

Software architecture for our Microservices based web application

is User Login, Topic Creation, Topic Subscription, and Link

Resource Sharing and Document Link Resource and some more

features.

Users have a place to exchange information and find resources

related to various topics thanks to the proposed programme. People

can register on the website and contribute their own subjects, to

which other users can subscribe. After enrolling, users can add

webpages and papers from universities as resources to the themes

they've selected to follow. Trending topics and subscriptions will

also be shown on the user dashboard, and an admin user will have

the opportunity to delete resources, persons, or topics. Users can also

add, update, and remove their own content and subjects. Every time

a new asset is added to a subscribed subject, a dashboard inbox is

also updated.

User Management:

The initial step in system design is the development of a user

management system. This will involve processing of passwords,

user authoriisation, and login. Users should be able to create new

accounts and log in to the platform with those credentials. Passwords

should be securely stored using a hashing method. It should be

possible to reset forgotten passwords using the system's email

confirmation.

28

Topic Creation:

A user ought to be able to add a new subject after logging in. Every

topic must have a name, a description, and tags. By browsing at

prevalent subjects on the overview page, users can find topics that

interest them.

Resource Sharing:

Resources must be able to be added by users to the topics to which

they have subscribed. For instance, resources could include links to

other websites or documents that have been contributed to the site.

Users must have the option to edit or remove materials that they have

submitted.

Dashboard:

The user dashboard must display the user's subscribed topics,

trending topics, and reminders. Alerts must be updated each time an

additional resource becomes available to a subject which is currently

subscribed to.

 Subscription List:

The option for members to subscribe to articles made by other users

of the app forms one of the main features of the application. Users

can utilise this feature to stay current on resources and information

relevant to their interests. A summary of how the list of subscribers

feature functions is provided below:

1. Subscribing to a Topic: Users have the option to subscribe to

topics they are interested in. On the subject matter page, select the

"Subscribe" button to accomplish this.

2. Managing Subscriptions: From their dashboard, users may control

their subscriptions. They can quickly unsubscribe from any topic if

they continue to want to receive updates by looking at this list of

every subject they have subscribed to.

3. Hot subjects: On the dashboard, the application will also show a

list of the most popular topics at the moment. The number of

29

subscribers indicates that people are currently interested in these

topics.

4. Inbox: Users who have subscribed to a topic will receive a

notification in their inbox whenever a new resource is submitted to

that topic. Users will constantly be updated on the latest information

and resources relevant to their interests thanks to this.

Implementation Details:

The application will need to keep track of which users have

subscriptions to which subjects in order to execute the subscription

list feature. A "Subscription" domain class that can be created in

Grails will include the following fields to accomplish this:

- user: a reference to a subscribed user - subject: a reference to a

topic that is subscribed to Unique subscription identification (id)

A new Subscription object will be created and saved to the database

each time a user subscribes to a topic. Similar to this, the associated

Subscription object will be removed when a user unsubscribes from

a subject.

The application must count the number of subscriptions for each

topic and sort them in descending order in order to provide a list of

the most popular topics on the dashboard.

This can be done using a SQL query, such as:

SELECT topic_id, COUNT(*) AS subs_count

FROM subscription

GROUP BY topic_id

ORDER BY subs_count DESC

When server-side polling and AJAX are used together, the

application may provide inbox alerts. The server will notify all users

who have subscribed to it whenever a new resource is published to

that subject. Following that, the new message in the inbox will be

shown using client-side JavaScript code.

30

The app's subscription list function, which enables users to stay up

to date on news and information relevant to their interests, is one of

its key features. The application is able to offer a seamless and

simple user experience by integrating this feature and making use of

Grails and other web technologies.

Trending Topic List :

The subjects that are currently sparking the most user discussion are

known as trending topics. A list of subjects can be generated based

on the amount of subscribers, views, and user communications by

researching user behaviour and using this capability.

 For Trending topic list implemention, We will be following logic :

1. Data gathering: We need to know the amount of subscriptions,

views, and user interactions for each topic. You can accomplish this

by having the application log user behaviour.

2. Data analysis: After acquiring information on user behaviour, we

can review it to determine the subjects that are the most popular.

Several data analysis techniques, such as clustering and

classification, can be used to identify the most popular topics.

3. Making a list of trending topics: Data analysis can be used to

generate a list of hot topics. The list may be filtered by subscribers

or views and frequently updated to ensure that the most well-liked

topics reflect the most current user activity.

The trending topic list is a dynamic feature that changes over time

in reaction to user behaviour, so it's vital to keep this in mind. The

app will be able to give users an overview of the topics being

addressed at the time and allow them to keep up with the most recent

lectures by integrating this capability.

Visitors can browse the list of popular themes to discover new topics

and resources. Users might discover new resources and gain new

knowledge. This may lead to more user interaction and a vibrant user

31

community surrounding the programme.

To make the list of popular subjects more helpful, we might also add

further information, such the number of resources available for each

issue and the number of ongoing debates. People might thus find it

simpler to locate and communicate with the communities that are

concentrated on the issues that matter to them the most.

In general, including the trending topic list in the application can be

beneficial because it enables users to find new resources and topics

while giving them a rapid overview of the most popular topics being

discussed at the moment.

 3.2 GRAILS :

Grails is a flexibility based platform. A variety of applications,

including those that leverage microservices, can be created using the

Spring Boot Grails framework.

Applications are built using a microservices architecture, which is

made up of numerous tiny, autonomous services, each of which is in

charge of a specific functionality. Because of correctly specified

APIs and protocols, these services can interact with one another and

work together to deliver a holistic application experience.

Grails is an appropriate choice for developing microservices because

of the tools and capabilities it offers. It allows, for instance, the usage

of a number of microservices frameworks that offer tools for

creating, deploying, and maintaining microservices-based

applications, such as Spring Cloud and Netflix OSS.

Additionally, Grails facilitates the development of small,

autonomous microservices that are simple to grow and deploy.

Numerous programming languages can be used to create these

microservices, and they can communicate with one another via

message queues or REST APIs.

32

The following extra Grails functionalities are essential for

developing microservices:

1. Communication with other systems and services that is quick and

easy The modules and plugins offered by Grails allow developers to

easily link their microservices to other applications and systems.

This provides support for REST, SOAP, and JMS in addition to

compatibility for other well-known APIs and protocols.

2. Grails is the ideal technology for building microservices because

of its speed and light weight. Its memory footprint is also little.

Cloud systems' rapid startup times and relatively minimal memory

footprint make scaling up and down straightforward.

3. Support for containerization: Grails offers support for the use of

containerization tools like Docker and Kubernetes, which make it

easy to package and deploy microservices in environments that use

containers.

4. Effective control and direction For managing and keeping track

of microservices, Grails provides a number of capabilities, including

support for distributed tracing, logging, metrics collection, and

visualisation.

Overall, Grails provides a solid and flexible platform for developing

microservices-based systems. Thanks to its support for

microservices frameworks, lightweight architecture, and simple

connection with other systems and services, it is a fantastic choice

for developing scalable and dependable microservices-based

applications.

Online application development has been sped up and made easier

with the help of the Grails web application framework. Groovy, a

programming language, serves as its foundation. Since its first

release in 2006, it has been maintained by The Grails Association.

The framework's creator, Graeme Rocher, aimed to provide a novel

33

approach to creating web applications by combining the ease of

Ruby on Rails with the flexibility and power of the Java Virtual

Machine (JVM). He started working on Grails in 2005, and the

initial version was released in 2006.

By using Grails, web application developers may rapidly and simply

design apps. Startups and small to medium-sized businesses might

tremendously benefit from it because they require initiatives that can

be developed and implemented fast.

The following are just a few of the many benefits that make Grails a

popular option for web development.

- Convention over configuration: By providing default settings and

conventions that developers may utilise without having to manually

configure everything, Grails adheres to the "convention over

configuration" paradigm.

- Easy integration: Grails makes it straightforward to mix a range of

technologies, including databases, templating engines, and security

frameworks.

- Rapid development: Grails' many built-in features and plugins

allow programmers to quickly design web applications.

- Familiar syntax: Developers are familiar with Groovy, a Java-like

programming language that is utilised by Grails.

Only a handful of the many advantages of Grails, which make it a

popular choice for web development, are briefly discussed in this

article.

- Convention over configuration: Grails adheres to the "convention

over configuration" paradigm by offering default options and

conventions that developers may use without having to manually

configure everything.

- Effective fusion: The Grails framework streamlines the fusing of

several technologies, including as databases, templating engines,

34

and security frameworks.

– Quick development Programmers may quickly construct web apps

with Grails' many built-in capabilities and plugins.

- Familiar syntax: Grails uses Groovy, a Java-like programming

language.

- Efficient fusion: The Grails framework makes it simple to meld

several technologies, including as databases, templating engines,

and security frameworks. - a thriving developer community that

nurtures, encourages, and develops framework extensions. This

suggests that developers may design their apps using the approaches

and tools they are already accustomed to. There is a big and

supportive developer community for Grails. Developers will find it

easier to learn how to utilise the framework and apply it, which will

maintain it up to date.

Grails is a dependable and adaptable web application framework

with a number of advantages over rival frameworks. It is an enticing

option for developers who want to make web applications quickly

and easily because of its convention over configuration approach,

simplicity of integration with other technologies, and promise of

rapid development. It is a great option for enterprises that need to

manage a lot of traffic and data because of its performance and

scalability. The Grails framework is expected to become more well-

known in the upcoming years due to its robust development

community and expanding selection of plugins and utilities.

GRAILS GORM :

Grails GORM (Grails Object-Relational Mapping), the foundational

component of the Grails web application framework, is a dependable

and approachable database access and persistence strategy. This

35

essay will outline the background, salient features, and benefits of

GORM.

GORM was initially developed by Graeme Rocher, who also

developed the Grails framework. The primary objective of GORM

was to provide a simple and user-friendly means of accessing and

persisting data to a relational database without the need for laborious

SQL queries or JDBC programming. GORM relies on top of

Hibernate, a popular Java ORM framework, to provide a

straightforward, high-level API that enables developers to work with

relational databases in a more natural way.

Main Features of GORM:

1. Domain-Driven Design (DDD): GORM follows the Domain-

Driven Design (DDD) methodology, emphasising the need of

building software based on in-depth business domain knowledge.

Developers can use GORM to generate domain objects that

represent the entities of the business domain and automatically map

to database tables.

2. Object-Relational Mapping: The GORM framework includes a

powerful ORM layer that immediately transforms domain objects

into database tables and vice versa. Developers don't need to write

any SQL queries or JDBC code to communicate with the database.

Instead, they can use GORM's user-friendly API to save, edit, and

remove objects from the database.

 3. Querying: Using the powerful GORM Query Language (GQL),

programmers can construct complex queries on the database.

The sophisticated and versatile query operations made possible by

GQL include filtering, sorting, and aggregation.

4. GORM provides a useful technique for using dynamic finders to

query the database. Developers can build searches based on the

name of the invoked method by using dynamic finders. This method

eliminates the need to manually build complex SQL queries.

5. Transactions: Because GORM supports transactions,

36

programmers can aggregate numerous database operations into a

single transaction. By ensuring that all actions are either committed

or rolled back concurrently, this helps to ensure database

consistency.

Benefits of GORM:

1. Database-driven applications may be created quickly and

effectively by developers thanks to GORM's user-friendly API and

powerful ORM features. By removing the requirement for writing

intricate SQL queries or JDBC code, GORM speeds up development

and increases productivity.

2. Versatility: GORM is quite versatile and works with a variety of

databases, including MySQL, PostgreSQL, Oracle, and SQL Server.

MongoDB and Redis are supported NoSQL databases, while GORM

is a flexible option for creating contemporary online software.

3. Maintainability: Because GORM uses a domain-driven design

approach, changing database schemas over time is simple. The

domain classes, which are simple to read and edit, define the schema.

The automated structure creation and update features of the GORM

make managing database schema very simple.

4. Performance: Thanks to its clever caching techniques, effective

querying, and enhanced SQL generation, GORM offers great

performance. The application's overall efficiency can be increased

by drastically reducing the amount of database accesses thanks to

the GORM caching features.

5. Integration with Grails: GORM is a crucial component of the web

application framework Grails, which provides a lot of capabilities

and tools for creating modern web applications. It is simple and

quick to construct full-stack web-based applications using GORM

and Grails together.

To sum up, Grails The robust and user-friendly GORM framework

for database access and persistence provides a variety of capabilities

and benefits for creating modern web applications. The GORM's

37

domain-driven methodology, strong ORM capabilities, and flexible

query language.

3.3 AJAX

The web development method known as AJAX allows webpages to

be modified asynchronously without necessitating a full page

refresh. It is also known as asynchronous JavaScript and XML at

times. XML, HTML, JavaScript, CSS, and other web technologies

are a handful that have been combined. Around the turn of the

century, AJAX became well-known for its ability to improve user

experience by making websites more engaging and responsive.

AJAX was required because of the limitations of traditional web

development techniques, which required a complete page refresh for

each client interaction with a website. As a result, web user

interaction and intuitiveness reduced while page load times

increased.

For instance, a user would need to submit an application and wait

for the server to respond if they wanted to see if a username was

easily accessible on a registration page. The user experience would

be time-consuming and challenging as a result.

With AJAX, which permits asynchronous connections to the server

that update certain sections of the web page without adding requiring

a full page reload, this issue is resolved. Because adjustments to the

page may be made in real time without experiencing any discernible

lag, the result is a more flexible and imaginative user experience.

One of AJAX's main benefits is the improvement of web application

performance. By delivering asynchronous requests to the server,

AJAX allows programmers to get data and modify websites without

the need for a full page refresh. The outcome is less time for loading

and an enhanced user experience.

Another benefit is the ability to create interactive and dynamic web

apps using AJAX. Web designers can construct dynamic, real-time

38

websites with AJAX that don't require refreshing. This enables the

creation of web applications that function more like native ones,

with fluid transitions and immediate feedback.

In modern applications, many authentication system's uses AJAX,

to tell users if the unique username they want to take for themselves

in available or not, In this particular feature, whenever user stops

typing in input text field, An AJAX method, sends a request in

Database to check whether given database is available or not. And if

its not available, we show a warning message to user saying, Please

change your username.

AJAX offers several useful application possibilities in addition to its

technological benefits. For instance, e-commerce systems usually

offer up-to-date details on product availability and pricing. Users of

social networking applications can view real-time account

modifications and conversation thanks to its utilisation.

Real-time collaboration is essential for many web-based

productivity tools, such as Google Docs, which frequently uses

AJAX. Users of this software can simultaneously modify the same

page thanks to AJAX, and any changes are instantly visible to

everyone.

AJAX is frequently regarded as more effective and user-friendly

than other web development strategies. Anytime an individual

interacts with a normal web app, the entire page must be refreshed.

Users may find this tedious and slow. Thanks to AJAX, users can

now access page updates instantly and without any discernible lag,

which enhances the effortlessness and simplicity of their surfing.

AJAX has greatly changed the online development business since it

allows programmers to design fluid, active, and adaptive web-based

programmes. That is a preferred choice for engineers from a variety

of industries because it may enhance the accessibility and

performance of web apps.

39

 3.4 Groovy

The Java Virtual Machine (JVM) supports the dynamic, object-oriented

programming language known as Groovy. It is frequently used to write

scripts, create automation tools, and create web applications since it is

intended to be succinct, expressive, and versatile. Groovy is a popular

option for Java developers because it combines the simplicity of

scripting languages like Python and Ruby with the strength and

performance of Java.

Java syntax is comparable to Groovy syntax, however Groovy has a

number of improvements and simplifications. For instance, Groovy

allows closures, which are code snippets that, like anonymous functions

in other languages, can be passed around and executed at a later time.

Additionally, Groovy comes with built-in support for JSON, collections,

and regular expressions, making it simpler to work with these popular

data types.

The integration of Groovy with Java is one of its important

characteristics. Groovy can directly access Java libraries and

frameworks, and Java code can call Groovy code and vice versa.

Because of this, integrating Groovy into Java projects that already exist

or using Java libraries in Groovy code is simple.

Additionally, Groovy has a number of features that make it a good

choice for web development. It features built-in support for generating

and consuming web services, and numerous prominent web

frameworks, such as Grails and Ratpack, are developed on top of

Groovy.

Overall, Groovy is a robust and flexible language that combines the

power of Java with the ease of use of scripting languages. Because of

how easy it is to use and how well it integrates with Java, it is a popular

choice for developers working on a variety of projects.

40

The following are some advantages of using the programming language

Groovy

1) Simple and intuitive syntax makes Groovy simple to learn and use,

especially foremost with a background in Java or other related

languages.

2) Type verification occurs at runtime rather than during compilation

because Groovy is a dynamically typed language. As a result, it is simple

to create code quickly and modify it as necessary.

3) Supports both the functional and object-oriented paradigms of

programming Groovy supports both the functional and object-oriented

paradigms of programming, letting developers select the strategy that

best suits their requirements.

4) Integration with Java is seamless because to Groovy's full

compatibility with Java and ease of integration with existing Java code,

libraries, and frameworks.

5) Rich set of features: Groovy provides a rich set of features, including

closures, dynamic typing, operator overloading, and support for both

static and dynamic compilation.

6) Concise and expressive syntax: Developers can write code in Groovy

that is shorter and simpler to comprehend than comparable Java code

thanks to the language's concise and expressive grammar.

7) Rapid development: Groovy is well suited for rapid prototyping and

development because of its dynamic nature and support for meta-

programming, which enable developers to write code more quickly.

8) Strong support for testing: Groovy has strong support for testing, with

built-in support over unit evaluation and integrated testing, and can be

easily integrated with popular testing frameworks like as JUnit and

Spock.

9) Overall, Groovy is a powerful and flexible language that offers many

41

advantages to developers, particularly those working on projects that

require a high degree of flexibility and rapid development.

 Groovy Collection

Groovy uses collections to organise and manage sets of linked things.

Groovy collections are comparable to Java collections, yet they give

significant advantages and simplifications.

The following are some essential qualities of Groovy collections:

Groovy collections can be used to handle and store any type of object

because they are meant to be strong and adaptable.

1) Improved syntax: Groovy has support for collection literals, range

operators, and the spread operator, making it simple to create and use

collections.

2) Built-in support for popular data types: Groovy collections give built-

in support for standard data types such as lists, maps, and sets.

3) Improved iteration: The each(), eachWithIndex(), and collect()

methods are all supported by Groovy's improved iteration capabilities

for collections.

4) Groovy collections' support for closures makes it simple for

developers to carry out complicated operations on collections.

5) Groovy offers immutable versions of popular collections like lists and

maps, which can be helpful in circumstances where data shouldn't be

changed.

6) Fluent APIs: Groovy collections provide a fluent API, allowing

developers to chain together multiple operations on a collection in a

single statement.Thanks to their simplified syntax, enhanced iteration

capabilities, and support for closures, they are ideal for a range of tasks,

from simple data manipulation to complex data processing.

42

7) The storage and manipulation of groupings of related objects is done

in Groovy via collections. Groovy collections are comparable to Java

collections, although they provide various advantages and

simplifications.

Listed here are a few of the most popular Groovy collections:

1) Lists: Lists are ordered collections that can contain duplicate

elements. By using their position in the list, they can be indexed and

accessed.

2) Collections called maps are used to store key-value pairs. A unique

key can be used to store and retrieve data using them.

3) Sets: Unordered collections with distinct elements are known as sets.

Duplicates in a collection can be eliminated using them.

4) Ranges: A range is a set of values that spans an initial and final value.

A run of numbers or characters can be represented by them.

5) Arrays: Arrays are collections with a fixed size that can hold a certain

kind of data.

6) Collections called queues keep track of the sequence in which

elements were added. They can be used to implement a first-in-first-out

(FIFO) data structure.

7) Collections called stacks keep track of the sequence in which their

elements were added.

8) Stacks are collections that record the order in which its elements were

added. They can be used to implement the LIFO data structure, which

stands for last-in, first-out.

9) Groovy collections make working with groups of related objects

powerful and flexible. Thanks to their reduced syntax, enhanced

iteration capabilities, and support for closures, they are ideal for a

43

variety of tasks, from fundamental data manipulation to sophisticated

iteration.

Groovy Closure

Groovy collections make working with groups of related objects

powerful and flexible. Thanks to their reduced syntax, enhanced

iteration capabilities, and support for closures, they are ideal for a

variety of tasks, from fundamental data manipulation to sophisticated

iteration.

The Java Virtual Machine (JVM) is the platform on which Groovy, a

dynamic language, runs. It was developed by James Strachan in 2003

and is frequently contrasted with Java, a statically typed language that

also utilises the JVM. Support for closures is one of the primary

characteristics that separates Groovy from Java.

A section of code that can be used as a variable is known as a closure. It

can be returned from a method, allocated to a variable, or passed as a

parameter to a method. Closures are frequently used to package

transferable behaviour within programmes.

Closures have been a part of programming languages for a very long

time. Since their initial introduction in Lisp in the late 1950s, they have

been implemented into a number of other languages, such as Python,

Ruby, and JavaScript. Groovy implements closures in a unique way that

has had a significant impact on the programming world.

Groovy support for closures has had a big impact on the programming

community. Closures have become more popular in other languages like

Java and C# as a result of Groovy success with them.

 Groovy VS Java

It's customary to contrast Java, a statically typed language that also

makes use of the Java Virtual Machine (JVM), with Groovy, a dynamic

44

language that runs on the JVM. The following are the primary

differences between the two:

1) Groovy's syntax is less convoluted and shorter than Java's.

Additionally, it provides a number of features, such as closures and

dynamic type, that Java does not.

2) Because Java is a statically typed language, its type system demands

that variable types be declared at build time. Variable types are chosen

dynamically in Groovy since it has a dynamic typing system.

3) Groovy offers support for metaprogramming, which enables

programmers to alter the behaviour of classes while they are running.

Using this, it's possible to give current Java classes new capabilities.

4) Writing unit tests and integration tests for apps is made simpler by

the built-in testing facilities provided by Groovy.

5) Performance: Because Java is a compiled language and has a stricter

type system than Groovy, it runs faster in general. Groovy's dynamic

nature, on the other hand, can make the language more adaptable and

make writing rapid code easier.

6) The choice between Java and Groovy for a project will primarily

depend on its requirements and the preferences of the development

team. Both languages have benefits and drawbacks overall.

 3.5 Hibernate

A Java-based object-relational mapping (ORM) framework called

Hibernate offers a high-level, object-oriented API for interacting with

relational databases and lets developers map Java objects to database

tables. It was developed to reduce the need for manually writing JDBC

(Java Database Connectivity) code while developing Java applications

that use databases.

45

Hibernate is an open-source technology that is commonly used by

enterprise Java applications. It supports several databases, including

MySQL, Oracle, PostgreSQL, and SQL Server, and offers a reliable and

adaptable method for working with databases.

Hibernate's ability to abstract away much of the low-level JDBC code

needed to communicate with databases is one of its key advantages.

Instead, a high-level, object-oriented API is available for developers to

use in order to interface with the database, speeding up, streamlining,

and reducing the likelihood of mistakes.Hibernate also provides a

variety of other capabilities and benefits, including:

1) Support for caching and lazy loading: Hibernate provides a powerful

caching mechanism that can help to improve application performance

by reducing the number of database queries required. Additionally, it

supports lazy loading, which means that rather than loading all data at

once, data is only loaded from the database when it is actually required.

2) HQL (Hibernate Query Language), a robust object-oriented query

language provided by Hibernate, enables programmers to write queries

in terms of Java objects rather than SQL tables and columns.

3) Hibernate offers support for transactions, enabling programmers to

combine many database operations into a single, atomic unit of work.

4) Integration with other frameworks: Spring and Struts are two notable

Java frameworks that Hibernate can be readily connected with.

5) All things considered, Hibernate is a strong and adaptable ORM

framework that may assist programmers in creating database-driven

applications more rapidly, effectively, and with less prone to

errors.Instead of loading all data at once, data is only pulled from the

database when it is actually needed.

46

 Hibernate Benefits

Object-Relational Mapping (ORM) framework for Java known as

Hibernate offers a number of advantages, such as:

1) Simplified database access: Hibernate reduces the amount of code

needed for database operations by abstracting away the low-level

complexities of working with a database.

2) Hibernate's object-oriented design allows developers to work with

Java objects rather than SQL statements, enabling a more natural and

simple way to interact with data.

3) Enhanced productivity: By eliminating the need for manual SQL

writing, Hibernate's automatic mapping of Java classes to database

tables can help developers save time and effort.

4) It is feasible to create applications with a single codebase that can be

utilised in a variety of circumstances thanks to Hibernate's support for

several database platforms.

5) Performance: Hibernate provides efficient caching techniques as well

as other performance improvements that can help speed up database

operations.

6) Data consistency: Hibernates transaction management service

ensures that database operations are carried out consistently and reliably.

7) Scalability and maintenance: Because to Hibernate, database

applications are simpler to scale and maintain because the framework

clearly distinguishes between code for the application and code for the

database.

 Linux

Based on the Unix operating system, Linux is a free and open-source

operating system. Since its creation by Linus Torvalds in 1991, it has

grown to be among the most widely used operating systems worldwide,

especially in the server and embedded systems sectors. Linux is widely

used by developers, companies, and people worldwide and is renowned

47

for its reliability, security, and flexibility.

With a variety of distributions readily available that are tailored for

particular use cases, including servers, desktops, and embedded

computers, Linux is also renowned for its adaptability. The most well-

known Linux distributions include CentOS, Fedora, Ubuntu, and

Debian.

The security of Linux is another important aspect. Due in part to its

open-source nature and developers' ability to swiftly fix security flaws,

Linux has a reputation for being more safe than other operating systems.

Additionally, Linux contains a number of built-in security mechanisms

that assist in preventing unauthorized access to sensitive data, such as

file permissions and access controls.

Last but not least, Linux is renowned for its adaptability. A variety of

software, including programming languages, development tools, and

web servers, is accessible for installation. Because of this, it makes for

the perfect platform for developers and companies looking for a versatile

and customized operating system.

Generally speaking, Linux is a strong and adaptable operating system

that provides a number of advantages, such as stability, security, and

flexibility. It is widely used by companies, developers, and people all

around the world and has a sizable and vibrant developer community.

Using Linux as an operating system has a lot of benefits. Some of the

main benefits are as follows:

Cost: Linux is free and open-source, therefore using it does not need

purchasing a licence. Particularly for enterprises that must install the

operating system on numerous machines, this might result in significant

cost savings.

Flexibility: Linux offers a wide choice of distributions that may be

customised to meet a variety of requirements. It is therefore the perfect

platform for programmers and companies that want a versatile and

48

adaptable operating system.

Security: Linux has a reputation for being secure, and it has a number of

built-in security mechanisms, such file permissions and access controls,

to help prevent unauthorised access to sensitive data. Additionally, as it

is open-source, programmers can immediately repair security holes as

they are found.

Stability: Linux has a reputation for being able to operate for extended

periods of time without crashing or needing to be restarted. Businesses

that need to operate crucial applications continuously may find this to

be of special importance.

Performance: Linux is renowned for its great performance, and it can

run on outdated hardware while still delivering quick performance on

even entry-level computers. This makes it the perfect platform for

companies and people who want to make the most of their hardware.

Community: The Linux operating system has a sizable and vibrant

community of users and developers who are continually striving to

enhance the system and support one another. For companies and people

looking for assistance or advice on using Linux, this community can be

a useful resource.

All things considered, Linux is a strong and adaptable operating system

that provides a number of advantages, including cost savings,

customizability, security, stability, performance, and community

support. Businesses, developers, and people all over the world use it

extensively.

 3.6 GSP

GSP (Groovy Server Pages) is the default view technology for the Grails

framework. GSP enables developers to create dynamic web pages that

are easily produced from the controller using the model-view-controller

(MVC) paradigm.

49

By combining HTML and Groovy code to generate GSP sites,

developers can take use of the language's flexibility and power while

still adhering to approved web development standards. Manage user

interactions, check user input, and show data from a controller using

GSP pages.

One of the key features of GSP is the use of tag libraries, which provide

an easy way to add complex functionality to a web page without having

to write custom code. Use the built-in tag libraries that come with Grails,

such as the form tag library, to create HTML forms that are

automatically filled with data from the controller.

GSP pages can be readily modified using CSS and JavaScript by

developers to create complex, interactive user interfaces. By defining a

uniform layout for many pages using the layout templates provided by

GSP, the amount of duplicate code that needs to be written is reduced.

All things considered, GSP is a reliable and flexible view technology

that provides developers with a wide range of tools and features for

creating dynamic web pages within the Grails framework. It is well-

liked by Grails users and effective for building complex, data-driven

web applications.

50

Fig. 3.1 : GSP Form

 GSP Features

A robust and well-liked JavaScript programme called jQuery makes it

easier to use the Document Object Model (DOM) to create dynamic,

interactive web pages. The key characteristics of jQuery include stuff

like:

DOM Manipulation: Thanks to jQuery's straightforward and user-

friendly syntax for DOM manipulation, developers may quickly add,

remove, and edit items on a web page.

Event Handling: With jQuery, programmers can quickly handle user

events like keystrokes, mouse clicks, and form submissions, enabling

them to design responsive and engaging user interfaces.

AJAX: JQuery makes it easier to create dynamic online applications by

allowing developers to load content from a server without refreshing the

page.

Effects and Animations: Making interesting user interfaces that respond

to user input is made simpler by using jQuery's pre-built animations and

51

effects, such as slide-outs and fade-ins.

Cross-Browser Compatibility: By addressing the variations in browser

implementations.

 Fig 3.2 AJAX Use Case

Extensibility: A variety of jQuery plugins are available that add new

functions including data validation, form administration, and complex

animations.

Simplified Syntax: jQuery's syntax is easier for developers to grasp and

write than pure JavaScript, allowing them to construct more robust

online applications with less code.

Overall, jQuery is a reliable and flexible JavaScript framework that

speeds up online development and makes it easier to create dynamic,

interactive, and cross-browser compatible websites. Every web

developer should have it as it is a necessary tool that is frequently used

in the industry.

52

 JDBC

The JDBC standard API (Application Programming Interface) enables

communication between Java programmes and relational databases.

Grails uses JDBC to interact with relational databases like MySQL,

PostgreSQL, Oracle, and others.

The JDBC API for Grails speeds up database access by offering a

higher-level API than standard JDBC. An efficient interface for

managing transactions, running SQL statements, and transforming

query results to objects is provided via the Grails JDBC API.

You must first specify the specifics of the database connection in the

DataSource.groovy file before you can use JDBC in Grails. Usually, you

can find this file under the grails-app/conf/ directory.

Users of Grails now have a reliable and flexible way to communicate

with relational databases thanks to JDBC. It is easier to work with JDBC

because of the Grails JDBC API's streamlined API and handling of

many of the low-level details of database access.

 Javascript

 Web development usually uses high-level, interpreted programming

dialects like JavaScript. It was created by Netscape and released for use

in 1995. It is presently among the programming tongues that are most

often used globally.

Imperative, functional, and object-oriented programming paradigms are

all supported by JavaScript, an evolving programming language. It is

widely coupled with HTML and CSS to create interactive websites and

applications for the web.

Listed below are some of JavaScript's key attributes:

1) Using object-oriented programming JavaScript is an object-oriented

53

language built on prototypes. This indicates that without the usage of

constructors or classes, things can be constructed quickly.

2) Acts as a first-class item: In JavaScript, functions are first-class

objects. This suggests that they can be used as functions' return values,

passed around as values, and given to variables.

3) Because JavaScript utilities dynamic typing, the types of variables are

chosen while the programme is being run. This facilitates quick code

development, but if you're not attentive, it could also lead to mistakes.

4) JavaScript provides robust asynchronous programming features,

enabling non-blocking I/O operations that can improve the speed of web

applications.

5) Client-side scripting, which enables dynamic interactive web pages

and user interfaces, is typically done using JavaScript.

In general, JavaScript is a reliable and flexible language that has turned

into a crucial tool for web developers. It is used for a variety of purposes,

such as server-side development using tools like Node.js for everything

from simple websites to sophisticated online software.

 Javascript Features

Here are some key features of JavaScript:

1) Object-oriented programming: JavaScript is a prototype-based

object-oriented language. This means that objects can be created on the

fly, without the need for classes or constructors.

2) JavaScript is an object-oriented language with a prototype-based

grammar. This shows that things can be swiftly produced without the

need of constructors or classes.

54

3) Because JavaScript utilises dynamic typing, the types of variables are

chosen while the programme is being run. This facilitates quick code

development, but if you're not attentive, it could also lead to mistakes.

4) JavaScript provides robust asynchronous programming features,

enabling non-blocking I/O operations that can improve the speed of web

applications.

5) Client-side scripting, which enables dynamic interactive web pages

and user interfaces, is typically done using JavaScript.

6) User-event-responsive programming: JavaScript can respond to user

activities like clicks, scrolls, and input because it is an event-driven

language.

7) Cross-platform compatibility: Any device with a web browser can use

JavaScript, an extremely flexible language.

8) Simple to learn: Learning JavaScript is said to be rather simple for

individuals who are already familiar with HTML and CSS.

9) Large developer community and resources: Due to the size and

activity of the development of JavaScript belonging, their are many

learning and troubleshooting resources available.

In general, JavaScript is a powerful and flexible language that is

increasingly necessary for developing modern web applications.

55

Chapter 4

 RESULTS AND ANALYSIS

Response time is the amount of time it takes for the system to respond to user

queries. Response time is measured in this project by the time it takes for the

software to reload the consumer's a dashboard and display a listing of

registered topics, and present the resources associated with each topic. This

programme should respond in less than 2 seconds.

Throughput is the number of queries completed by the system's components

per unit time. Good throughput for this application would be the ability to

accommodate multiple users concurrently without any delays or difficulties.

The maximum amount of concurrent users that can use the system as well as

the total amount of responses completed by the system within a given time

period can be used to calculate the project's throughput.

The ability of a system to handle a growing number of consumers or requests

while maintaining performance is referred to as scalability. The number of

users that may join the database simultaneously as well as the range of topics

and material that will be added to the system, are indicators of scalability in

this project. An effective scalable system can handle an immense amount of

users as well as information without reducing performance significantly.

 Fig 4.1 Linksharing Dashboard

56

Availability refers to a system's ability to stay working and readily available

to users irrespective of whether hardware or software fails. In the case of this

project, availability can be measured via the measure of the system's uptime,

or the quantity of time that the system is working and available to users. The

availability of this application ought to be a minimum of 99.9%.

Several strategies, which include caches, distributing the load, and database

optimisation, can be used to ensure satisfactory performance in the

aforementioned project. Warehousing can be used to keep data that is

frequently used in memory, lowering system response time. Load balancing

is a technique for distributing the load among different servers and

guaranteeing that the system can manage an excessive amount of users and

requests. Database optimisation is capable of helping ensure that database

queries are optimised for performance, hence decreasing the time required to

obtain data from the database.

Fig 4.2 Trending Topics

57

Chapter 5

CONCLUSIONS

5.1 Conclusion

The process of creating the application was a useful learning

opportunity for creating web applications with Grails. The

development process was quicker and more effective when the

Grails framework and Groovy language were used instead of

conventional Java frameworks. The usage of GSP technology also

simplified the process of developing dynamic web pages and

decreased the amount of code needed to generate the views.

The platform of the programme allows users to create, subscribe to,

and add resources to subjects. The administration user's presence

enables content control and ensures that unwanted content can be

removed. Application of secure coding methods and security

procedures ensures the safety of users' data.

The controllers and views for the application were constructed once

the database schema was created. The controllers were in charge of

receiving user requests and calling the proper methods in the service

layer to carry out the necessary operations. The views were in charge

of presenting the data to the viewers as HTML pages. The Groovy

Server Pages (GSP) technology, which enables programmers to

generate dynamic web pages using the Groovy language, was used

to create the views.

In conclusion, the project met its goals and offered a useful learning

opportunity for creating web applications using Grails and the

Groovy programming language.

At last, the advancement interaction was enhanced involving

GitHub Activities for computerized testing, code inclusion, and

linter tests. In general, the Linksharing Programming interface was

58

established utilizing a purview of best practices and strategies,

bringing about a top notch, dependable, and performant

Programming interface that addressed the issues of its clients.

 5.2 Goals achieved

The Linksharing web applicatoin that we created using

Microservices architecture has achieved almost all of our required

goals that we setup in starting of the project.

Versatility: The three-layer engineering, utilization of

microservices, and execution of Kubernetes deemed the

Programming interface to effectively scale and manage expanded

traffic as the application developed.

Unwavering quality: The execution of TDD, combination testing,

and continuous coordination/constant arrangement (CI/Album)

through GitHub Activities guaranteed that the Programming

interface was dependable and liberated from defects.

Security: Best practices for verification and approval, input

approval, and Programming interface key administration were

carried out to guarantee the security of the Programming interface.

Practicality: The utilization of irrefutably factual code, data set

relocations, and organized recording made the Programming

interface simple to keep up with and update on a case by case basis.

Execution: The execution of metrics observing, execution

investigation, and enhancements worked on the Programming

interface's general exhibition and reaction time.

59

In general, the Linksharing Programming interface accomplished its

objectives of providing a versatile, dependable, secure, viable, and

performant resource sharing arrangement.

 5.3 Future Scope:

There are a few areas of future degree for the ZopStore Programming

interface:

Adding new elements: The ZopStore Programming interface can

be reached out with new highlights to make it more valuable for

organizations and purchasers. For instance, adding support for

numerous installment entryways, item audits, and client appraisals

could improve the client experience and augment client

commitment.

Reconciliation with different frameworks: The Programming

interface can be incorporated with different frameworks like ERP,

CRM, and coordinated factors of the administrators to give a

consistent start to finish answer for organizations.

Improving security: Similarly as with any web application, security

is generally a concern. The Programming interface can be

additionally enhanced to incorporate extra security elements like

two-factor verification, encryption, and interruption identification.

Enhancement: The Programming interface can be advanced for

speedier reaction times and further developed versatility. This can

be accomplished through strategies, for example, load testing,

execution profiling, and code enhancement.

Supporting multiple stages: While the ZopStore Programming

interface was intended to be utilized with Golang, it tends to be

extended to help other programming dialects like Python or Node.js.

60

This could expand its reception and make it more open to a more

extensive scope of engineers.

Cloud arrangement: The Programming interface can be

communicated on cloud stages like AWS, Sky blue, or Google

Cloud, which would offer extra advantages like adaptability,

unwavering quality, and cost-adequacy.

Generally speaking, there are a few energizing open doors for future

turn of events and development of the Linksharing Programming

interface, and it will be fascinating to discern how it develops over the

long term.

61

References

 1. https://groovy-lang.org/documentation.html [Online]

2. https://docs.grails.org/3.3.9/guide/index.html [Online]

3. https://www.w3schools.com/js/ [Online]

4. https://www.w3schools.com/jquery/ [Online]

5. https://www.w3schools.com/js/js_ajax_intro.asp/ [Online]

6. https://www.w3schools.com/html/ [Online].

7. https://www.w3schools.com/css/ [Online].

8. https://getbootstrap.com/docs/4.1/components/alerts/[Online].

62

Appendix

Appendix A: Technologies Used

 Programming language:

Groovy

 Framework: Grails

 Database: Oracle

 API documentation: Grails Documentation

 Approach: Micro Services

 Mocking framework: Groovy on Grails

63

Endpoint HTTP Method Description

/login GET Open the login page

/register GET Open the register page

/profile GET Open the profile page

/dashboard GET Open the dashboard

/topic GET Delete a specific customer by ID

/resource GET Add a new vehicle

Appendix B: API Endpoints

4%
SIMILARITY INDEX

2%
INTERNET SOURCES

0%
PUBLICATIONS

4%
STUDENT PAPERS

1 3%

2 1%

3 <1%

4 <1%

5 <1%

6 <1%

7 <1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 20 words

Robin_Plag
ORIGINALITY REPORT

PRIMARY SOURCES

Submitted to Jaypee University of Information
Technology
Student Paper

pdfcoffee.com
Internet Source

Submitted to University of Bedfordshire
Student Paper

Submitted to Intercollege
Student Paper

eprints.utem.edu.my
Internet Source

ecommons.udayton.edu
Internet Source

scholar.uwindsor.ca
Internet Source

