

MNIST DIGIT CLASSIFICATION USING MACHINE

LEARNING

Project report submitted in partial fulfillment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

 Hridyesh Khandelwal, 191312

Under the supervision of

 Dr. Pardeep Kumar

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “MNIST DIGIT

CLASSIFICATION USING MACHINE LEARNING” in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology in Computer Science

and Engineering/Information Technology submitted in the department of Computer

Science & Engineering and Information Technology, Jaypee University of Information

Technology Waknaghat is an authentic record of my own work carried out over a period from

July 2022 to May 2023 under the supervision of Dr. Pardeep Kumar (Associate Professor,

Computer Science Department).

I also authenticate that I have carried out the above-mentioned project work under the

proficiency stream: Machine Learning

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

(Student Signature)

Hridyesh Khandelwal, 191312

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Dr. Pardeep Kumar

Associate Professor

Computer Science & Engineering and Information Technology

Dated

 Plagiarism Certificate

II

Acknowledgement

Firstly, I express my heartiest thanks and gratefulness to almighty God for His divine

blessing makes it possible to complete the project work successfully.

I am really grateful and wish my profound indebtedness to Supervisor Dr. Pardeep Kumar,

Associate Professor, Department of CSE Jaypee University of Information Technology

(Solan). Deep Knowledge & keen interest of my supervisor in the field of “Machine

Learning” to carry out this project. His endless patience, scholarly guidance, continual

encouragement, constant and energetic supervision, constructive criticism, valuable advice,

reading many inferior drafts and correcting them at all stages have made it possible to

complete this project.

I would also generously welcome each one of those individuals who have helped me

straightforwardly or in a roundabout way in making this project a win. In this unique

situation, I might want to thank the various staff individuals, both educating and non-

instructing, which have developed their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patience of my

parents.

Hridyesh Khandelwal

191312

III

Table of Contents

Title

Page

No.

Declaration I

Certificate II

Acknowledgement III

Abstract IV

Chapter-1

(Introduction)

1

Chapter-2 (Literature

Survey)

8

Chapter-3 (System

Design and

Development)

11

Chapter-4

(Experiments and

Result Analysis)

29

Chapter-5

(Conclusions)

32

References 43

Appendices 45

 IV

 Table of Figures

Figure Name

Page

Number

The MNIST

Dataset

5

KNN Algorithm 9

Working of KNN 10

The Decision

Tree structure

12

Example of

Decision Tree

13

Random Forest

Algorithm

14

Working of

Random Forest

15

Random Forests

and Decision

Trees

16

A Deep Neural

Network

18

A very Dense

Neural Network

18

Mathematics of

ANN

19

V

Working of

Activation

Function

20

The weights and

inputs in Neural

Network

21

Neural Networks

are based on

biological

Neurons

21

How weights,

biases and

activation

function work

22

A convolutional

Neural Network

23

A filter matrix to

detect a vertical

line

25

A filter matrix to

detect features in

image of a cat

25

How a kernel

convolves

26

A basic skeleton

of a neural

network having 2

hidden layers

28

Frequency of

digits in MNIST

30

VI

Example image

representation of

an MNIST digit

30

A convolutional

Neural Network

31

A CNN having 5

convolutional

layers

31

A neural

network having

weights=w and

bias=b and two

hidden layers

31

Accuracy of

various

algorithms

33

Loss vs Accuracy

plot

33

MNIST dataset

going through a

neural network

34

A CNN with 2

convolutional

layers, 2 max-

pooling layers

37

A digit 7, in

MNIST dataset

39

A CNN model

extracting

features

39

VII

Comparisons of

Accuracies and

time taken by

various

activation

functions

40

VIII

 Table of Graphs

Frequency of Digits in

MNIST Dataset

37

Accuracy of various

Algorithms

39

Loss vs Accuracy Plot 39

Comparisons of

Accuracies and time

taken by various

activation functions

40

IX

 Abstract

This project intends to carry out the task of handwritten digit classification. The task

will be carried out using various Machine-Learning and Deep-Learning algorithms.

The project will be implemented using python.

With the help of Machine-Learning and Deep-Learning algorithms, we will be able

to build models which will take an image of a human handwritten digit as input, and

will be able to classify those digits into categories (0-9). We will then analyze which

algorithms are relatively more accurate and why. We will use the following

algorithms: KNN (K-Nearest Neighbor), Decision Trees(DT), Random -Forests(RF),

Artificial Neural Networks (ANN) and Convolutional-Neural-Networks(CNN). We

will use a dataset called MNIST. In this dataset we will implement the algorithms

listed above. After that we will find the accuracy of all methods, and rank them

accordingly. Then we will attempt to understand why some algorithms are less

accurate than others. After that, we will list out the applications of this project and

the future scope of this project. We will carry out a comprehensive comparison of

these algorithms, listing their merits and disadvantages.

With the aid of Machine-Learning techniques, image recognition tools and

applications are now extensively used and constantly being improved. The MNIST

database is a publicly accessible dataset that essentially allows users to assess the

effectiveness as well as accuracy of various models to ensure ongoing development

through international competition. The MNIST dataset contains 70000 manually

written digits. Since handwritten digit classification has many applications in the

market, the demand for efficient algorithms is constantly increasing.

 X

1

Chapter 1

Introduction

1.1 Introduction:

Human-written-number synthesis is the capability of computers to describe human-written

numeric-digits. Since it is rarely correct to employ human-written numbers, and they also

might have a spectrum of types, our job becomes tough. The workaround to this issue lies in

the method/solution which we are going to describe in this chapter.

Handwritten numbers are imperfect, varied from person to person, making it difficult for the

computer to complete the task. Therefore, handwritten text recognition is an important field

of study and development with a wide range of potential outcomes.

In the realm of DL, this has been the subject of countless studies. Numerous uses for digit

recognition include driverless cars, identifying number plates, banking, etc. DL, ML, and

artificial intelligence have all benefited from a significant amount of research and

development effort carried out in the last few years. The processing power of machines is

increasing with time, and this has improved the quality of human lives. DL and ML have

crucial applications in handwritten digit identification, and a lot of research has already been

done in this area.

In this report, we intend to explain how, using ML and DL algorithms, we can classify

handwritten digits to a reasonable accuracy. We used many different ML and DL algorithms,

and we will list the advantages and disadvantages of each.

We will then list out the reasons why some algorithms perform better than others at the task

of image classification. The language we used for implementation of this task is python. We

used different libraries and frameworks, about which we will elaborate in detail in later

sections.

2

The dataset we used was the MNIST data-base. It is a very, very popular tool for working out

ML and DL algorithms.

In practically every scientific subject today, image classification is becoming a crucial

component. Handwriting recognition is crucial to information processing in the contemporary

era of digitalization. Paper is a great source of knowledge, and digital data is processed far

less than traditional paper files. The handwriting recognition system's goal is to transform

handwritten letters into forms that computers can understand.

The purpose of our study is to develop a model that can identify and categorize human-

handwritten numbers from photographs using KNN, CNN, ANN, etc. Our study aims to

develop a model for digit identification and classification, but it may be used for letters and a

person's handwriting as well. The main objective of the suggested approach is to comprehend

how computers classify numbers and then use our understanding to create a model that does

the same.

Character recognition in handwriting has existed for some time, from the 1980. The endeavor

of recognising handwritten digits, employing a classifier, which is quite important, and

utilizing recognising postcodes with online character classification on computers

numerical processing of bank check amounts, postal codes, portions of buildings filled out by

hand (such as tax) and so forth. Various difficulties are encountered while trying to find a

solution to this issue. The letters and numbers are the very same size, width, or alignment

every time, and with respect to the margins. The primary goal was to actualize a pattern

recognition technique to understand the photos from the MINIST data collection contain

handwritten numbers comprising 0–9 handwritten digits.

As a test case for theories of image classification algorithms, handwritten number

identification is a significant issue in optical character recognition. Several common

databases have arisen to support the study of pattern recognition and ML. Due to the fact that

everyone in the world has a distinctive writing style, handwriting identification is among the

most captivating and exciting fields of study. The primary challenge in reading handwritten

numerals is the significant variation in height, motion, line width, spin, and distortion of the

numeral picture since different people write handwritten digits in various ways.

3

Building a valuable training set is a crucial factor in ensuring an excellent productivity in the

learning process.

Although the 70000 unique patterns in the MNIST database may seem like a sizable

collection, research suggests that the typical learning algorithms fail miserably for at least

100 test set samples. Therefore, a technique is required to improve the cardinality and variety

of the training set. Common actions include geometric distortions like displacements,

rotations, scaling, and others.

The methods we wrote in this report can be used/applied in a diverse spectrum of real-life

issues: form data entry, banking account handling, post-mail sorting, and others.

1.2 Problem Statement:

Build a model which shall take an image of a human handwritten digit as input, and will

classify the digit into categories, 0 to 9.

Various strategies have been developed by researchers and programmers working in image

processing and classification to address the issues with handwritten number recognition. Our

system's primary goal is to identify solitary Arabic digits, which may be found in many

diverse applications.

The key problem here is getting the computer to comprehend these various handwriting styles

and recognise them as conventional writing because different users had varying handwriting

habits. Our system successfully creates and implements a neural network that operates well

without input, and after that, it is able to comprehend Arabic numerals that have been

manually entered by users.

Image classification and ML now face additional difficulties as a result of the explosive

proliferation of newspapers and audiovisual information. In the subject of pattern

categorization, the issue of human-handwritten number classification has long remained

unsolved. Because everyone in the world has a unique writing style, handwriting

4

identification is among the fascinating scientific projects now being conducted. It is the

capacity of a computer to automatically recognise and comprehend handwritten numbers or

letters.

1.3 Objectives:

Our main objective is to build a model that will take an image of a human handwritten digit

as input, and classify it into one of the ten categories, 0 to 9.

The model should be able to recognize digits to a reasonable degree of accuracy. Further, the

model should not be too memory intensive or should not have too high time complexity.

This study uses ML technologies to train these classification models in order to detect

handwritten numbers with a high level of accuracy. A lot of people utilize the MNIST data

collection for this recognition procedure. There are 70,000 handwritten digits in the MNIST

data collection. This data set's images are each represented as a 28x28 array.

1.4 Methodology:

The primary methods we used in this project are the popular ML and DL algorithms. We

used ML algorithms like Support Vector Machines, DTs, R-Fs, KNN (K Nearest Neighbour),

and DL algorithms like ANN and CNN.

The implementation is done in python, using the libraries sklearn and tensorflow. These are

highly popular libraries used by researchers and programmers who do work in ML and DL.

The raw input will be in the form of an array, where each number will represent the pixel

value. The array size is 784, which we can then convert to 28 x 28.

5

MNIST is a dataset of 70,000 human handwritten digits, and each of these digits is

represented in the form of an array. Each digit is between 0 and 9.

The steps in the methodology are as follows;

1. Loading the data

2. Normalizing, reshaping the data

3. Building the model

4. Training the model

5. Predicting on test dataset

6. Evaluating the model (performance metrics)

7. Fine tuning the model (removing overfitting and underfitting)

 Figure 1: The MNIST dataset

In this work, extraction of features and categorization are the main topics. A classifier's

success may be as dependent on the features' quality as it relates to the classifier. A smaller

portion of the NIST collection is called the MNIST dataset. 70,000 handwritten digits, broken

down into 60,000, in a database. 10,000 test samples and 10,000 training examples. The

6

photos in The MNIST dataset is presented as an array that includes a set of 28x28 values

corresponding to a picture and its labels.

1.5 Organization:

This project is divided into mainly 4 chapters. They are described as follows:

Chapter 1: It consists of an introduction to our project, the problem statement of the report,

our primary objectives and methodology being carried out.

Chapter 2: It consists of a literature survey, in which we described the papers we read, which

supplied us with the necessary knowledge about DTs, R-Fs, KNN, ANNs and CNNs.

Chapter 3: This chapter consists of our detailed implementation of the algorithms, their merits

and demerits, questions like why are some algorithms more accurate than others. In this

chapter, we described the working of various algorithms, how they are implemented and

where they are needed. The chapter consists of detailed text about KNN, DTs, R-Fs, ANNs

and CNNs.

Chapter 4: This chapter is about the performance analysis of the algorithms we used in the

project. We analyze and compare the performance and accuracy of the algorithms. We also

answer why some algorithms have a greater precision than others. In this chapter, we will see

that CNN generally gives relatively more accurate outcomes than other algorithms, and we

will also find out why.

Chapter 5: This section is about conclusions and future scope. Here we will describe the

conclusions we reached regarding each algorithm, and also explain why we got a certain

outcome. We will also describe the potential future scope of this project.

7

 Chapter-2

Literature Survey

LeCun(1998) released one of the earliest lists/rankings of algorithms ordered according to

their accuracy on MNIST, which was valid up until 2012. A recent work was published by

Shivam et al, 2020, where they discussed performance of Convolutional-Neural-Networks on

MNIST. They reported accuracy more than 99%. Grover & Roy, 2009, described a modified

KNN algorithm on MNIST. Alejandro et al, 2019 described in paper latest progress in the

field of digit classification on MNIST. Alexis et al, 2019 analyzed in detail the effectiveness

of DTs and MNIST. Kevin et al, 2017 described how to build deep R-Fs on MNIST. They

proposed a general framework which they called forward-thinking for DL. One layer is

trained at a time to do this, and once each layer has been trained, the inputs are mapped

through the layer to produce a new learning-problem. The procedure is then carried out once

more, processing the data via many layers one at a time, creating a fresh dataset that is

anticipated to behave better and on which the final output layer may work well. Grover

described KNN using a modified sliding window metric. We use a distance-metric that makes

use of the sliding_window methodology in order to prevent performance degradation caused

by minor spatial misalignments when evaluating the output of the KNN classifier onto

MNIST dataset. Results demonstrate a considerable improvement when utilizing the

suggested technique when compared to the baseline algorithm when using the correctness

metric and confusion matrix as performance metrics. Elijah et al, 2019 produced a

comprehensive comparison of algorithms for classification of online and offline handwritten

digits. They analyzed DTs, ANNs, instance-based Learners, Naive Bayes. They found the

highest accuracy in instance-based Learners, followed by ANNs, Naive Bayes and DTs.

Tsehay, 2019, described a novel approach to human-handwritten digit classification using a

novel ML approach. Deepak et al, 2012 described Advanced Approaches of Handwritten

Digit Classification Using Hybrid Algorithms. They found the highest accuracy of 99.98%,

and lowest 81.23%. Firas et al, 2018 described how to build an Optimized System for

Training Deep DTs at Scale.

8

 Chapter-3

 System Design and Development

We use the following algorithms for the classification of human handwritten digits:

1. KNN (K nearest neighbor)

2. Decision Trees

3. Random Forests

4. ANN (Artificial Neural Networks)

5. CNN (Convolutional Neural Networks)

KNN (K Nearest Neighbor):

A supervised ML (ML) technique known as KNN may be applied to classification/regression

problems, although it is mostly employed in industry for categorization and forecasting

issues.

KNN is called a lazy-learning-algorithm as it forbids the training phase.

A majority vote is used to apply a class label to classification issues, meaning the

label/output.result that is majorly found in proximity to a certain data-point is utilized.

The data-points that are closest/nearest of new-data points are referred to as proximity-

neighbors in this context.

K is the amount of proximity-neighbors. We have to decide/choose its value before we start

computation.

9

Figure 2: KNN algorithm

The number of labeled points (neighbors) taken into account for classification is indicated by

the parameter k in KNN.

Another non-linear approach is the k-nearest neighbors method. It will perform effectively

with data when the connection between the independent_variable and the dependent_variable

is not a straight_line, in contrast to simpler models like linear regression.

We can attempt to determine which points in our feature space are closest to a point whose

class we don't know. The k-nearest neighbors are these points.

The algorithm works as follows:

First, choose the value of k.

Then, compute the distance(euclidean or otherwise) of the test data to all the data-points in

the set.

Then, sort points in increasing order of distance.

Then, select top k points.

Then, do majority voting in those k points. The winner category is the category of our test

sample.

10

 Figure 3: Working of KNN

It is very-likely-possible the data_point is in group ‘A’ if most of the pieces of data are in

category A, and vice versa. KNN, sometimes referred to as the closest neighbor. K-nearest

neighbors classification is straightforward to comprehend and use, in contrast to classification

by ANN. When the measured values are well-defined or nonlinear, it works well.

KNN actually uses a voting method. It says that for any point on that plane, its

category/label/class will be that one which belongs to most of its proximity-points/neighbors.

A crucial issue in AI is classification/identification. A methodology for categorization and

regression/classification models is the KNN. A good K value, or the quantity of neighbors in

KNN, cannot be precisely determined. This implies that before determining which value to

use moving forward, you might just have to explore with a few different values.

Assuming that even a portion of the training instances is "unknown" is one technique to do

this. Then, you can use the k-nearest neighbors technique to classify the unseen data in the

11

testing set, and you can assess how accurate the new classification is by contrasting it with

the knowledge you already have from the training data.

It is preferable to pick an odd number for K when solving a two-class issue. Otherwise, a

situation might occur where there are the same number of neighbors in each class.

Additionally, K's value cannot be a multiple of a number of classes that are present.

However, K shouldn't be set too high. On the other hand, K with greater values will often

result in smoother decision boundaries. Otherwise, groups with fewer data points would

continually lose out to groups with more data points. A greater K will also require more

processing power.

DTs(Decision–Trees):

The DT is a pretty good methodology/algorithm, nodes showing a testing on an

attribute/feature/property, so the final node is a class-label. A nonparametric learning

technique for regression and classification is a DT. The target is to build a model that can

predict the values of a target variable.

Like KNN, the DT is also a supervised ML algorithm. It is capable of being used in both

classification and regression problems, but is most commonly used for classification.

Leaves and decision nodes are the two types of nodes in DTs.

DTs classify data based on their properties. Splitting is done at nodes according to the

property, and the leaf nodes represent a label or output class.

12

 Figure 4: The decision tree structure

Working of DT:

The process starts at the root node, and matches the attributes/properties/features of that node

to that of the actual dataset point. On the basis of this matching, jump to the next node.

The algorithm examines the attributes/properties/features with the other sub-nodes yet again

for the subsequent node before continuing. The method is carried out until the tree's leaf

destination is reached. This is basically how a DT algorithm works in ML.

The essential issue that surfaces while formulating a DT is how to choose the optimum

attribute for the root of the tree and for subsequent-nodes. Therefore, a technique named as

attribute selection measure, or ASM, can be used to address these issues. By applying this

13

assessment, we can choose the appropriate characteristic for the tree nodes with ease.

Information gain and ginni index are two of the most used ASM methodologies.

It is pretty challenging to maintain the correctness/accuracy of the tree when it is too big.

This is so because large trees frequently experience overfitting. Small trees are therefore

typically selected. Additionally, we may create a single model by combining numerous DTs;

this system is termed as R-F, and it typically resolves the overfitting condition.

Making choices on which characteristics to employ, what circumstances used for dividing,

and when to quit while growing a tree. As a tree often expands at random.

If some classes predominate, DT learners will produce partial trees. As a result, it is advised

to equalize the database before fitting it to the DT. The model is hypersensitive to even mini

scale variations in input-data, it can create a very changed Decision Tree, the Decision Tree

algorithm is non-stable.

Figure 5: An example of decision tree

14

R-Fs (Random Forests):

A classification system called R-F is created when several DTs are integrated in a singular

model.

The merit lies in the versatility and usefulness as it is powerful enough to compute both

identification and regression problems. .

The DTs that make up the ensemble of the R-F algorithm each include a data sample taken

from a training set.

R-Fs have the benefit of having the ability to lessen overfitting and offer/provide flexibility.

The fact that it takes more time, uses more resources, and is more complicated is a drawback.

Figure 6: The Random Forest algorithm

The R-F model’s fundamental/basic concept is that several non-correlated ML-models

produce relatively more precise outcomes together than otherwise. Evey tree performs voting

activity when we use R-F. While undergoing regression-tasks with R-F, the forest selects the

arithmetic-mean of all the tree outcomes.

15

 Figure 7: Working of Random Forest

A conventional DT will create a set of rules that it will then use to make forecasts when given

a training dataset containing features/attributes and labels. If you supplied a R-F algorithm

with the same input, it would randomly choose observations and characteristics to create

several DTs, then it would take the mean of the outcomes.

16

Figure 8: How Random Forest combines several decision trees.

When trees are spreading, the R-F delivers some amount of randomness. When

differentiating nodes/vertices, it looks for the best feature from a set where attributes are

arranged with a certain degree of randomness, rather than simply having the most significant

one.

A superior model is therefore an outcome here, of the huge variety this causes. If some

classes predominate, DT learners will produce biased trees.

As a result, it is advised to equalize the data before fitting it to the DT. Since the smallest of

variations in input may create a wholly another Decision Tree, the Decision Tree algorithm

can be non-stable.

17

If trees are not adequately restricted and regularized during the developing stage, they run the

significant danger of overfitting the training examples and becoming computationally

complicated.

This overfitting suggests an exchange in the system between low bias and large variance.

Therefore, to address this issue, we employ ensemble learning, a strategy that enables us to

break our overlearning propensity and, presumably, produce better, more robust outcomes. In

order to get superior outcomes, an ensemble technique or ensembles classifier combines

various outputs produced by a variety of predictors. Formally, we are attempting to utilize a

"strong" learning for our model based on a group of "weak" learners. Therefore, the goal of

employing ensemble techniques is to decrease overfitting of our training set by averaging out

the results of separate forecasts by broadening the number of predictors, thereby minimizing

the variance.

Outcome: the method for dividing nodes in R-F takes into account a set with unpredictability.

Using minimum levels for each attribute, on top of the better possible current minimums, you

may even enhance the unpredictability of Decision-trees.

ANN:

ANN are a fundamental part of DL. DL techniques have their basis in the N-N.

They are modeled/created based on the homosapien-brain. In the sense that they continuously

update their own weights and biases as more and more data is supplied to them, neural

networks are adaptable; they keep evolving.

They gain knowledge through experience in this way. The accuracy we obtain from ANNs is

typically greater than that of ML methods.

18

Figure 9: A deep neural network

Figure 10: A very dense neural network

19

 Figure 11: The mathematics of artificial neural networks

Here is an example of a neural network, which consists of certain weights and biases.

activation functions are required because they add antilinearity to the network, and a N-N

without activation functions would be effectively the same as a linear classifier.

N-N and generally, in most cases, more precise/accurate than the ML methods. That reactive

precision can be attributed to a better computational capacity, more sophisticated architecture

and a large diversity of choices regarding activation functions, types of layers, etc.

20

Figure 12: Working of activation functions

Y is cumulative input, F is the activation function.

In order to guarantee accuracy of fit for each data-sample, our ultimate aim is to minimize

our cost-function. In order to get to the optimal point, also known as the local-minimal-point.

To update weights/biases, a methodology called gradient_descent(GD) is used, enabling the

models to choose optimal activation to minimize faults (or minimize the cost-function).

The model's arguments change with each training sample and eventually reach the

minimum/lowest point. In order to make up for the discrepancy between the anticipated

outcome and the observed one, the error is utilized to optimize the weights of our ANN's

connectibles. This is among the most well-known benefits of an ANN: it can really learn

from viewing datasets, or, in other words, learn from experience. An ANN offers a number of

other benefits as well.

21

 Figure 13: The weights and inputs in the neural network

Figure 14: Neural networks are based on biological neurons

22

Figure 15: How weights, biases and activation function work

Biological/organic neurons consist of dendrites, cell body and axon.

ANNs are composed of input layers, output layers, and/or single/multiple hidden-layers. It

also consists of an activation function, which decides whether a neuron should be activated or

not, weights as well as biases. Finally, output is produced.

CNN:

23

CNN outperforms other neural networks when applied to image processing. Convolutional

and pooling layers make up CNNs.

The filter size is normally a three x three vector, though they can come in different sizes. The

output array is therefore given with this dot product. The filter moves and performs a

repetition of the operation. A map_feature comes after a sequence of dot-products from the

inputs and the filter. It is not necessary for every resulting value in the feature-map to

correspond to every pixel-value in the input-image. Just the area, where the filtering is being

used, needs to be connected.

Finding weights in fully - connected and kernels in convolutional layers that minimize

disparities among output predictions and providing actual outputs.

Computer vision, image processing, audio processing, and medical imaging are just a few

examples of applications for CNNs.

Although DL has made astounding recent strides, there are also obstacles preventing its use

in medical-imaging. Some of the problems that arise are encountered when dealing with

imbalanced datasets, leading to overfitting (high variance) or underfitting (high bias).

Figure 16: A Convolutional Neural Network

24

The topology of a ConvNet being similar to the connection network of-neurons found in the

homosapien brains and it was also modeled after the visual-cortex is organized. Only in the

Receptive-Field do individual neurons perform reaction to inputs. Similar fields being taken

together encompass the whole field.

Multiple convolutional-layers being put on top of one-another in CNN, and every single layer

is capable of identifying increasingly complex structures.

A CNN method makes use of convolutional-layers to analyze input-images and recognise

increasingly harder or relatively complicated elements.

A CNN topology is a multiple-layered network created by sequentially putting several

hidden-layers before each one. CNN can learn other complicated/harder features because of

this particular type of orderly architecture.

Convolutional-layers are frequently preceded by activator-layers, some of which are then

followed/preceded by pooling-layers, as the hidden-layers.

The core idea in CNNs is the process of convolution. We use a filter matrix, which spreads

on the training image and dot product is carried out. Finally, all the outputs of dot products

are added up, and this basically results in feature-extraction.

Despite being straightforward, the convolution kernel's capacity to recognise straight or

curved lines, corners, and other basic characteristics is a very potent one. As you may

remember, a convolutional-layer is composed of several convolution kernels. A convolutional

neural network's first layer typically includes multiple diagonal, curve, and corner detectors.

The neural network learns such feature-detector kernels during training rather than a human

programming them, and they are used as the initial step in the image identification process.

A fundamental CNN may be thought of as a collection of convolutional-layers, a pooling

(downsampling) layers, and so forth. The first layer recognises basic elements like edges in

an image with the repetitive combining of these processes, while the second layer starts to

identify higher-level features. A CNN can recognise increasingly intricate forms, like

eyeballs, by the eleventh layer. It can frequently recognise one human face from another by

25

the twentieth layer. This strength results from the repetitive stacking of processes, each of

which is capable of detecting a little bit more complex characteristics than the one before it. It

is obvious that a CNN employs a significantly less number of parameters than a densely

integrated feed - forward neural-network of comparable size and layer dimensions. This

occurs when the convolution kernel moves over the picture and the parameters are utilized.

This makes intuitive sense given that a CNN ought to be able to recognise features in an

image regardless of their location. Translation invariance is the name given to CNN'

robustness.

Figure 17: A filter matrix to detect a vertical line

Figure 18: A filter matrix to detect features in image of a cat

26

The CNN is given more nonlinearity via the activation-function. Together all layer of the N-

N can be boiled down to a singular vector-multiplication if somehow the activation-function

was absent.

A fundamental CNN may be thought of as a collection of convolutional-layers, an activation

function, a poolling (downsampling) layer, and so forth. The first layer recognises basic

elements like edges in an image with the repetitive aggregation of these processes, while the

second layer starts to identify higher-level features. A CNN can recognise increasingly

intricate forms, like eyeballs, by the eleventh layer. It can frequently recognise one human

face from another by the twentieth layer. This strength results from the repetitive stacking of

processes, each of which is capable of detecting a little bit more complex characteristics than

the one before it.

Figure 19: How a filter matrix/kernel convolves

27

In a number of fields, including image processing, medical imaging, audio and video

processing, etc., CNNs have made remarkable advancements.

There are several CNN designs that may be used, and these architectures have been essential

in creating the algorithms that power and will continue to drive Artificial Intelligence in the

near future. CNNs deliver in-depth findings despite their immense power and complicated

resource requirements. Simply identifying patterns and nuances that are so microscopic and

subtle that the human eye misses them is what it all boils down to. However, it fails whenever

it comes to comprehending an image's contents.

CNNs have unquestionably revolutionized artificial intelligence, despite its limitations.

CNNs are being employed in a very large amount of real-world and real-time applications.

Our accomplishments are impressive and valuable, as demonstrated by developments in

CNN, but we are still far distant from duplicating the essential elements of human intellect.

Implementation(Model Development):

We have used python to implement the above mentioned algorithms(DTs, KNN, RFs, ANN,

CNN). We have used sklearn and tensorflow. Both these modules provide various functions

for implementing ML and DL. sklearn is generally used for ML algorithms, while keras and

tensorflow are used for DL.

First, we loaded the MNIST data, which is open source. In MNIST, each digit is represented

by an array of 784 numbers, each representing the value of a pixel. Then, we split the data

into tests and training. Out of 70,000, 60,000 were used for training and 10,000 for testing.

Then, we built the ML/ DL model and trained it. Then, we evaluated it using our test data.

Finally, we recorded the accuracies of all the algorithms we used.

28

Figure 20: A basic skeleton of a neural network having 2 hidden layers.

A neural network with the input-layer having 16 nodes, and the 2 hidden-layers having 8

nodes each. The output-layer has a single node.

29

 Chapter-4

Experiments and Result Analysis

As performance analysis, we recorded the accuracies of all the algorithms we used. The

results are as follows:

Algorithm Accuracy

KNN 0.9688

Decision Tree, gini index 0.8782

Decision Tree, entropy 0.8880

Random Forest 0.8883

ANN 0.97

CNN 0.99

Expectedly, CNN has the highest accuracy. As we have already explained, CNN performs

better when images are involved.

ANN also has a very high accuracy, second only to CNN. This verifies the assumption that

neural networks or DL algorithms are generally better than ML algorithms.

KNN has good accuracy, but it takes a lot of time.

DTs, as we have already described, suffer from overfitting. This fact is verified now that they

have the lowest accuracy.

When multiple DTs are combined to form Random Forests, accuracy should increase, which

is also the case here.

30

Figure 21: Frequency of digits in MNIST dataset.

The 70,000 digits have almost the same frequency.

Figure 22: A sample digit (5). Image created using matplotlib library function plt.imshow().

This function converts a matrix into an image, so that each number in the matrix can

represent a value of a pixel.

Visualizations of Neural-Networks:

31

Figure 23: convolutional-neural-network

Figure 24: A convolutional-neural-network having 5 convolution-layers

Figure 25: A neural network having weight = w and bias = b and two hidden layers

32

Chapter-5

Conclusions

5.1 Conclusion:

We have accomplished the following objectives:

● successfully built a model that classifies human-handwritten digits to a reasonable

accuracy.

● the model does not take too much resources

● the model does not have a high time complexity

● the model does not have a high space complexity

● the model successfully classifies digits even when it is greatly varied from the

standard handwritten digits

We successfully implemented KNN, DTs, R-Fs, ANN and CNN in python.

The accuracy we got was best in the case of CNN, followed by ANN, KNN, R-FR-Fs and

DTs. The difference in accuracy was expected, for the reasons we have already mentioned.

We want to classify human-written numbers, and for that, the ML-methods were utilized to

classify human-handwritten digits. Each classification technique has its own unique accuracy,

space and time requirements.

The issues with hand-written numeral recognition have been researched while using diverse

and wholesome approaches. Since every algorithm comes with its own unique set of

advantages and disadvantages, a variety of algorithms have been used, and their merits and

demerits have been discussed.

33

Figure 26: Accuray of various algorithms

Figure 27: Loss vs Accuracy Plot

34

An intriguing area of research is sophisticated picture analysis. important for a field of

artificial intelligence a range of active research problems nowadays. Recognition of

handwritten digits is a thoroughly investigated subfield within the discipline that deals with

education models to recognise handwritten digits that have been segmented. Among the most

crucial problems in data mining is this. Pattern recognition software, ML, and many other

other artificial intelligence fields. A significant effort has been made by researchers in the

fields of ML to develop effective methods for approximating recognition from data. Because

different communities may employ different handwriting styles while still controlling to draw

the same patterns of characters in their recognised script, one of the difficulties in recognising

handwritten characters entirely resides in the variance and distortion of the handwritten

character set. One of the key problems in the field of digit recognition systems is the

identification of the digit from which the best discriminating characteristics may be retrieved.

Different types of region sampling strategies are employed in pattern recognition to find these

regions. Additionally, the characters data could be created in many sizes and orientations,

albeit they must always be printed on a boundary in either a vertical or downward position. In

light of these restrictions, a useful handwriting recognition system may be created. Since the

majority of people struggle to recognise their own written work, it may be rather tedious at

times to read handwritten characters. As a result, there is a restriction on how a writer may

write in order for handwritten papers to be recognised. Developing a description of solitary

human-handwritten numbers that enable their efficient detection is the major goal of this

work. In this study, several ML algorithms were utilized to recognise handwritten numbers.

The key challenge in any recognition procedure is to deal with accurate feature extraction and

classification methods. In regards to precision and time complexity, the suggested methods

attempt to handle both criteria.

Figure 28: MNIST database going through a neural network

35

5.2 Future Scope:

Future attempts might examine the success of learning in-depth information and apply it to

more challenging image recognition issues. So that a user-friendly programme that can accept

input, recognise it, and tell us the identification of a numeric input may be made for

computers or mobile devices. The reported results may be significantly improved in terms of

detail and accuracy by utilizing a large number of hidden neurons and several convolutional

layers. Additionally, accuracy can be improved by utilizing a hybrid model that combines

many algorithms. In the near future, this project will be able to include real-time data

utilizing human handwriting.

It appears that an AI might handle complicated recognition issues using all these different

methods rather than the existing DL techniques. However, in order for that feature to be

implemented, organizations and developers must accept new theories and concepts and give

some credit where it is due. They may also choose to abandon certain existing ways since

even in the best case scenario, the present models may have limitations.

All of the bleeding-edge technology is tested in the health industry. Try using a particular

product in a clinical setting to evaluate its applicability. Not an exception is image

recognition. Computer - aided diagnostic technology is the most intriguing use of image

recognition according. The preliminary machine vision results in a significant amount of

additional data processing for the mri images. Faster than the human eye, CNN clinical

recognition system can identify irregularities in X-ray and MRI pictures.

Facial recognition/classification warrants its own paragraph. This branch of machine vision

deals with images that are more intricate. These photographs might feature human faces or

those of animals, reptiles, or other living things/organisms.

Operational complexity—the added to the end of labor required—distinguishes straight

image recognition from face recognition. Social media sites like Facebook utilise face

recognition for both social media and enjoyment. As a reliable tool for identifying

individuals, facial recognition/classification technology is getting popularity. Facial

recognition is not as reliable as biometrics or official documentation for authenticating a

36

persona. Face-id can be beneficial in situations in which there is little evidence to go on to

identify the person.

Medicinal chemistry is a significant area of pharmacy that heavily utilizes CNN.

Additionally, it ranks among the most creative applications of CNN overall. Drug

development and CNNs are not instances of real data tinkering, but "RNN" and stock-market

forecasting are. The issue is that the act of finding and developing new drugs takes a long

time and is expensive. Flexibility and pricing are essential in the discovery/exploration of

drugs. The application of neural- networks is highly suited to the creation of novel

pharmaceuticals. There is a lot of data to take into account while developing a new medicine.

CNN disclose and provide intelligible descriptions of concealed facts. Neural-networks show

what can be done with their help even for the simplest applications. A lot can be learned

about the design and implementation of the visuals from how CNN detects images.

Contrarily, CNNs discover novel drugs, which is only one of countless incredible illustrations

of where and how ANNs and CNNs are transforming the universe.

Neural nets are in their youth at the moment, and they're already a remarkable innovation that

has made significant advances in everything from voice recognition to medical diagnosis.

Neural nets are collections of computer programmes made up of tens of billions to trillions of

components, which are all intended to act as a synthetic neuron.

A neural-net may learn patterns by being "trained" by being fed data, such as finding the right

method to strike a tennis ball or recognising recognizable faces in pictures. After receiving

input, neural networks strive to change how they interpret the challenge, "starting to learn"

how to score higher over a length of time.

37

Figure 29: A CNN with 2 convolutional layers, 2 Max-pooling layers

It is simple for a computer to determine the solution to a problem given rigorous guidelines

and input constraints. Feature/attribute extraction, also known as feature/attribute selection, is

another extremely effective application of neural networks. Another strength of neural

networks is adaptability. Once they are formed, they may be used for nearly anything, from

assisting individuals in identifying the problems impeding their productivity to enhancing air

travel times for more seamless flights. Although scientific utopians have relished proclaiming

neural networks' great future, they might not continue to be the primary method of AI or hard

problem solving for very long.

Although digital perfectionists have relished proclaiming neural networks' great future, they

might not continue to be the primary method of AI or hard problem solving for very long.

The strict limitations and significant flaws of neural networks may prevent their further

development in the future. Instead, if a new strategy emerges that is sufficiently accessible

and has the promise to make it a deserving replacement, researchers and users may start to

favor it.

Neural-networks could (and probably must) expand laterally, being used in more varied

application areas, as opposed to only developing upwards in terms of quicker processor

power and more real immensity. Neural-networks have the potential to help dozens of

companies function more effectively, reach new markets, create new products, or gain

38

customer security. They are grossly neglected. Increased engineering and marketing

innovation, broader acceptability, and affordability might lead to more uses for neural-

networks.

If neural systems could be combined with a complementing tech, such as frame, their flaws

may be readily made up for. Creating a method for various systems to cooperate in order to

generate a common outcome would be challenging, but scientists are already researching it.

Everything has the capacity to increase in sophistication and strength. Although neural

networks have already made a considerable contribution to the field of artificial intelligence,

its long-term potential may not be as great as that of kernel approaches or even traditional AI.

The fact that neural-networks have a definite maximum bound on their complexity or

efficiency discourages many researchers.

The practicalities of creating a neural network are, as you might expect, considerably more

intricate and complex than can be suggested with a brief, general description. Learning how

to create a neural network is exceedingly challenging, and so many people who start the

process finally give up. Additionally, due to the complexity of neural networks, it is

sometimes difficult to discern how our algorithms arrive at their results. This renders it

somewhat mysterious—even to experts—even though we can assess if their results are true.

Scientists now have established that a specific kind of neural net can be taught to understand

the real causation pattern of the navigating problem. These networks need to be more

successful than some other neural nets while traveling in a complicated world, such as a place

with thick trees or an area frequently altering the climate, because they can comprehend the

job directly from image input.

Potential developments of this research may increase the dependability and credibility of

computational agents engaged in risky activities like operating an automated vehicle on a

crowded roadway. One of the key components of AI technology is neural-networks. They

have been available for years and are used in hundreds of apps (you use one whenever your

cellphone utilizes biometric technology). However, they are becoming more and more

common.

39

Figure 30: A digit 7, in the MNIST database

Convolution Neural Networks have been proven extremely useful when we are dealing

with images.

Figure 31: A CNN model extracts the features from the image. First layer extracts very basic

features like vertical or horizontal lines, and subsequent layers keep extracting increasingly

complex features.

40

Figure 32: Comparison of accuracies and Time taken by various activation functions.

41

 References

[1] D. Ciresan, U. Meier, L. M. Gambardella and J. Schmidhuber, "Convolutional neural

network committees for handwritten character classification", Proc. ICDAR, 2011.

[2] Yann Lecun and Corinna Cortes, The MNIST database of handwritten digits.

[3] Ernst Kussul and Tatiana Baidyk, "Improved method of handwritten digit recognition

tested on {MNIST} database", Proceedings from the 15th International Conference on Vision

Interface. Image and Vision Computing, vol. 22, no. 12, pp. 971-981, 2004.

[4] Zhihong Man, Kevin Lee, Dianhui Wang, Zhenwei Cao and Suiyang Khoo, "An optimal

weight learning machine for handwritten digit image recognition", Special issue on ML in

Intelligent Image Processing. Signal Processing, vol. 93, no. 6, pp. 1624-1638, 2013.

[5] Zhang Ping, D. Bui Tien and Y. Suen Ching, "A novel cascade ensemble classifier system

with a high recognition performance on handwritten digits", Pattern Recognition, vol. 40, no.

12, pp. 3415-3429, 2007.

[6] Lauer Fabien, Y. Suen Ching and Grard Bloch, "A trainable feature extractor for

handwritten digit recognition", Pattern Recognition, vol. 40, no. 6, pp. 1816-1824, 2007.

[7] Cheng-Lin Liu, Kazuki Nakashima, Hiroshi Sako and Hiromichi Fujisawa, "Handwritten

digit recognition: benchmarking of state-of-the-art techniques", Pattern Recognition, vol. 36,

no. 10, pp. 2271-2285, 2003.

[8] Angelo Cardoso and Andreas Wichert, "Handwritten digit recognition using biologically

inspired features", Neurocomputing, vol. 99, no. 0, pp. 575-580, 2013.

[9] Berkant Savas and Lars Eldn, "Handwritten digit classification using higher order singular

value decomposition", Pattern Recognition, vol. 40, no. 3, pp. 993-1003, 2007.

[10] C. De Stefano, F. Fontanella, C. Marrocco and A. Scotto di Freca, "A ga-based feature

selection approach with an application to handwritten character recognition", Frontiers in

Handwriting Processing. Pattern Recognition Letters, vol. 35, no. 0, pp. 130-141, 2014.

[11] M. Hanmandlu and O.V. Ramana Murthy, "Fuzzy model based recognition of

handwritten numerals", Pattern Recognition, vol. 40, no. 6, pp. 1840-1854, 2007.

[12] Jie Zhou, Adam Krzyzak and Y. Suen Ching, "Verificationa method of enhancing the

recognizers of isolated and touching handwritten numerals", Handwriting Processing and

Applications. Pattern Recognition, vol. 35, no. 5, pp. 1179-1189, 2002.

42

[13] Ying Wen and Lianghua He, "A classifier for Bangla handwritten numeral recognition",

Expert Systems with Applications, vol. 39, no. 1, pp. 948-953, 2012.

[14] Hossein Khosravi and Ehsanollah Kabir, "Introducing a very large dataset of

handwritten farsi digits and a study on their varieties", Pattern Recognition Letters, vol. 28,

no. 10, pp. 1133-1141, 2007.

[15] Yann LeCun, LD Jackel, L Bottou, A Brunot, C Cortes et al., "Comparison of learning

algorithms for handwritten digit recognition", International conference on ANN, vol. 60, pp.

53-60, 1995.

[16] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to

document recognition", Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[17] Liu, Cheng-Lin, Nakashima, Kazuki, Sako, Hiroshi, et al., "Handwritten digit

recognition: benchmarking of state-of-the-art techniques", Pattern Recognition, vol. 36, no.

10, pp. 2271-2285, 2003.

[18] V Vijaya Kumar, A Srikrishna, B Raveendra Babu and M Radhika Mani, "Classification

and recognition of handwritten digits by using mathematical morphology", Sadhana, vol. 35,

no. 4, pp. 419-426, 2010.

`

43

 Appendices

44

Code:

45

46

Result:

