
Network Packet Analyzer

Project report submitted in partial fulfilment of the requirement for the degree of
Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Mayank Kumar (191307)

Under the supervision of

Dr. Pankaj Dhiman
(Assistant Professor (SG))

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234,
Himachal Pradesh



Candidate’s Declaration

I hereby declare that the work presented in this report entitled “ Network Packet Analyzer.” in partial
fulfilment of the requirements for the award of the degree of Bachelor of Technology in Computer
Science and Engineering/Information Technology submitted in the department of Computer Science and
Engineering and Information Technology, Jaypee University of Information Technology Waknaghat, is an
authentic record of my own work carried out over a period from July 2022 to May 2023 under the
supervision of Dr Pankaj Dhiman (Assistant Professor (SG)).
The matter embodied in the report has not been submitted for the award of any other degree or diploma.

………………………….
Mayank Kumar (191307).

This is to certify that the above statement made by the candidate is true to the best of my knowledge.

………………………………………
Dr Pankaj Dhiman
Assistant Professor
Computer Science and Engineering
Dated:



Plagiarism certificate
(should be signed by supervisor, student, and LRC officials)



ACKNOWLEDGEMENT

I owe my profound gratitude and indebtedness to our project supervisor Dr. Pankaj Dhiman, who took a

keen interest and guided us all along in our project work titled ― Network Packet Analyser, till the

completion of our project by providing all the necessary information for developing the project. The project

development helped us in research, and we got to know a lot of new things in our domain. We are really

thankful to him.

(Student Signature)

Student Name:
Roll no.:

iii



TABLE OF CONTENTS

Certificate i

Plagiarism Certificate ii

Acknowledgement iii

Table of Contents iv

List of Abbreviations v

List of Figures vi - vii

List of Graphs viii

List of Tables ix

Abstract x

Chapter 1: Introduction 1 - 16

1.1 Introduction 1 - 2

1.2 Problem Statement 3

1.3 Objectives 4 - 9

1.4 Methodology 10 - 15

Chapter 2: Literature Survey 16 - 38

Chapter 3: System Development 39 - 47

Chapter4: Performance Analysis 48 - 56

Chapter 5: Conclusion 57 - 58

5.1 Conclusion 57

5.2 Future Scope 58

References 59

iv



LIST OF ABBREVIATIONS

S. No Title Page No.

1 TCP : Transmission Control Protocol 1

2 UDP : User Datagram Protocol 1

3 DNS : Domain Name Server 11

4 IP : Internet Protocol 14

5 OSI : Open System Interconnection 21

6 TTL : Time To Live 21

7 PCAP : Packet Capture 24

8 DARPA : Defence Advanced Research Projects Agency 27

9 HTTP : HyperText Transfer Protocol 48

v



LIST OF FIGURES

S. No. Title Page No.

1 IPv4 packet structure 5

2 IPv6 Fixed Header 6

3 IPv6 Extension header connected format 6

4 Network Traffic Analysis 7

5 Protocol Hierarchy 12

6 Packet Travelling Path 13

7 OSI Model 16

8 Data Link Layer 20

9 Conversation Hash Table 25

10 Packet Lengths 27

11 IP Format 30

12 IP Address Classes 30

13 Internet Routing 32

14 UDP Header 37

15 Data Flow Diagram 40

16 Application Flow Diagram 41

17 Network Flow 42

18 Python Timeline 45

19 Wireshark Home 49

20 Packet Capture 49

21 Header Details 50

22 Google Map 51

23 UPload File 52

vi



24 Upload.kml 53

25 Upload2.kml 53

26 Lines.kml 54

27 Pointed Location on map 55

28 Pointer indicating blacklisted Ip 55

29 Line on map 56

vi



LIST OF GRAPHS

S. No. Title Page No.

1. Data Flow Graph 51

viii



LIST OF TABLES

S. No. Title Page No.

1 IP header class 29

2 Supported Application and its Protocol 38

ix



ABSTRACT

"Network Traffic Analyzer" is a project with the main objective of designing a helping software capable of

monitoring network traffic more precisely while understanding the patterns of real time. Network packets

provide a wealth of information about network activities that may be used to describe overall network

behaviour. System and network administrators can use network packet analyzers to collect this type of

network data. This study will explain the implementation and utilisation of a network packet analyzer based

on tcpdump, a common network packet sniffer tool which is widely used in the market. This fully

customizable and moldable tool focuses on its flexible input and output choices so that it may be ready as

well as optimally integrated into other network tools to accomplish more complex tasks like real-time or

offline network intrusion detection. Database support is included as an output option in this program due to

its well-known efficiency and simplicity in managing large volumes of data.

This system captures packets on the move while it is transporting to the router and helps in providing

essential information on the location of their sources as well as their destinations and recognizes any

anomalous/sudden spike in the network activities occurring within transmissions ensuring secure

transmissions.

Multiple protocols like TCP/UDP/HTTP have been used in building our platform to ensure efficient and

optimal capturing without unnecessary disturbances, lags or delays resulting in better performance achieved

and the outcome of faster-saving administrator's time.

However, this software is used explicitly for user convenience and with user-friendly interfaces providing

visual outputs and reports effortlessly generated at your fingertips. An effective troubleshooting and error

recognition tool perfect for identifying leakages within your infrastructure while minimizing risks through

enhancing security measures no wonder it makes our project a valuable and more useful asset for any of the

organizations which work on these network infrastructures.

Python Programming Language along with multiple analysis techniques and methods such as packet

capture, analysis flow, analysis & protocol detection further marks a solid impact on our opinion behind

"Network Traffic Analyzer."

x



CHAPTER 1
1.1 INTRODUCTION

In the digital era, networks have become a very important and an irreplaceable component of today's

organisations. Networks are used to transport or communicate data, interact with other devices and

platforms, and distribute or communicate data amongst systems. With network complexity rising,

monitoring network traffic is more essentially used than ever to maintain network performance and security.

A network traffic analyzer is a software tool that analyses network content to give useful results and help in

the monitoring of the network performance and find and help in resolving the abnormalities or security

risks. A network traffic analyzer tool catches and monitors real-time network traffic data to discover the

origin and destination of packets. The passage of data packets along the network devices is widely referred

to as network traffic. Network traffic analysis tools can be used to monitor network utilisation, identify

network issues, and identify security leaks. Network traffic analyzers may reveal network traffic trends such

as the devices which communicate the most and applications which utilise the most bandwidth. The basic

utilisation of the proposed application network traffic analyzer is to gain the insights and use this

information and present it in a way that is clear to understand by the human in a much easier form. Network

traffic analyzers intend to collect and extract the data from a variety of sources, few of which are listed as

networking switches, routers, and firewalls. The analyzer can evaluate the traffic from the network traffic

data after it has been recorded and stored to offer insights on network performance. One of the key methods

which has been employed by network traffic analyzers to assess network traffic is packet examination.

A packet is a data unit that is used and carried over a network. Packets contain information about the

targeted data's source and destination, as well as many extra details such as the interface used in this

working and the time that the data was sent by the user. By observing network traffic, network traffic

analyzers may give insights into the network's efficiency as well as discover irregularities or dangers to

security. Packet analysis can be done at several layers, including the application, transport, network, and

data link layers. The transport layer of a network is responsible for providing accurate data transfer services

such as TCP and UDP. TCP along with additional reliable data transmission services are provided by the

transport layer.. Network traffic analyzers, for example, can identify which apps require the most internet

through studying packets at the software layer. Network traffic analyzers are capable of identifying which

devices interact the most by studying packets at the network layer. Network traffic analyzers are fully

1



capable of using different methods, such as flow estimation and behaviour evaluation, in addition to packet

analysis, to provide information on network performance and discover irregularities or security concerns.

Flow analysis is a method that divides packets into flows, which are groupings of packets transferred

between the two devices. Network traffic analyzers are capable of providing various useful results and look

into network performance and discovering abnormalities such as congestion in the network through

analysing flows. Behaviour analysis is a technique to recognise abnormalities in network traffic patterns

over time, such as odd spikes in network traffic.

Finally, a network traffic analyzer is a software that collects and evaluates data flowing on the

network in order to give insights into network performance and discover flaws and the security concerns

which arise from these flows. To give insights into network performance, network traffic analyzers are

capable of evaluating packets at multiple layers, which include the application layer, transport layer,

network layer, as well as data link layer. Network traffic analyzers are fully capable to utilise other methods,

such as flow analysis and behaviour analysis, in parallel with the packet analysis, to give different workings

about the network performance and discover irregularities or security concerns. Network traffic analyzers

are a very useful tool for network managers to use and company in order to maintain network performance

and security.

2



1.2 Problem Statement

The use of computer networks has become widespread in modern society as organisations rely on them for

communication, data sharing, and resource accessibility. Nonetheless, complex networks pose significant

challenges to maintaining their performance levels while ensuring security remains optimum. One

significant challenge afflicting administrators concerns identifying the source or destination of network

packets - which are fundamental units used to transmit data across these networks. This problem remains

critical since administrators must guarantee that only authorised parties receive transmitted information free

from interference or manipulation by unauthorised entities. Secondly, tracking packet sources/destinations is

essential in troubleshooting network issues whilst locating performance limitations within complex systems.

Finally, detecting anomalous behaviour through such tracking offers an efficient technique for recognizing

probable cybersecurity threats like hacking attacks/breaches into a system's defences. Currently popular

methods employ traffic analyzer tools to help locate these distinct endpoints. Unlocking the power of real

time network traffic data capture and analysis, our advanced tools offer unmatched understanding into the

security and performance of your organisation's network. However, there are several challenges associated

with using network traffic analyzer tools, including the following:

● Complexity: Network traffic analyzer tools can be complex to set up and configure, requiring a

significant amount of technical expertise and specialised knowledge.

● Scalability: As networks grow in size and complexity, the amount of data that needs to be analysed

by network traffic analyzer tools can become overwhelming, leading to performance issues and data

overload.

● Security: Network traffic analyzer tools can themselves be a security risk, as they provide a

potential attack surface for malicious actors to exploit.

● Cost: High-end network traffic analyzer tools can be expensive, making them inaccessible to smaller

organisations with limited budgets.

Therefore, there is a need for a network traffic analyzer tool that is easy to use, scalable, secure, and

affordable. Such a tool would enable network administrators to identify the source and destination of

network packets more effectively and efficiently, leading to improved network performance, increased

security, and faster troubleshooting of network issues.

3



1.3 Objectives

The objective of this project is to develop a network traffic analyzer tool that can capture network traffic

data in real-time and analyse it to provide insights into network performance and detect anomalies or

security threats. The tool should be able to analyse packets at different levels, such as the application layer,

transport layer, network layer, and data link layer, to provide insights into network performance. The

primary objective of the tool is to display the source and destination of the packets to identify which devices

are communicating the most and which applications are consuming the most bandwidth. To achieve this

objective, the network traffic analyzer tool should have the following specific goals:

Packet Capture: Network traffic data from various sources, such as network switches, routers, or firewalls,

should be able to be captured by the tool in the form of packets in real-time. A packet capture is a file that

contains all packets seen by a specific network box, typically a firewall or router, during a given time

period. Packet captures are a powerful and widely used tool for debugging network issues or improving

visibility into attack traffic in order to tighten security (for example, by adding firewall rules to block a

specific attack pattern). A network engineer may use a pcap file in conjunction with other tools, such as mtr,

to troubleshoot network reachability issues.

For example, if an end user reports intermittent connectivity to a specific application, an engineer

can set up a packet capture filtered to the user's source IP address to record all packets received from their

device. They can then analyse that packet capture and compare it to other sources of information (for

example, pcaps from the end user's side of the network path, traffic logs, and analytics) to understand the

magnitude of the problem and isolate its source. Packet captures can also be used by security engineers to

gain a better understanding of potentially malicious traffic. Assume an engineer notices an unexpected spike

in traffic that they suspect is an attempted attack. They can use a packet capture to record traffic as it enters

their network and analyse it to see if the packets are valid. If they’re not, for example, if the packet payload

is randomly generated gibberish, the security engineer can create a firewall rule to block traffic that looks

like this from entering their network.

Packet analysis: The tool should be able to analyse packets at multiple layers, including the application

layer, transport layer, network layer, and data link layer, in order to provide insights into network

performance and detect anomalies or security threats. The growing popularity of online services compels

security experts and law enforcement agencies to devise new methods of investigating cybercrime and

obtaining evidence admissible in court. Online services send large amounts of data across communication

4



networks in a variety of formats, the most common of which are network packets. These are groups of bits

that include data as well as control information (Stallings and Case, 2012), and are generally referred to as a

network layer (OSI Layer 3) protocol data unit. They represent the smallest unit of data intercepted and

logged about network traffic flow traversing over packet-switched networks at a specific point in time,1

consisting of control information (source and destination IP address, error detection codes, sequencing

information) and payload (intended message). A frame is a group of bits that includes data with one or more

addresses and other protocol control information (Stallings and Case, 2012). In OSI Layer 4 (transport

layer), the equivalent is known as a segment (or datagram). Network packets, when captured, stored, and

processed efficiently, can be used in forensic investigations and may even provide admissible evidence

against a suspect in a court case. Unless otherwise specified, we will use the term packet analysis

throughout this paper, regardless of whether the actual content is a frame, packet, datagram, or session.

Fig. 1 IPv4 packet structure

5



Fig. 2 IPV6 Fixed Header

Fig. 3 IPv6 Extension Headers Connected Format

6



Display of packet source and destination: The tool should be able to display the source and destination of

packets in order to identify which devices are communicating the most and which applications are

consuming the most bandwidth.

Flow analysis: The tool should be able to group packets into flows, which are sequences of packets between

two devices, and analyse flows to provide insights into network performance and detect anomalies, such as

network congestion. According to traffic flow analysis, the following should be done:

Fig. 4 Network Traffic Analysis

7



To assess network traffic on the basis of shared characteristics. In other words, the starting point is

an abstraction known as "traffic flow," which corresponds to all traffic that shares certain common

characteristics and moves from one network host to another. For example, if we consider all of the traffic

that a station and a server can share, traffic that is part of the same conversation or has the same goal will be

considered flow. Only the metadata is saved, not the flow itself. The idea is to use the devices involved in

network traffic passing to generate information about the traffic flow or its metadata without storing the

packets that comprise the traffic flow. This metadata must then be saved and reprocessed before it can be

displayed with the intention of allowing analysis, such as monitoring, security, forensics, billing, and so on.

The traffic flow analysis is based on a set of protocols that enable the generation, transport, storage, and

preprocessing of metadata. It is important to note that these protocols do not specify how the analysis should

be performed; they leave it to the tools that use metadata to accomplish their goals. NetFlow and sFlow are

two protocols that represent two distinct approaches to implementing traffic flow analysis.

Behaviour analysis: Network behaviour analysis is the process of gathering and analysing enterprise

network data to identify unusual entity behaviour that might indicate malicious activity. The tool should be

capable of analysing network traffic patterns over time in order to detect anomalies, such as unusual spikes

in network traffic. Modern network behaviour analysis solutions collect NetFlow to create a baseline for

normal network operations. When a network entity deviates from the set limits for expected behaviour,

network behaviour analysis records and highlights the anomalous incident for security operators. Enterprises

rely on network behaviour analysis to detect automated threat warnings that security teams cannot easily

detect. Using cutting-edge machine learning (ML) techniques, network behaviour analysis solutions can

effectively differentiate between different types of network applications, with accuracy levels frequently

exceeding 90%.

The study of network traffic characteristics is known as network behaviour analysis. Among these

are Flow duration, Packet size, Packet signature, Response time, and Quantities of ACK and SYN packets in

each flow. These characteristics are also analysed by the network behaviour analysis solution to classify the

type of network traffic and measure network performance, among other applications. Network behaviour

analysis enhances network security by tracking traffic patterns and highlighting out-of-place activity. This is

a departure from ‘traditional’ network security operations where conventional solutions such as signature

recognition, packet checking, and blocking malicious websites are used to defend networks from harm.

8



Instead, network behaviour analysis collates information about the way a network operates from numerous

sources and leverages machine learning to identify patterns in this data. Any unexpected change in these

patterns could suggest the presence of malicious activity. Consider an endpoint used by the accounting

department that has never consumed more than one gigabyte of network resources in a single day. One day,

this endpoint collects several gigabytes of data from a critical technology database. While it would be

possible to spot this anomaly without network behaviour analysis, it could take days or even weeks to

identify the problem assuming someone is going through these logs manually.

Network behaviour analysis solutions would highlight this case of data hoarding in near real-time.

Advanced cybersecurity setups might even limit the endpoint’s permissions and take other automated

measures to prevent the exfiltration of the acquired data. Prompt detection and response to such behaviour

by network behaviour analysis solutions enable security teams to deal with the threat before widespread

damage can be done. The efficacy of network behaviour analysis solutions increases over time as it monitors

the network and creates benchmarks for typical network behaviour. The bigger the dataset that network

behaviour analysis can work with, the more easily it can identify anomalies. Any deviations identified by

the solution are escalated for further action, either to another automated component or a human team.

In the post-pandemic business world, almost all internal processes are carried out online. Therefore,

corporations and SMEs rely on network behaviour analysis for valuable insights to help them defend against

deadly cyber attacks, particularly zero-day vulnerabilities and malware.

● User-friendly interface: The tool should have a user-friendly interface that allows network

administrators to easily monitor network traffic and identify performance or security issues.

● Customizable alerts: The tool should allow users to set up customizable alerts to notify them of

performance or security issues.

By achieving these specific goals, the network traffic analyzer tool can provide network administrators with

the information they need to ensure network performance and security. The tool can help network

administrators to identify which devices are consuming the most bandwidth, which applications are causing

network congestion, and detect security threats such as malware or unauthorised access attempts. Overall,

the objective of this project is to develop a powerful and user-friendly network traffic analyzer tool that can

help network administrators to monitor and manage their networks effectively.

9



1.4 Methodology

The methodology used in the project that analyses network packets to display their source and destination

involves several steps, including packet capture, packet parsing, and packet analysis.

● Packet Capture: The first step is to capture the network traffic data in real-time. This is usually

done using a network traffic monitoring tool, such as Wireshark, which captures packets as they

travel across the network. Wireshark is a popular open-source network protocol analyzer tool that

allows users to capture and analyse network traffic data in real time. It provides a graphical user

interface (GUI) and supports a wide range of operating systems including Windows, macOS, and

Linux. There are several methods for capturing packets using Wireshark:

○ Local capture: The first method is to capture packets on the local machine. This involves

starting Wireshark and selecting the network interface to capture packets. Once the capture

has started, Wireshark will display a real-time stream of captured packets in its GUI.

○ Remote capture: The second method is to capture packets remotely. This involves running a

Wireshark remote capture service on a remote machine and connecting to it from the local

machine. Once connected, Wireshark will display a real-time stream of captured packets in

its GUI.

○ Command-line capture: The third method is to capture packets using the Wireshark

command-line interface (CLI). This involves using the “tshark” command to start a packet

capture and specify capture filters and other options. Once the capture has started, Wireshark

will display a real-time stream of captured packets in its GUI.

Wireshark captures packets by putting the network interface into "promiscuous mode", which allows it to

capture all packets that pass through the interface, not just those intended for the machine on which

Wireshark is running. Once the packets have been captured, Wireshark parses them and displays them in its

GUI, allowing users to analyse the network traffic in real time. Wireshark also provides a wide range of

analysis features, including filtering and searching for specific packets, dissecting protocols to understand

their structure and function, and displaying statistical information on network traffic such as packet count

and data volume. Additionally, Wireshark allows users to export captured packets in various formats, such

as PCAP, which can be used for further analysis or to share with other users. Overall, Wireshark is a

powerful tool for capturing and analysing network traffic, providing users with a deep understanding of the

data flowing across their network. With its user-friendly GUI and advanced features, Wireshark has become

a widely used tool in the field of network analysis and troubleshooting.

10



● Packet Parsing: The next step is to parse the captured packets to extract the relevant information,

such as the source and destination IP addresses, port numbers, and protocol types. This is typically

done using a packet parsing library, such as Scapy or PyShark, which allows developers to write

scripts to extract specific fields from the captured packets. Wireshark is a popular network traffic

analysis tool that allows users to capture, filter, and analyse network packets. Wireshark is

open-source software that is available for free, and it supports multiple operating systems, including

Windows, Linux, and macOS. To parse packets in Wireshark, users can utilise various methods,

including:

○ Display Filters: Display filters are used to filter out packets based on specific criteria, such

as IP addresses, ports, and protocols. Users can create display filters using the Wireshark

expression language, which allows for complex filtering based on a wide range of attributes.

○ Protocol Hierarchy: Wireshark provides a protocol hierarchy view that displays the

protocols used in the captured packets in a hierarchical format. This view allows users to drill

down into each protocol layer and analyse the details of each packet.

○ Packet Details: Wireshark provides a packet details view that displays the contents of each

packet in a user-friendly format. This view allows users to see the raw data and decode the

contents of each packet, including the source and destination IP addresses, port numbers, and

protocol types.

○ Packet Dissection: Wireshark uses a packet dissection engine to decode the packets and

extract the relevant information. The packet dissection engine can decode a wide range of

protocols, including TCP, UDP, HTTP, and DNS.

Working of Wireshark on the network: When Wireshark is launched, it listens on the selected network

interface for incoming packets. Once a packet is captured, Wireshark begins parsing the packet using its

packet dissection engine. Wireshark then displays the parsed information in various views, including the

packet details, protocol hierarchy, and packet list views. Users can apply display filters to the captured

packets to filter out unwanted packets and focus on specific network traffic. Users can also create

customised columns to display specific packet attributes, such as the source and destination IP addresses, in

the packet list view. In addition to packet analysis, Wireshark also provides advanced features, such as

protocol decoders, packet reconstruction, and packet exporting. These features allow users to perform

in-depth analyses of network traffic and share their findings with other team members. In conclusion,

Wireshark provides various methods to parse network packets, including display filters, protocol hierarchy,

packet details, and packet dissection. It works by capturing packets on a network interface, parsing the

packets using its packet dissection engine, and displaying the parsed information in various views.

11



Fig. 5 Protocol Hierarchy

Wireshark is a powerful network analysis tool that is widely used by network engineers, security analysts,

and researchers to analyse network traffic and troubleshoot network issues.

● Packet Analysis: Once the packets have been parsed, the next step is to analyse the extracted

information to provide insights into network performance and detect anomalies. This is typically

done using a network traffic analysis tool, such as tcpdump or NetFlow, which can provide statistics

on packet volume, packet size, and packet frequency. Packet analysis is a crucial aspect of network

traffic analysis, and Wireshark is a popular tool that offers various methods to perform packet

analysis. The following are the packet analysis methods of Wireshark:

○ Packet Filtering: Packet filtering is the most common packet analysis method in Wireshark,

and it allows users to filter out packets based on specific criteria. Users can create display

filters using the Wireshark expression language, which allows for complex filtering based on

a wide range of attributes, such as source and destination IP addresses, port numbers, and

protocol types.

12



○ Protocol Decoding: Wireshark uses a packet dissection engine to decode the packets and

extract the relevant information. The packet dissection engine can decode a wide range of

protocols, including TCP, UDP, HTTP, and DNS. Wireshark provides a protocol hierarchy

view that displays the protocols used in the captured packets in a hierarchical format. This

view allows users to drill down into each protocol layer and analyse the details of each

packet.

○ Packet Reconstruction: Wireshark offers a packet reconstruction feature that allows users to

reassemble fragmented packets and view their contents. This feature is particularly useful for

analysing file transfers and web page requests that are split across multiple packets.

○ Stream Analysis:

Fig. 6 Packet Travelling Path

Wireshark offers stream analysis features that allow users to analyse the flow of data between

network endpoints. Users can view the stream of packets between two endpoints and analyse

the various protocols used in the communication.

○ Statistical Analysis: Wireshark provides various statistical analysis features that allow users

to analyse network traffic patterns and identify anomalies. Users can view various statistics,

13



such as the number of packets, bytes, and average packet size for each protocol used in the

captured packets.

○ Graphical Analysis: Wireshark offers graphical analysis features that allow users to

visualise network traffic patterns. Users can create charts and graphs to analyse network

traffic trends, identify spikes in traffic, and pinpoint network performance issues.

In conclusion, Wireshark provides a comprehensive set of packet analysis methods that allow users

to analyse network traffic in depth. These methods include packet filtering, protocol decoding,

packet reconstruction, stream analysis, statistical analysis, and graphical analysis. With these

methods, network engineers, security analysts, and researchers can identify network issues,

troubleshoot problems, and improve network performance.

● Displaying the Source and Destination: The final step is to display the source and destination of

the packets to identify which devices are communicating the most and which applications are

consuming the most bandwidth. This can be achieved using a variety of techniques, such as plotting

the source and destination IP addresses on a graph or using colour coding to differentiate between

different types of traffic. To implement this methodology, developers can use a variety of

programming languages, such as Python or Java, along with relevant libraries and tools to capture,

parse, and analyse the packets. For example, they can use Scapy to extract the relevant fields from

the captured packets and use Pandas to perform statistical analysis on the extracted data.

Additionally, developers can use visualisation libraries such as Matplotlib or Seaborn to create

graphs and charts that display the source and destination of the packets in an easily understandable

format. Overall, the methodology used in the project that analyses network packets to display their

source and destination involves capturing network traffic data in real-time, parsing the packets to

extract relevant information, analysing the data to provide insights into network performance, and

finally, displaying the source and destination of the packets in a visually appealing manner.

Wireshark is a powerful tool for network traffic analysis that can capture and analyse

network packets in real-time or from a saved capture file. One of the most critical pieces of

information that Wireshark provides is the source and destination IP addresses of the packets.

Wireshark captures network packets by putting the network interface card (NIC) into promiscuous

mode. In this mode, the NIC captures all the packets that it sees on the network, including those not

intended for the host machine. This allows Wireshark to capture all the packets that pass through the

14



network interface, including those sent between other devices on the network. When Wireshark

captures a packet, it analyses the packet header to determine the source and destination IP addresses.

The IP header contains the source and destination IP addresses, along with other important

information about the packet, such as the protocol used, the time to live (TTL), and the length of the

packet. Wireshark uses the IP protocol field in the packet header to determine the protocol used in

the packet. If the protocol is TCP or UDP, Wireshark can determine the source and destination port

numbers, which are also important for identifying the applications or services that are generating or

receiving the packets. Once Wireshark has identified the source and destination IP addresses, it can

use this information to filter and analyse the packets. Users can apply filters based on the source and

destination IP addresses, allowing them to focus on specific network traffic flows. Users can also

sort and group packets based on the source and destination IP addresses, making it easier to identify

patterns in the network traffic. In summary, Wireshark captures network packets in promiscuous

mode, analyses the packet header to determine the source and destination IP addresses, and uses this

information to filter and analyse the packets. The source and destination IP addresses are critical

pieces of information that allow users to identify the network devices generating or receiving the

traffic and focus their analysis on specific traffic flows.

15



CHAPTER 2

LITERATURE SURVEY

Network packet analysis is the capture and analysis of network packets in order to gain insight into network

traffic behaviour. Network packet analyzers are indispensable tools for network engineers and security

analysts because they allow them to diagnose and troubleshoot network issues as well as identify security

threats. In this literature review, we will examine the existing literature on network packet analysis and the

tools used to perform it.

Capturing and analysing packets at various layers of the network stack is what network packet analysis eThe

OSI model defines seven network stack layers, and packet analysis can take place at any of these layers.

layers. The data link, network, and transport layers are the most commonly examined layers.

Fig. 7 OSI Model

16



The Physical Layer:

In terms of network security and hardware support, the physical layer in the OSI model is the fundamental

level for the entire network. It defines the hardware needed to connect computers, including wires, devices,

frequencies, and pulses. The data is stored in bits and transferred between devices via the nodes of the

physical layer. Consider how critical the physical layer is to network security as you learn about it in the

OSI model. The physical layer is necessary for network hardware visibility. Layer 1 of the OSI model is

frequently ignored by today's software solutions. Because layer 1 devices cannot be identified, rogue

devices may be implanted in the hardware, posing a security risk to the entire network. Such bad actors are

detected and eliminated by the physical layer. To ensure OSI Model Functions in the Physical Layer, the

layer also includes a separate security procedure.

1. Bit Representation:

The physical layer (Layer 1) in the OSI model is in charge of transmitting individual bits from one node to

another over a physical medium. In the case of electrical signals, it specifies how to encode bits, such as

how many volts should represent a 0 bit and a 1 bit.

2. Data Transfer Rate:

In the OSI model, the function of Physical Layer maintains the data rate. The number of bits sent per second

is defined as the data rate. It is influenced by a variety of factors, including:

Bandwidth: The physical limitation of the underlying medium.

The number of encoding signalling levels.

The frequency with which information is received incorrectly as a result of noise.

3. Synchronisation

Bit synchronisation is one of the functions of the physical layer in the OSI model. Bit synchronisation exists

between the sender and the receiver. This is accomplished by including a clock. The sender and receiver are

both controlled by this timepiece. This synchronisation method produces bit-level synchronisation.

4. Interface

17



The transmission interface between devices and the transmission medium is defined by the physical layer of

the OSI model. PPP, ATM, and Ethernet are the three most commonly used frames on the physical interface.

When considering the standards, it is common, but not required, to divide the physical layer into two parts:

● The Physical Medium (PM) layer is the lowest sublayer of the physical layer..

● Transmission Convergence (TC) layer: The physical layer's highest sublayer.

5. Configuration of Lines

The physical layer in OSI models is in charge of connecting devices to the medium or line configuration.

Line configuration, also known as a connection, is the method of connecting two or more devices to a link.

A dedicated link connects two devices directly. A device can be a computer, a printer, or any other type of

data-transmitting and data-receiving device.

6. Topologies

The OSI model's physical layer specifies how various computing devices in a network should be connected

to one another. A network topology is the configuration of computer systems or network devices that are

linked together. A network's topology can define both its physical and logical aspects. Device connectivity

necessitates the use of Mesh, Star, Ring, and Bus topologies.

7. Modes of Transmission

In the OSI model, the physical layer specifies the transmission direction between two devices. The method

of transferring data from one device to another is referred to as transmission mode. The physical layer

determines the direction of data travel required to reach the receiver system or node in the OSI model.

Transmission modes are classified into three categories:

● The simplex mode

● Half-duplex mode

● Full-duplex mode

Physical topologies:

Mesh Topology is the first step.

18



It is a highly secure device connection in which every device is linked to every other device in the network

via links. A dedicated point-to-point connection is present, which is complex to form.

Star Topology

All devices in this type of device connection are linked to a central hub via a dedicated point-to-point

connection. It is easy to install but has no fault tolerance.

Bus Topology

All of the devices in this configuration are linked by a single backbone cable, which is less expensive and

easier to replace.

There are several other ways in which the physical layer in the OSI model functions, such as end-to-end

configuration.

Data link layer analysis:

Data link layer analysis is a critical aspect of network packet analysis, which involves analysing packets at

the Ethernet layer of the OSI model. The Ethernet protocol is the most widely used data link layer protocol,

and packet analysis at this layer involves analysing Ethernet frames. The most commonly analysed

attributes at the data link layer are the source and destination MAC addresses and the Ethernet frame type.

The source MAC address identifies the device that sent the frame, while the destination MAC address

identifies the device that is intended to receive the frame. The Ethernet frame type indicates the type of data

carried in the frame, such as an IP packet or an ARP request. The data link layer analysis is useful for

various network troubleshooting and security tasks, such as identifying network devices and tracking

network activity. For example, analysing the source and destination MAC addresses can help identify

devices on the network while analysing the Ethernet frame type can help identify the type of traffic being

carried on the network. Data link layer analysis can be performed using various tools, such as Wireshark,

tcpdump, and Tshark. These tools allow users to capture and analyse Ethernet frames and provide various

features, such as filtering, protocol decoding, and statistical analysis. Wireshark is an open-source packet

analyzer that is widely used for data link layer analysis. Wireshark offers various features, such as packet

filtering, protocol decoding, packet reconstruction, stream analysis, statistical analysis, and graphical

19



analysis. Wireshark provides a graphical user interface that allows users to analyse Ethernet frames in a

user-friendly manner. Tcpdump is a command-line packet analyzer that is commonly used for data link layer

analysis. Tcpdump offers features such as packet filtering and protocol decoding and is widely used in

network troubleshooting and analysis. Tcpdump provides a command-line interface that allows for

automation and scripting.

Fig. 8 Data Link Layer

Tshark is a command-line version of Wireshark that allows users to capture and analyse Ethernet frames

from a terminal window. Tshark offers most of the features of Wireshark, and its command-line interface

allows for automation and scripting. In conclusion, data link layer analysis is a critical aspect of network

packet analysis that involves analysing Ethernet frames at the data link layer. The most commonly analysed

attributes at this layer are the source and destination MAC addresses and the Ethernet frame type. Various

tools, such as Wireshark, tcpdump, and Tshark, are available for data link layer analysis and provide various

features, such as filtering, protocol decoding, and statistical analysis. Data link layer analysis involves

analysing packets at the Ethernet layer. Ethernet is the most widely used data link layer protocol, and packet

analysis at this layer involves analysing Ethernet frames. The most commonly analysed attributes at the data

link layer are the source and destination MAC addresses and the Ethernet frame type.

20



Network layer analysis:

Network layer analysis is a key aspect of network packet analysis that involves capturing and analysing

network packets at the network layer of the OSI model. The network layer is the third layer of the OSI

model, and it is responsible for routing packets between different networks. The most commonly used

protocol at the network layer is the Internet Protocol (IP), and packet analysis at this layer involves

analysing IP packets. IP packets contain information such as the source and destination IP addresses, the

protocol type, and the time to live (TTL). The source and destination IP addresses are the most important

attributes of an IP packet. The source IP address identifies the sender of the packet, while the destination IP

address identifies the intended recipient of the packet. These addresses are critical for routing the packet

through the network, and network layer analysis often involves examining the source and destination IP

addresses to identify the origin and destination of network traffic. The protocol type is another important

attribute of an IP packet. The protocol type identifies the higher-level protocol that is encapsulated within

the IP packet.

For example, if the protocol type is TCP, it indicates that the packet contains a TCP segment. If the

protocol type is UDP, it indicates that the packet contains a UDP datagram. Network layer analysis often

involves examining the protocol type to determine the type of traffic being carried by the packet. The time

to live (TTL) is an attribute of an IP packet that limits the lifetime of the packet. The TTL value is

decremented by one each time the packet is forwarded by a router, and if the TTL value reaches zero, the

packet is discarded. The TTL attribute is used to prevent packets from circulating indefinitely in the

network. Network layer analysis often involves examining the TTL value to determine the number of hops

taken by the packet and to identify potential routing issues. There are various tools available for network

layer analysis, ranging from open source tools such as Wireshark to commercial tools such as SolarWinds

Network Performance Monitor. These tools offer various features and capabilities, such as packet filtering,

protocol decoding, and statistical analysis. Commercial packet analyzers, such as SolarWinds Network

Performance Monitor and Riverbed SteelCentral Packet Analyzer, offer advanced features such as

application performance monitoring, network traffic analysis, and security threat detection. These tools are

designed for enterprise-level network analysis and are often used by network engineers and security

analysts. Network layer analysis is an essential aspect of network packet analysis that involves capturing

and analysing network packets at the network layer of the OSI model. The network layer is responsible for

routing packets between different networks, and network layer analysis involves examining attributes such

as the source and destination IP addresses, the protocol type, and the TTL attribute. There are various tools

available for network layer analysis, ranging from open source tools such as Wireshark to commercial tools

such as SolarWinds Network Performance Monitor. The choice of tool depends on the specific requirements

21



of the network analysis and the level of expertise of the user. Network layer analysis involves analysing

packets at the IP layer. The IP protocol is the most commonly used network layer protocol, and packet

analysis at this layer involves analysing IP packets. The most commonly analysed attributes at the network

layer are the source and destination IP addresses, the IP protocol type, and the time to live (TTL).

Transport layer analysis:

Transport layer analysis involves analysing packets at the TCP or UDP layer. TCP and UDP are the most

commonly used transport layer protocols, and packet analysis at this layer involves analysing TCP or UDP

packets. The transport layer is responsible for providing reliable data transmission and flow control between

applications running on different hosts. TCP (Transmission Control Protocol) is a connection-oriented

transport layer protocol that provides reliable data transmission. TCP analysis involves analysing TCP

segments, which are the units of data transmitted over a TCP connection. The most commonly analysed

attributes at the TCP layer are the source and destination port numbers, the sequence and acknowledgement

numbers, the TCP flags, the window size, and the options. The source and destination port numbers are used

by the TCP layer to identify the sending and receiving applications. The port numbers are 16-bit values that

range from 0 to 65535. Well-known port numbers (0-1023) are reserved for standard services such as HTTP,

FTP, and Telnet, while the remaining port numbers (1024-65535) are available for dynamic allocation by

applications.

TCP uses sequence and acknowledgement numbers to provide reliable data transmission. The

sequence number is a 32-bit value that represents the byte offset of the first byte of the segment. The

acknowledgement number is a 32-bit value that represents the next expected byte from the other end of the

connection. TCP uses flags to control the behaviour of the connection. The most commonly used TCP flags

are SYN, ACK, FIN, RST, and URG. The SYN flag is used to initiate a connection, the ACK flag is used to

acknowledge data received, the FIN flag is used to terminate a connection, the RST flag is used to reset a

connection, and the URG flag is used to indicate urgent data. TCP uses a sliding window mechanism to

control the flow of data. The window size is a 16-bit value that represents the maximum amount of data that

can be sent without receiving an acknowledgement. UDP (User Datagram Protocol) is a connectionless

transport layer protocol that provides unreliable data transmission. UDP analysis involves analysing UDP

datagrams, which are the units of data transmitted over a UDP connection. The most commonly analysed

attributes at the UDP layer are the source and destination port numbers and the length. The source and

destination port numbers are used by the UDP layer to identify the sending and receiving applications. The

22



port numbers are 16-bit values that range from 0 to 65535. The length field in the UDP header represents the

length of the datagram, including the header and the data.

Transport layer analysis is a critical aspect of network packet analysis, as it provides insight into the

behaviour of the applications running on the network. TCP analysis involves analysing TCP segments,

which provide reliable data transmission and flow control, while UDP analysis involves analysing UDP

datagrams, which provide fast and lightweight data transmission. The most commonly analysed attributes at

the transport layer are the source and destination port numbers, the sequence and acknowledgement

numbers, the TCP flags, and the window size for TCP analysis, and the source and destination port numbers

and the length for UDP analysis. The choice of tool for transport layer analysis depends on the specific

requirements of the network analysis and the level of expertise of the user. Transport layer analysis involves

analysing packets at the TCP or UDP layer. TCP and UDP are the most commonly used transport layer

protocols, and packet analysis at this layer involves analysing TCP or UDP packets. The most commonly

analysed attributes at the transport layer are the source and destination port numbers and the TCP or UDP

flags.

Packet analysis tools:

Packet analyzers, also known as packet sniffers, monitor every packet (the smallest unit of information) that

flows through a network. They are beneficial to network administrators in terms of traffic logging,

monitoring, and analysis. They are also useful in determining the root cause of any network problem. These

tools are available as both software and hardware. The software option has become more popular due to its

convenience, but both are effective in dealing with troubleshooting and are connected to a network where

they store the information they receive.

Packet analyzer tools assist IT professionals in simplifying and speeding up the troubleshooting process for

both new and existing information travelling from sender to receiver by decoding the packets. Simply put,

they provide visibility into a previously invisible travelling process. These tools help to clarify current issues

and anticipate future problems. This improves the end-user experience, whether they are chatting online,

gaming, streaming video, or shopping.

There are numerous tools available for network packet analysis, ranging from open-source tools like

Wireshark to commercial tools like SolarWinds Network Performance Monitor. These tools include features

such as packet filtering, protocol decoding, and statistical analysis.

23



Wireshark:

Wireshark is an open-source packet analyzer that is free to use. It is used for network troubleshooting,

analysis, the creation of software and communications protocols, and teaching. Due to trademark

difficulties, the project's name was changed to Wireshark in May 2006. Wireshark is cross-platform,

implementing its user interface using the Qt widget toolkit in current versions and capturing packets with

pcap. It operates on Linux, macOS, BSD, Solaris, certain other Unix-like operating systems, and Microsoft

Windows. TShark, a terminal-based (non-GUI) version, is also available. Wireshark and the additional

programmes included with it, such as TShark, are free software licenced under the GNU General Public

Licence version 2 or later.

PCAP:

Many open-source and commercial network tools, such as protocol analyzers (packet sniffers), network

monitors, network intrusion detection systems, traffic generators, and network testers, use libpcap, WinPcap,

and Npcap as packet capture and filtering engines.

libpcap, WinPcap, and Npcap also support saving captured packets to files and reading files containing

saved packets; applications can be written to capture network traffic and analyse it, or to read a saved

capture and analyse it using the same analysis code. A capture file saved in the format supported by libpcap,

WinPcap, and Npcap can be read by applications that support the format, such as tcpdump, Wireshark, CA

NetMaster, or Microsoft Network Monitor 3.x.

24



Fig. 9 Conversation Hash Table

The file format created and read by libpcap, WinPcap, and Npcap has the MIME type

application/vnd.tcpdump.pcap. The most common file extension is.pcap, though.cap and.dmp are also used.

The Network Research Group at Lawrence Berkeley Laboratory created libpcap from the tcpdump

developers. The low-level packet capture, capture file reading, and capture file writing code from tcpdump

was extracted and turned into a library with which tcpdump was linked. It is now created by the same

tcpdump.org team that creates tcpdump.

Tshark:

Tshark is a command-line version of Wireshark that allows users to capture and analyse network traffic from

a terminal window. Tshark offers most of the features of Wireshark, and its command-line interface allows

for automation and scripting.

25



Tcpdump:

Tcpdump is a packet analyzer that allows users to capture and analyse network traffic from a command line.

Tcpdump offers features such as packet filtering and protocol decoding and is widely used in network

troubleshooting and analysis.

Commercial packet analyzers:

Commercial packet analyzers, such as SolarWinds Network Performance Monitor and Riverbed

SteelCentral Packet Analyzer, offer advanced features such as application performance monitoring, network

traffic analysis, and security threat detection. These tools are designed for enterprise-level network analysis

and are often used by network engineers and security analysts.

Network packet analysis is a critical aspect of network troubleshooting and security analysis. There

are various tools available for packet analysis, ranging from open-source tools such as Wireshark to

commercial tools such as SolarWinds Network Performance Monitor. The choice of tool depends on the

specific requirements of the network analysis and the level of expertise of the user. We investigated the

existing literature on network packet analysis and the tools used for this purpose in this literature review.

TCP/IP Protocols :

Because they can be used to communicate across any set of interconnected networks and are equally well

suited for LAN and WAN communications, the Internet protocols are the world's most popular open-system

(nonproprietary) protocol suite. Internet protocols are a collection of communication protocols, the most

well-known of which are the Transmission Control Protocol (TCP) and the Internet Protocol (IP). The

Internet protocol suite includes not only lower3 layer protocols (such as TCP and IP), but also common

applications such as e-mail, terminal emulation, and file transfer. This document provides an overview of

the specifications that comprise the Internet protocols.

26



Fig. 10 Packet Lengths

The Defence Advanced Research Projects Agency (DARPA) became interested in establishing a

packet-switched network that would facilitate communication between dissimilar computer systems at

research institutions in the mid-1970s, which led to the development of Internet protocols. DARPA-funded

research at Stanford University and Bolt, Beranek, and Newman (BBN) with the goal of heterogeneous

connectivity in mind. The Internet protocol suite, which was completed in the late 1970s, was the result of

this development effort. Internet protocols (including new or revised protocols) and policies are documented

in technical reports known as Request for Comments (RFCs), which are published and then reviewed and

analysed by the Internet community. Protocol enhancements are documented in the new RFCs. It depicts the

scope of the Internet protocols by mapping many of the protocols in the Internet protocol suite and their

corresponding OSI layers.

The Internet Protocol (IP) is a network-layer (Layer 3) protocol that contains addressing information and

some control information that enables packets to be routed. IP is the primary network-layer protocol in the

Internet protocol suite. Along with the Transmission Control Protocol (TCP), IP represents the heart of the

Internet protocols. IP has two primary responsibilities: providing connectionless, best-effort delivery of

27



datagrams through an inter-network; and providing fragmentation and reassembly of datagrams to support

data links with different maximum-transmission unit (MTU) sizes.

IP Packet Format:

The following discussion describes the IP packet fields illustrated as

● Version— Indicates the version of IP currently used.

● IP Header Length (IHL) — Indicates the datagram header length in 32-bit words.

● Type-of-Service— Specifies how an upper-layer protocol would like a current datagram to be

handled, and assigns data grams various levels of importance.

● Total Length — Specifies the length, in bytes, of the entire IP packet, including the data and header.

● Identification — Contains an integer that identifies the current datagram. This field is used to help

piece together datagram fragments.

● Flags — Consists of a 3-bit field of which the two low-order (least significant) bits control

fragmentation. The low-order bit specifies whether the packet can be fragmented. The middle bit

specifies whether the packet is the last fragment in a series of fragmented packets. The third or

high-order bit is not used.

● Fragment Offset — Indicates the position of the fragment's data relative to the beginning of the data

in the original datagram, which allows the destination IP process to properly reconstruct the original

datagram.

● Time-to-Live — Maintains a counter that gradually decrements down to zero, at which point the

datagram is discarded. This keeps packets from looping endlessly.

● Protocol — Indicates which upper-layer protocol receives incoming packets after IP processing is

complete.

● Header Checksum— Helps ensure IP header integrity.

● Source Address — Specifies the sending node.

● Destination Address — Specifies the receiving node.

● Options — Allows IP to support various options, such as security.

● Data — Contains upper-layer information.

IP Addressing:

As with any other network-layer protocol, the IP addressing scheme is integral to the process of routing IP

datagram through an inter-network.

28



Class Address
Range

Subnet
masking

Example IP Leading Bits Max No. of
networks

Application

A 1 to 126 255.0.0.0 1.1.1.1 8 128 Used for
large no. of
hosts.

B 128 to 191 255.255.0.0 128.1.1.1 16 16384 Used for
medium size
network.

C 192 to 223 255.255.255.
0

192.1.11. 24 2097157 Used for
local area
networks.

D 224 to 239 NA NA NA NA Reserve for
multi -
tasking.

E 240 to 254 NA NA NA NA This class is
reserved for
research and
Developmen
t Purposes.

Table 1: IP header class

Each IP address has specific components and follows a basic format. These IP addresses can be subdivided

and used to create addresses for sub-networks. Each host on a TCP/IP network is assigned a unique 32-bit

logical address that is divided into two main parts: the network number and the host number. The network

number identifies a network and must be assigned by the Internet Network Information Center (InterNIC) if

the network is to be part of the Internet. An Internet Service Provider (ISP) can obtain blocks of network

addresses from the InterNIC and can itself assign address space as necessary. The host number identifies a

host on a network and is assigned by the local network administrator.

29



IP Address Format:

The 32-bit IP address is grouped eight bits at a time, separated by dots, and represented in decimal format

(known as dotted decimal notation). Each bit in the octet has a binary weight (128, 64, 32, 16, 8, 4, 2, 1).

The minimum value for an octet is 0, and the maximum value for an octet is 255. Figure.3 illustrates the

basic format of an IP address.

Fig. 11 IP Format

IP Address Classes:

IP addressing supports five different address classes: A, B, C, D, and E. Only classes A, B, and C are

available for commercial use. The left-most (high-order) bits indicate the network class.

Fig. 12 IP classes

30



The class of address can be determined easily by examining the first octet of the address and mapping that

value to a class range in the following table. In an IP address of 172.31.1.2, for example, the first octet is

172. Because 172 falls between 128 and 191, 172.31.1.2 is a Class B address. Figure 5 summarises the

range of possible values for the first octet of each address class.

IP Subnet Addressing:

IP networks can be divided into smaller networks called sub-networks (or subnets). Sub-netting provides the

network administrator with several benefits, including extra flexibility, more efficient use of network

addresses, and the capability to contain broadcast traffic (a broadcast will not cross a router). Subnets are

under local administration. As a result, the outside world perceives an organisation as a single network with

no detailed knowledge of its internal structure. A network address can be divided into numerous

sub-networks. For example, subnets 172.16.1.0, 172.16.2.0, 172.16.3.0, and 172.16.4.0 are all part of

network 171.16.0.0. (An address with all 0s in the host portion specifies the entire network.)

Address Resolution Protocol (ARP) Overview:

To communicate, two machines on the same network must know each other's physical (or MAC) addresses.

A host can dynamically discover the MAC-layer address corresponding to a specific IP network-layer

address by broadcasting Address Resolution Protocols (ARPs). When an IP device receives a MAC-layer

address, it creates an ARP cache to store the recently acquired IP-to-MAC address mapping, avoiding the

need to broadcast ARPS when re-contacting a device. If the device does not respond within a specified time

frame, the cache entry is flushed. The Reverse Address Resolution Protocol (RARP) is also used to map

MAC-layer addresses to IP addresses. The logical inverse of ARP, RARP, may be used by diskless

workstations that do not know their IP addresses when they boot. RARP is dependent on the presence of a

RARP server with MAC-layer to IP address mapping table entries.

Internet Routing:

Internet routing devices are commonly referred to as gateways. A gateway, on the other hand, is a device

that performs application-layer protocol translation between devices in today's jargon. Interior gateways are

devices that perform these protocol functions between machines or networks that are under the same

administrative control or authority, such as the internal network of a corporation. These are referred to as

self-contained systems. Exterior gateways carry out protocol functions between separate networks. The

31



Internet's routers are arranged in a hierarchical order. Interior routers are routers that are used for

information exchange within autonomous systems.

Fig. 13 Internet Routing

They use a variety of Interior Gateway Protocols (IGPs) to accomplish this. The Routing Information

Protocol (RIP) is an example of an IGP. Exterior routers are routers that move data between autonomous

systems. To exchange data between autonomous systems, these routers employ an exterior gateway

protocol. The Border Gateway Protocol (BGP) is an example of an exterior gateway protocol. IP Routing

Protocols: IP routing protocols are dynamic in nature. Dynamic routing requires software in routing devices

to calculate routes automatically at regular intervals. This is in contrast to static routing, in which routers are

set up by the network administrator and do not change until the network administrator changes them. An IP

routing table composed of destination address/next hop pairs is used to enable dynamic routing. is tSend the

packet out Ethernet interface 0 (E0) to connect to the network 172.31.0.0. Send the packet out Ethernet

interface 0 (E0) to network 172.31.0.0. IP routing specifies that IP datagrams travel through internetworks

32



one hop at a time. The entire route, however, is unknown at the start of the journey. Instead, at each stop, the

next destination is determined by matching the datagram's destination address with an entry in the current

node's routing table. The only role of each node in the routing process is to forward packets based on

internal information. The nodes do not monitor whether the packets get to their final destination, nor does IP

provide for error reporting back to the source when routing anomalies occur. This task is left to another

Internet protocol, the Internet Control-Message Protocol (ICMP), which is discussed in the following

section.

ICMP stands for Internet Control Message Protocol.

The Internet Control Message Protocol (ICMP) is a network-layer Internet protocol that sends message

packets to the source to report errors and other information about IP packet processing. RFC 792 contains

information about ICMP.

ICMP Messages:

ICMPs generate a variety of useful messages, including Destination Unreachable, Echo Request and Reply,

Redirect, Time Exceeded, and Router Advertisement and Router Solicitation. If an ICMP message is unable

to be delivered, no additional ones are generated. This is done to avoid a never-ending flood of ICMP

messages. When a router sends an ICMP destination-unreachable message, it means that the router is unable

to deliver the package to its final destination. The original packet is then dropped by the router. There are

two possible reasons why a destination may be inaccessible. Most of the time, the source host has specified

an invalid address. Occasionally, the router lacks a route to the destination. There are four types of

destination-unreachable messages: network unreachable, host unreachable, protocol unreachable, and port

unreachable. Unreachable network messages typically indicate a failure in packet routing or addressing.

Typically, host-unreachable messages indicate a delivery failure, such as an incorrect subnet mask.

Messages marked as protocol-unreachable generally indicate that the destination does not support the

upper-layer protocol specified in the packet. Port Unreachable messages indicate that the TCP socket or

port is inaccessible. Any host can send an ICMP echo-request message generated by the ping command to

test node reachability across an inter network. The ICMP echo reply message indicates that the node was

successfully reached. The router sends an ICMP Redirect message to the source host to encourage more

efficient routing. The original packet is still forwarded to the destination by the router. Because only one

router's address is required, even if that router does not provide the best path, ICMP redirects allow host

33



routing tables to remain small. Even after receiving an ICMP Redirect message, some devices may continue

to take the inefficient route. If the Time-toLive field of an IP packet (expressed in hops or seconds) reaches

zero, the router sends an ICMP Time-exceeded message. If the internetwork contains a routing loop, the

Time-to-Live field prevents packets from circulating indefinitely. The router then discards the original

packet.

Transmission Control Protocol (TCP):

TCP ensures dependable data transmission in an IP environment. The transport layer (Layer 4) of the OSI

reference model is TCP. TCP offers several services, including stream data transfer, reliability, efficient flow

control, full duplex operation, and multiplexing. When using stream data transfer, TCP sends an

unstructured stream of bytes identified by sequence numbers. This service saves time for applications by

removing the need to divide data into blocks before passing it to TCP. TCP, on the other hand, divides bytes

into segments and delivers them via IP. TCP ensures reliability by sending connection-oriented, end-to-end

dependable packets across an internetwork. This is accomplished by preceding bytes with a forwarding

acknowledgment number, which indicates to the destination the next byte that the source expects to receive.

Bytes that are not acknowledged within a certain amount of time are resent. The reliability mechanism of

TCP allows devices to deal with lost, delayed, duplicate, or misread packets. A time-out mechanism allows

devices to detect lost packets and request retransmission. Because TCP provides efficient flow control,

when acknowledgments are returned to the source, the receiving TCP process indicates the maximum

sequence number it can receive without overflowing its internal buffers. Full-duplex TCP processes can

send and receive data simultaneously. Finally, TCP multiplexing allows for multiple simultaneous

upper-layer conversations to be carried out over a single connection.

TCP Connection Establishment:

To use dependable transport services, TCP hosts must establish a connection-oriented session with one

another. To make connections, a "three-way handshake" mechanism is used. A three-way handshake

allows both ends of a connection to agree on initial sequence numbers, allowing them to be synchronised.

This mechanism also ensures that both sides are prepared to transmit data and are aware that the other side

is also prepared to transmit. This is required to prevent packets from being sent or resent during session

establishment or termination. Each host chooses a random sequence number to track bytes in the stream it is

sending and receiving. Following that, the three-way handshake is performed as follows: The first host

34



(Host A) starts the connection by sending a packet with the initial sequence number (X) and the SYN bit,

which indicates a connection request. Host B receives the SYN, records the sequence number X, and

responds by acknowledging the SYN (with an ACK = X + 1). Host B has its own unique initial sequence

number (SEQ = Y). An ACK = 20 indicates that the host has received bytes 0 through 19 and is waiting for

byte 20. This method is known as forward acknowledgment. Host A then acknowledges all bytes sent by

Host B with a forward acknowledgment indicating the next byte expected by Host A (ACK = Y + 1). Data

transfer then can begin.

PAR (Positive Acknowledgement and Retransmission):

A simple transport protocol could use a reliability-and-flow-control technique in which the source sends one

packet, starts a timer, and waits for an acknowledgement before sending another packet. If the

acknowledgement is not received before the timer expires, the packet is retransmitted by the source. This

method is known as positive acknowledgment and retransmission (PAR). PAR assigns a sequence number

to each packet, allowing hosts to track lost or duplicate packets caused by network delays that result in

premature retransmission. The sequence numbers are returned in the acknowledgments so that they can be

tracked. However, because a host must wait for an acknowledgement before sending a new packet, and only

one packet can be sent at a time, PAR is an inefficient use of bandwidth.

TCP Sliding Window:

TCP sliding windows use network bandwidth more efficiently than PAR because they allow hosts to send

multiple bytes or packets before waiting for an acknowledgement. TCP requires the receiver to specify the

current window size in every packet. Window sizes are expressed in bytes because TCP is a byte-stream

connection. This means that a window is the maximum number of data bytes that a sender can send before

waiting for an acknowledgment. Initial window sizes are specified during connection setup, but may vary

during data transfer to provide flow control. A window size of zero, for example, indicates "Send no data."

In a TCP sliding-window operation, for example, the sender may have a sequence of bytes to send

(numbered 1 to 10) to a receiver with a window size of five. The sender would then create a window around

the first five bytes and send them all at once. It would then wait for an acknowledgement. The receiver

would respond with an ACK = 6, indicating that it has received bytes 1–5 and is waiting for byte 6. The

receiver would indicate its window size as 5 in the same packet. The sender would then slide the sliding

window to the right five bytes and transmit bytes 6 to 10. The receiver would respond with an ACK = 11,

35



indicating that it is looking forward to sequenced byte 11. In this packet, the receiver may indicate that its

window size is 0 (for example, because its internal buffers are full). The sender is now unable to send any

more bytes until the receiver sends another packet with a window size greater than 0.

TCP Packet Field Descriptions:

The TCP packet fields are summarised in the following descriptions:

● Source Port and Destination Port — Identifies points at which upper-layer source and destination

processes receive TCP services.

● Sequence Number — Usually specifies the number assigned to the first byte of data in the current

message. In the connection-establishment phase, this field also can be used to identify an initial

sequence number to be used in an upcoming transmission.

● Acknowledgment Number — Contains the sequence number of the next byte of data the sender of

the packet expects to receive.

● Data Offset — Indicates the number of 32-bit words in the TCP header. Reserved—Remains

reserved for future use.

● Flags — Carries a variety of control information, including the SYN and ACK bits used for

connection establishment, and the FIN bit used for connection termination.

● Window — Specifies the size of the sender's receive window (that is, the buffer space available for

incoming data).

● Checksum— Indicates whether the header was damaged in transit.

● Urgent Pointer— Points to the first urgent data byte in the packet.

● Options— Specifies various TCP options.

● Data—Contains upper-layer information.

User Datagram Protocol (UDP):

The Internet protocol family includes the User Datagram Protocol (UDP), which is a connectionless

transport-layer protocol (Layer 4). UDP serves as a bridge between IP and upper-layer processes. Multiple

applications running on a single device are distinguished by UDP protocol ports. UDP, unlike TCP, does not

add any reliability, flow control, or error recovery functions to IP. UDP headers contain fewer bytes and

consume less network overhead than TCP because of their simplicity. UDP is useful in situations where

TCP's reliability mechanisms are not required, such as when a higher-layer protocol provides error and flow

control. UDP is the transport Network File System (NFS), Simple Network Management Protocol (SNMP),

36



Domain Name System (DNS), and Trivial File Transfer Protocol (TFTP) are all application-layer protocols

that use UDP as their transport protocol. As shown in Figure 7, the UDP packet format has four fields.

These include source and destination ports, length, and checksum fields

Fig. 14 UDP Header

The 16-bit UDP protocol port numbers used to de-multiplex datagrams for receiving application-layer

processes are contained in the source and destination ports. The length of the UDP header and data is

specified by the length field. Checksum checks the integrity of the UDP header and data (optionally).

Internet Protocols: Application Layer Protocols

Many application-layer protocols that represent a wide range of applications are included in the Internet

protocol suite, including the following:

FTP (File Transfer Protocol)—Transfers files between devices.

Simple Network-Management Protocol (SNMP)—Reports abnormal network conditions and

establishes network thresholds.

Telnet—A protocol for terminal emulation.

X Windows—A distributed windowing and graphics system that allows X terminals to communicate with

UNIX workstations.

37



Network File System (NFS), External Data Representation (XDR), and Remote Procedure Call

(RPC)—These protocols collaborate to provide transparent access to remote network resources.

Simple Mail Transfer Protocol (SMTP)—This protocol is used to provide electronic mail services.

Domain Name System (DNS)—Converts network node names into network addresses. The following are

the higher-layer protocols and the applications that they support: Application Protocols File transfer FTP

Terminal emulation Telnet Electronic mail SMTP Network management SNMP Distributed file services

NFS, XDR, RPC, X Windows.

The list of the higher-layer protocols and the applications that they support is as follows:

Application Protocol

File transfer FTP

Terminal emulation Telnet

Network management SNMP

Distributed file services NFS, XDR, RPC, X Windows

Table 2 Supported app and its protocol

38



CHAPTER 3
SYSTEM DEVELOPMENT

The systematic approach to the development, operation, maintenance, and retirement of software is known

as software engineering. All software products can be developed using a Software Process, also known as

the Software Life Cycle. This Software Process is nothing more than a series of distinct stages that a

software product goes through during its lifetime. This series begins with a Feasibility Study Stage,

followed by Requirement Analysis and Specification, Design, Coding, Testing, and Maintenance. Each of

these stages is referred to as a Life Cycle Phase. This Software process is accomplished with the assistance

of a software life cycle model (or process model). A Process Model is a descriptive and graphical

representation of a software process. A process model identifies all of the activities required to develop and

maintain a software product, as well as the precedence ordering of those activities.

Each phase's entry and exit criteria are defined by a process model. For example, the Software Requirement

Specification phase's corresponding phase-entry criteria could be that the software Requirement

Specification document has been completed, internally reviewed, and approved by the customer. With such

well-defined entry and exit criteria for various phases, managing and monitoring the project's progress

becomes easier. As a result, life cycle models promote systematic and disciplined software development.

Because of the foregoing, the developer should follow a well-defined life cycle model. Thus, one major

benefit of adhering to a well-defined life cycle model is that it aids in controlling and organising

systematically various activities of the product under development. When a life cycle model is followed,

the developer can easily determine which stage of development (e.g., design, code, testing) the project is

currently in. If no life cycle model is used, it becomes extremely difficult to track the progress of the project,

and the developer may encounter a problem known as the 99% complete syndrome. In this syndrome, which

appears when there is no definite way to assess the project's progress, the optimistic developer believes that

the project is 99% complete, even if it is far from finished. The success or failure of a project is heavily

dependent on the life cycle model to which the developer will adhere. As a result, a life cycle model is

critical to the successful completion of a project. When developing a software product, five different types

39



of life cycle models are used. Model of a traditional waterfall. The waterfall model is iterative. Model for

Evolutionary Prototyping. Spiral Design. I used the Classical Waterfall Model while developing the project

Packet Sniffer. This model divides the life cycle of a software development process into the following

phases: Development phase = Feasibility Study + Requirement Analysis and Specification + Design +

Coding and Unit Testing + Integration and System Testing.

Data Flow Diagrams:

A data flow diagram is made up of several symbols that represent system components. The most common

data flow modelling methods employ four types of symbols. These symbols represent four different types of

system components: processes, data stores, data flows, and external entities. The data flow diagrams for the

current project are shown in the figure below. It is the overall process data flow diagram. It specifies the

major transformation points in the software development process. This is the first step in the structured

design method. In the project, the inputs are the packets that are flowing through the network interface that

is set to promiscuous mode. The output is the human-readable information contained in the packets, which

is saved in the output file. The context diagram and data flow diagram of the proposed system are given as

follows:

Fig. 15 Data flow diagram

40



The data flow diagrams for the current project are depicted in the figure below. It is the overall process data

flow diagram. It specifies the major transformation points in the software development process. The

structured design method begins with this step. In the project, the inputs are the packets that are flowing

through the network interface that is set to promiscuous mode. The output is the human-readable

information contained in the packets, which is saved in the output file.

Fig. 16 Application Flow Diagram

41



The 'Get packets' process in the diagram obtains input as packets from the network interface. This

process creates a packet socket, retrieves raw packets from the network interface, and stores them in a

buffer. The buffer containing the packets is passed to the'separate header' process, which strips off various

headers of the packet and passes them to the 'analyse headers' process, which analyses them and passes the

information to the 'update output file' process. The output file will be updated with the most recent

information obtained from the subsequent processes. The most abstract inputs are the stripped off headers

and the most abstract output is the information in the headers in human readable form.

Fig. 17 Network flow

42



Python:-

Python is one of the most widely used and popular programming languages in the world. It's strong,

versatile, and simple to learn. Python is widely used in a variety of applications, including the following:

● Web development

● Data Science

● Data analysis

● Machine learning

● Artificial Intelligence (AI)

● Scripting and tooling

Python is a general-purpose programming language that can be used in almost any domain or application. It

can be used to build a website, train machine learning models, perform complex financial calculations, or

write quick automation scripts; the possibilities are endless. Various AI programmes, such as ChatGPT,

MidJourney, and Dall-E, have recently turned the Internet on its head. Python is a popular programming

language for artificial intelligence and data science. You can build and train accurate models using its

extensive library and framework library, such as Scikit or TensorFlow. Python provides frameworks and

libraries that help developers in the more traditional domain of web development. Django, for example, is

used by major corporations such as INSTAGRAM. Python is also used in financial predictive modelling and

automated fraud detection; it is even used in the entertainment industry for game development.

If you are young and have only recently discovered Python, you may be surprised to learn that it has

been around since the early 1990s! Python was well-known as a scripting language before it became popular

for the applications mentioned above, and it is still used for that. A script enables the rapid automation of

complex tasks on a server. Scripts can be run without having to compile or restart anything. Consider the

following scenario: you want to reduce your website's churn, so you decide to send an email every day to

remind users who are nearing their renewal date to renew the service. You can easily accomplish this with a

Python script linked to a CRON JOB.

You're probably aware that every application or platform you create must be tested before it can be released.

Python includes a variety of testing frameworks and libraries. You can easily create any type of test case

43



your application requires using libraries like UNITTEST, PYTEST, or DJANGO.TEST. You can also link

your tests to the powerful COVERAGE tool, which will determine which parts of your code have not been

tested and will detect potential flaws in your system. Please don't be concerned about the language's

complexity! Python is an excellent choice for a first programming language because it is simple to

understand and write, with a straightforward syntax.

Many people believe Python is powered by batteries. It's a clever way of saying that it comes with a

substantial base library. Furthermore, because Python is so widely used, there are hundreds of thousands of

high-quality libraries and frameworks available to assist you in accomplishing your goals quickly and easily.

A little Python code can get you a long way!

Python Timeline:-

Python 2 and 3 have been developed and maintained concurrently for a long time, as evidenced by the

Python history timeline. The main reason for this is that Python 3 code is not completely backward

compatible with Python 2 code. Because of this incompatibility, the adoption rate was delayed. Many users

were content with version 2 and saw no reason to upgrade.

Furthermore, Python 3 was initially slower than Python 2. Python 3 eventually took off as it continued to

improve and gain new features. Python 3 is now faster than ever thanks to recent efforts led by Guido.

Furthermore, Python 3 adds many useful features to the language, making it easier and more enjoyable.

Unless you need to maintain a legacy code base, avoid Python 2.

44



Fig. 18 Python Timeline

Django:-

A "web framework" is a set of tools that abstracts away much of the difficulty and repetition that comes

with web development. Most websites, for example, require the same basic functionality: the ability to

connect to a database, set URL routes, display content on a page, properly handle security, and so on. er than

reinventing the wheel, programmers have created web frameworks in all of the major programming

languages, including Django in Python, Rails in Ruby, and Laravel in PHP, among many, many others.

45



Django adopted Python's "batteries-included" approach and includes out-of-the-box support for common

web development tasks such as:

● User authentication

● Testing

● Database models, forms, URL routes, and templates

● Admin user interface

● Enhancements to security and performance

● Multiple database backends are supported.

Instead of reinventing the wheel every time, this approach allows web developers to concentrate on what

makes a web application unique.

In contrast, some web frameworks, such as Flask, take a microframework approach, providing only the bare

necessities for a simple webpage. Flask is far more lightweight than Django and allows for maximum

flexibility; however, the developer pays a price for this. Building a simple website necessitates the

installation of a dozen or more third-party packages, which may or may not be current, secure, or

dependable. Because there are no guardrails, Flask's project structure varies greatly, making it difficult to

maintain best practises when switching between projects.

Django continues to be actively developed, with monthly security/bug fixes and a major new release every

eight months. Django has already been used by millions of programmers to build websites. It makes no

sense to rewrite the same code--and make the same mistakes--when a large community of brilliant

developers has already solved these issues for us.

And, best of all, Django is written in the incredibly readable yet powerful Python programming language. In

short, if you're starting from scratch, Django is a fantastic choice. The most recent version of Django, 4.2,

was released in April 2023. Python versions 3.8, 3.9, 3.10, and 3.11 are officially supported. The official

Django website contains information on all prior releases and detailed 4.2 release notes.

One of the significant efforts for Django since 3.0 has been adding asynchronous support. Django 3.0

introduced ASGI (Asynchronous Server Gateway Interface), and Django 3.1 added asynchronous views,

middleware, tests, and a test client. Django 4.0 introduced async cache backends, and Django 4.1 added

asynchronous handlers for class-based views as well as an asynchronous ORM interface. Psycopg 3, a

46



PostgreSQL database adapter for Python with async support, is supported by Django 4.2. These iterative

enhancements bring Django ever closer to full asynchronous functionality.

Django 4.2 is an LTS (Long Term Support) release, which means it will be supported for at least three years

after its initial release. The previous LTS was Django 3.2, which will be decommissioned in April 2024. As

with all major releases, the 4.2 release includes numerous new enhancements, such as a light or dark colour

theme for the admin.

47



CHAPTER-4
EXPERIMENTS & RESULT ANALYSIS

Our network security project's goal was to carry out a passive attack on the LAN by finding and analysing

network traffic with a network protocol analyzer tool. Following that, a detailed analysis of the packet

captures was arranged and performed to determine whether blacklisted websites were accessed by LAN

users and to identify the geographical locations of those users and websites. In addition, we analysed and

processed the HTTP traffic in the capture file and were able to identify the HTTP Request and HTTP

Response contents in order to monitor Internet user behaviour and their access details. In the field of

network security, our approach was an attempt to detect and prevent illegal activities such as visiting and

downloading inappropriate content from the Internet. This is referred to as Cyberslacking. Inappropriate

content includes, but is not limited to, media elements such as audio and video files that violate copyrights,

pornography, prohibited resources, and so on. To achieve the project's goal, we used several network

security tools.

Fig. 19Wireshark Home

48



We created a programme in Python to parse the network capture (.pcap) file obtained at the LAN interface

using the dpkt python package. The tool gathered and extracted IP addresses from the file and filtered out

those that had been flagged as potentially blacklisted websites. Later, we used the pyGeoIP geolocation tool

to determine the physical or the geographical locations of the blacklisted websites and their users. The

following are the project's implementation steps:

1. A network packet capture file is required to perform network traffic analysis. Wireshark is the most

widely and the most popular used network protocol analyzer tool for capturing packets at the LAN interface.

The packet capture setup is depicted in the diagram below.

The following figure shows the packet capture by Wireshark packet capture tool:

Fig. 20 Packet capture

The Python parser application reads and parse the pcap file and extracts and presents the source and destination IP

addresses from all the packets. The extracted destination IP addresses are compared to a blacklist of IP addresses. If

an address match is found, the corresponding source and destination IP addresses are used to obtain geographical

location information via the pyGeoIP python module, and the geolocation details are printed to the output.

49



Fig. 21 Header Details

HTTP Traffic analysis:

Graph 1. Data Flow Graph

50



In addition to determining and finding the geolocations of blacklisted IP addresses feeded by the user, our

project examines the HTTP traffic in the pcap file. This approach is adopted to analyze the user behaviour

on the network or the Internet. The following figure shows the sample HTTP Request and Response in a

packet in the capture file or the pacp file extracted with the help of wireshark.

The HTTP Request obtained in the packet from the pcap file is depicted in the screenshot above.

Fig. 22 Google Map

51



Fig. 23 Upload File

Keyhole Markup Language (KML) format:

The figure shown below depicts the KML format output from the Python parser application. Keyhole

Markup Language (KML) is an XML notation markup language developed by Google which can be

assumed as an extension of the xml language that is used to display geolocation on Maps using latitude and

longitude values. The Python parser reads the pcap file and extracts the source and destination IP addresses

from each packet. The extracted destination IP addresses are compared to a list of IP addresses that have

been blacklisted form the users perspective. If the addresses match, the corresponding source and

destination are returned.

KML is a file format for displaying geographic data in an Earth browser such as Google Earth. KML is a

tag-based structure with nested elements and attributes that is based on the XML standard. All tags are

case-sensitive and must be written exactly as they appear in the KML Reference. The Reference section

specifies which tags are optional. Within a given element, tags must appear in the systematic order as shown

in the Reference.

52



Fig. 24 Upload.kml

Fig. 25 Upload2.kml

53



Fig. 26 Lines.kml

If you're new to KML, read this document and the sample files that go with it (SamplesInEarth) to get a

sense of the basic structure of a KML file and the most commonly used tags. The firThe first section

describes the features that can be added to Google Earth using the useThe second section describes features

that necessitate the use of a text editor to create KML. gons. The second section describes features that

require authoring KML with a text editor. When a text file is saved with a .kml or .kmz extension, Earth

browsers know how to display it.

54



Fig. 27 Pointed Location on map

Fig. 28 Pointer indicating blacklisted Ip

55



The pyGeoIP python module is used to obtain geographical location information and details from

destination IP addresses.This geolocation data from the database, which consists of latitude and longitude, is

used to create the KML file which is used to present the information on the google maps. This geolocation

data, which consists of latitude and longitude, is used to create the KML file.

The KML file is then uploaded into Google Maps to display IP addresses with map-marker icons

representing every source or destination IP address that is either accessing or belongs to the blacklisted

category of websites. The output of Google Maps after loading a KML file is shown below.

Fig. 29 Line on map

56



CHAPTER - 5
5.1 CONCLUSIONS

In this project, we created and implemented a Network Traffic Analyzer that help in parsing network traffic

using an application code script written in python, extracted IP addresses and other useful information from

users who are attempting to access malicious websites, and also identify the IP address of malicious

websites using a Command line interface (.cli) format file. The geographical locations were also obtained

with the help of a Keyhole Markup Language (.kml) format file. We choose to create this application using a

Python script and the database named as GeoLiteCity database, which contains all of the information about

locations all over the world. We also used helpful tools like Google Maps and Wireshark. PyGeoIP and

DPKT python modules were among the libraries which we used extensively.

Talking about the practical approach, there isn't a single common network problem that can't be

discovered and solved with packet tracing technology. It can be used as the first line of protection or

defence against a variety of problems ranging from overloaded networks to unresponsive switches to lost or

dropped packets. As the number of networks and nodes grows and network speeds increase, it becomes

increasingly difficult to monitor a LAN using traditional tools like RMON (Remote Monitoring) probes.

Packet sniffers, on the other hand, monitor network traffic down to the Header information on each several

series of data. This means that you can follow as well as track data from its beginning to its end. Packet

sniffers can also be used to identify and detect the types of packets on a network and determine whether a

particular packet contains any errors or is mislead.

57



5.2 FUTURE SCOPE

The scope of our project can be extended in the following ways:

● Adding more functionalities to the current features

● Adding new features

1. Adding more features to the existing ones.

We are using the GeoLiteCity database by MaxMind.com in its free version inside our project. GeoIP

database, a commercially used and complete version of the IP geolocation database, can be used in its place

which provides more precise geographical location which is the value of longitude and the latitude

information for blacklisted websites which we are intended to locate and their users.

The application has been installed and tested on the local device and servers. This can be deployed on cloud

infrastructure like Amazon AWS, google cloud and accessed from various different systems and can also be

accessed from different locations or IPs’.

2. Introducing new functions

A pcap file is basically a dump of tcp packets or it can also be called as a repository that contains a large

amount of information about computer network communication between different nodes. The packets can

contain sensitive and personal information which includes user credentials (username and password). The

packets in the pcap file can be used to examine network attack behaviour and methods. When a large

number of packets originate from a single source IP address, a Denial Of Service (DOS) attack is detected

and hence restrictive measures could be taken to prevent it. This feature can also be added to the current

application.

58



REFERENCES

● AL.Jeeva, Dr.V.Palanisamy, K.Kanagaram “Comparative Analysis Of Performance Efficiency And

Security Measures Of Some Algorithms” International Journal Of Engineering Research And

Applications (IJERA), Vol. 2, Issue 3, pp.3033-3037, May-June 2012.

● What’s New In Python 3.11 — Python 3.11.3 documentation

● Oliver Michel, Roberto Bifulco, Gabor Retvari, Stefan schmid. “The Programmable Data Plane :

Abstraction, Architecture, Algorithms. And Applications”. Institute of Electrical and Electronics

Engineers(IEEE), 2020

● W.D. Ivancic, D. Brooks, B. Frantz, D. Hoder, D. shell, D.Beering. “NASA’s broadband satellite

networking research” IEEE communications Magazine, 1999

● Fei Liu, Ming Yang. "Verification and validation of all simulation systems", Proceedings of 2004

International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), 2004

● A. Gill Waters. "LANs: protocols above the medium access layer", Institution of Engineering and

Technology (IET), 1994

● R CAMEROON. "Networking, Security, and the Firewall", Configuring Juniper Networks

NetScreen & SSG Firewalls, 2006

● "Information Security", Springer Science and Business Media LLC, 2009

● Vacca, . "Enterprise High-Speed LAN/WAN Cisco Internetworking Technology", High Speed Cisco

Networks Planning Design and Implementation, 2001.

59


