
NOPCOMMERCE CUSTOMIZATION FOR IMPROVED

FUNCTIONALITY AND USER EXPERIENCE

Project report submitted in partial fulfilment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Aashima Juneja (191345)

Under the supervision of

Mr. Bobin Sondhi

&

Dr. Aman Sharma

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

CERTIFICATE

I hereby declare that the work presented in this report entitled “NopCommerce

Customization for Improved Functionality and User Experience” in partial fulfilment

of the requirements for the award of the degree of Bachelor of Technology in Computer

Science and Engineering/Information Technology submitted in the department of

Computer Science & Engineering and Information Technology, Jaypee University of

Information Technology Waknaghat is an authentic record of my own work carried out

over a period from July 2022 to May 2023 under the supervision of Mr. Bobin Sondhi,

Manager, Paxcom India Pvt. Ltd and Dr. Aman Sharma, Assistant Professor, Senior

Grade.

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

(Student Signature)

Aashima Juneja, 191345

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Mr. Bobin Sondhi

Manager

Paxcom India Pvt. Ltd

Dated: 08/05/2023

Dr. Aman Sharma

Assistant Professor, Senior Grade

Computer Science & Engineering

Dated: 15/05/2023

i

PLAGIARISM CERTIFICATE

ii

ACKNOWLEDGEMENT

I would like to express my heartfelt gratitude to the Head of the Computer Science &

Engineering and Information Technology Department and the Training and Placement

Officer at Jaypee University of Information Technology for providing me with the

wonderful opportunity to work with Paxcom India Pvt Limited- A Paymentus Company,

during the final semester of my bachelors’ course. I am immensely grateful for their

support and guidance, which helped me gain invaluable real-world experience and

develop important skills that will undoubtedly prove useful in my future endeavours.

During my training at Paxcom India Pvt Limited, I had the privilege of working with

some of the most dedicated and passionate professionals in the industry. I am particularly

grateful to my manager, Mr. Bobin Sondhi, who not only provided me with valuable

guidance and support but also served as a great source of inspiration and motivation. The

entire team at Paxcom India Pvt Limited was incredibly supportive and provided me with

constant supervision, advice, and guidance whenever I needed it. Their unwavering

commitment to excellence was truly inspiring, and I feel honoured to have had the

opportunity to work with such a talented and dedicated group of professionals. I would

also like to express my appreciation for the outstanding faculty at Jaypee University of

Information Technology who prepared me well for this industrial experience. They not

only imparted their knowledge but also provided me with all the necessary support,

facilities, and co-operation that I needed to succeed.

Finally, I would like to extend my deepest gratitude to my parents, who have always been

my biggest supporters and sources of inspiration. They instilled in me the value of hard

work, dedication, and perseverance through their own example, and I will always be

grateful for their unwavering love and support.

iii

TABLE OF CONTENTS

TITLE PAGE NO.

CERTIFICATE i

PLAGIARISM CERTIFICATE ii

ACKNOWLEDGEMENT iii

LIST OF ABBREVIATIONS vi

LIST OF FIGURES vii

LIST OF TABLES x

ABSTRACT xi

CHAPTER 1: INTRODUCTION

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objective 3

1.4 Methodology 3

1.4.1 Frameworks 3

1.4.2 Application layers and Architecture 4

1.4.3 Technologies and Languages 5

1.4.3.1 SOLID Principles 5

1.4.3.2 C# Programming Language 8

1.4.3.3 Structured Query Language 9

1.4.3.4 JavaScript 10

1.4.4 IDE, Software 10

1.4.4.1 Visual studio 10

1.4.4.2 Microsoft Sequel Server 11

1.4.4.3 Git 12

1.4.4.4 Kestrel Server 13

1.4.4.5 Language Integrated Query Language 15

1.5 Organization 15

CHAPTER 2: LITERATURE SURVEY

2.1 Application Programming Interface 17

iv

2.2 Working of API 17

2.3 REST API 19

2.4 Routing 20

2.5 Razor View Engine 21

 2.5.1 Razor View Engine Working 21

2.6 ASP.NET Core 22

2.7 Cross Origin Resource Sharing 23

CHAPTER 3: SYSTEM DESIGN AND DEVELOPMENTS

3.1 Hardware requirements 25

3.2 Software Requirements 26

3.3 Functional Requirements 26

3.4 Project Development 30

 3.4.1 MVC Lifecycle 30

 3.4.2 Services in NopCommerce 32

 3.4.3 Repositories in NopCommerce 34

 3.4.4 Razor Pages 38

 3.4.5 Partial Views 38

 3.4.6 Layout 39

 3.4.7 Database Implementation 40

 3.4.8 Dependency Injection 41

 3.4.9 Task Implementation 43

CHAPTER 4: RESULTS & DISCUSSIONS

4.1 Results 49

CHAPTER 5: CONCLUSION

5.1 Conclusion 58

5.2 Future Scope 59

REFERENCES 61

PLAGIARISM REPORT 62

v

LIST OF ABBREVIATIONS

API

Application Programming Interface

SQL

Structured Query Language

HTTP

Hypertext Transfer Protocol

REST

Representational State Transfer

JS

JavaScript

MVC

Model View Controller

DBMS

Database Management System

LINQ

Language Integrated Query Language

SDK

Software Development Kit

RAM

Random Access Memory

NET

Network Enabled Technologies

ORM

Object Relational Mapping

REST

Representational State Transfer

CORS

Cross Origin Resource Sharing

vi

LIST OF FIGURES

Figure Caption [Reference] Page

Number Number

1. Omni Channel 2

2. Onion View of Application Layers in ASP.NET [1] 5

3. SOLID principles for software development 6

4. C# Logo [2] 8

5. JavaScript Logo 10

6. Visual Studio Logo [3] 11

7. Microsoft SQL Server Logo 12

8. Git Logo 12

9. Working of Kestrel Server as Reverse Proxy [5] 14

10. Code Snippet for retrieving list of customers from database 15

11. Status codes [11] 18

12. Working of API [10] 19

13. REST API Architecture 20

14. Razor View Engine Principle [15] 21

15. NopCommerce Technologies [6] 25

16. NopCommerce Store-front side [7] 28

vii

17. Home page of NopCommerce website 28

18. Login page of NopCommerce Website 29

19. Shopping Cart page of NopCommerce Website 29

20. MVC Request Life Cycle [8] 31

21. Working of MVC [9] 31

22. Approaches of Entity Core Framework 36

23. Code Snippet showing the Customer Class 37

24. Code Snippet to retrieve the list of customers from database 37

25. C# code in razor page to display product-name and product- 38

 price

26. Common Layout used in Web Applications [19] 39

27. Code Snippet showing the IEmailService Interface 41

28. Implementation of IEmailService interface 42

29. Code Snippet for CustomerService class 42

30. Code Snippet for providing an instance of email service to its 43

 constructor

31. Customer form fields (admin view) 44

32. Register page of the store front side (default view) 45

33. Customers Table (default admin view) 47

34. Default Product Details view for the Gift Card (without the 48

 Link)

viii

35. Admin view for customer form fields (with middle name 49

 property)

36. Store-front side view for the account info (with middle name 50

 field)

37. Register page on store-front side (with middle name property) 52

38. Store Front View showing the Register page for already 53

 registered customer

39. Register page View on Successful Registration 54.

40. Customers data table (with middle name property appended in 54.

 the Name column)

41. Shopping cart (with the manufacturer and link of the product (if 55

 given))

42. Admin side view of the Products Catalog page 56

43. Edit Product Details page (admin view) 56

44. Product Details page for the Gift Card with the Link of the 57

 product

ix

LIST OF TABLES

Table Title Page

Number Number

1. Difference between ASP.NET and ASP.NET Core [18] 22

2. Hardware Requirements for NopCommerce 25

3. Software Requirements for NopCommerce 26

x

ABSTRACT

E-commerce has become an essential part of our daily lives, with the advancements in

technology playing a crucial role in shaping its growth. With the ease of delivering

products to your doorstep and the convenience of shopping from anywhere, anytime, e-

commerce has revolutionized the way we shop. To keep up with the changing customer

needs and preferences, e-commerce businesses need to continuously update themselves

with the latest technologies and innovative strategies.

As part of my training project at Paxcom India Pvt Ltd, I am working on enhancing and

customizing the NopCommerce site, which is an open-source e-commerce platform that

provides a comprehensive set of features and functionalities to create a powerful and

customizable online store. It is built on the ASP.NET framework, making it highly

scalable and flexible to meet the diverse needs of businesses of all sizes. The aim of this

project is to make the site more user-friendly, efficient, and tailored to meet the needs of

our clients. With the help of the latest technologies and tools, we are optimizing the site's

performance, improving its functionality, and enhancing the overall customer experience.

By doing so, we are ensuring that our clients can leverage the power of e-commerce to

grow their business and stay ahead in the competitive market.

xi

1

CHAPTER- 1

INTRODUCTION

1.1 Introduction

With the arrival of ultramodern technology, ecommerce has changed a lot. With

this change comes a complete change in the way consumers interact with products,

making the buying process better and easier than ever ahead. moment, where

ecommerce has come an important part of our diurnal life, products can fluently

come to our door. still, keeping up with the rearmost technological developments

is no easy task for eCommerce associations. In order to contend in moment’s

business world, ecommerce companies should be encouraged to use new

technologies, develop good strategies and hire experts.

These technological inventions have made shopping easier for consumers and have

enabled them to fluently meet their shopping requirements. Cutting edge

technology makes ecommerce briskly and lightly, offering consumers a unique

shopping experience. With just many clicks, buyers can find what they want and

order fluently. In addition, guests can track their orders, find the stylish deals and

stay informed about the rearmost deals. Due to these developments, new businesses

are arising in the field of e-commerce. The elaboration of omnichannel shopping

Figure1, which uses multiple channels and defenses to interact with guests, is

getting more and more important. In fact, recent data shows that around 90% of

consumers want flawless relations across channels.

2

Figure 1 - Omni Channel

By using the right technology, e-commerce companies can provide consumers with

exactly what they want, when they want it. This can help to not only attract and

retain customers but also boost sales and revenue. Ultimately, the continued

evolution of technology will undoubtedly play a crucial role in shaping the future

of e-commerce.

1.2 Problem Statement

The aim of the NopCommerce training project is to improve and alter the current

e-commerce platform in order to satisfy changing consumer and commercial

demands. A seamless and customized online shopping experience is essential to

attracting and keeping clients in the rapidly evolving digital market. The

development and profitability of an e-commerce business might be hampered by

out-of-date features, ineffective functioning, and a subpar user experience. In order

to improve the performance, functionality, and usability of the NopCommerce

platform, this project aims to address these problems by applying creative ideas and

utilizing cutting-edge technology. By doing this, we hope to establish a robust and

scalable ecommerce system that can assist companies in staying ahead of their

competition in the market and meet the demands of the evolving customers.

3

1.3 Objectives

The objectives of the training project are-

1. To provide an overview of the importance of technology in e-commerce and

its impact on businesses.

2. To get an understanding of key technical concepts such as -

a. C# Programming Language

b. HTTP Context

c. Web API

d. SOLID principles

e. Kestrel Server

f. Add Singleton, Add Scoped, Add Transient functions in .Net core

g. Dependency Injection/ Inversion of Control principle

h. MVC architecture-

● MVC lifecycle

● Model State

● Model Attributes

● Routing

● Razor Pages

● Action Result Types

● Model Binding

● Action Filters

3. To outline the steps involved in enhancing and customizing the

NopCommerce platform to meet the unique needs of businesses.

1.4 Methodology

1.4.1 Frameworks

ASP.NET and ASP.NET Core are two popular frameworks developed by Microsoft

for building web applications. While both frameworks share some similarities, they

have significant differences in terms of architecture, development approach, and

platform support.

4

Since the early 2000s, ASP.NET has existed as a more seasoned and established

framework. It is based on the.NET Framework and primarily intended for creating

online apps that interact with Windows-based OSes. Due to its monolithic

architecture and need for a complete installation of the.NET Framework on the web

server, ASP.NET can be less resource-efficient and flexible.

In comparison, the 2016 version of ASP.NET Core, a more recent and lightweight

framework. It is constructed on top of.NET Core, a cross-platform, modular version

of the.NET Framework. Because ASP.NET Core is modular and flexible,

developers can pick and choose only the components they require. It is a more

platform-independent solution because it can be used with Windows, Linux, and

macOS. Either framework might be a good choice for developing web applications,

depending on the particular needs and specifications of a project.

1.4.2 Application layers and architecture

ASP.NET is based on a multi-tier architecture that divides an application into

several layers. These layers are essential for organizing the application's code,

simplifying complexity, and promoting modularity and maintainability.

 The common layers used in ASP.NET applications are as follows:

1. Presentation Layer: This layer is in charge of overseeing the application's

user interface, which includes user controls, master pages, and web pages.

2. Business Layer: This layer executes the application's business logic, which

includes data processing and enforcing business rules. It serves as a liaison

between the data access layer and the display layer.

3. Data Access Layer: The third layer, known as the data access layer, is in

charge of gaining access to information kept in databases or other data

sources. It consists of data models, data access classes, and data access

objects.

5

4. Infrastructure Layer: This layer includes all supporting elements needed

to run the application, including configuration, caching, security, and

logging.

Figure 2- Onion View of Application Layers in ASP.NET [1]

Figure 2 shows the onion view of ASP.NET's layer-based architecture. It is highly

adaptable and expandable, allowing developers to modify and add functionality to

an application more efficiently. By enabling developers to work independently on

different components of an application, the architecture can enhance productivity

and decrease development time.

1.4.3 Technologies and languages

1.4.3.1 SOLID principles

When it comes to creating flexible, scalable, manageable, and reusable code in

software development, object-oriented design is essential. Robert C. Martin, often

known as Uncle Bob, established the SOLID principle, which is a coding

convention for programmers.

6

This principle is the abbreviation for the five principles listed below.

Figure 3- SOLID principles for software development

1. Single Responsibility Principle- According to this rule, "a class should

have only one reason to change," which means each class should have only

one duty, one task, or one goal. Consider the creation of software. We may

argue that everyone has a single job or responsibility because the task is

separated into distinct individuals doing different tasks, such as front-end

designers performing design, testers conducting testing, and back-end

developers taking care of the back-end development aspect. When

programmers need to add features or new behavior, they frequently

integrate everything within the existing class, which is utterly incorrect.

When later something needs to be changed, it makes their code lengthy,

complex, and time-consuming.

2. Open/Closed Principle- According to the "open for extension, but closed

for modification" (or "open/closed") approach, "software entities (classes,

modules, functions, etc.) should be open for extension, but closed for

modification." This indicates that you should be able to modify a class's

behavior without being able to extend its behavior. If developer A must

update a library or framework and developer B wants to make changes or

add new features, developer B may extend the current class developed by

developer A, but developer B is not permitted to make direct changes to the

class. By separating the modified code from the existing code using this

technique, your code will be more stable, maintainable, and subject to fewer

modifications.

7

3. Liskov's Substitution Principle- According to this principle, "Derived or

child classes must be substitutable for their base or parent classes," it was

established by Barbara Liskov in 1987. The use of any class that is a child

of a parent class should be possible without resulting in any unexpected

behavior, according to this principle. It makes sense that a farmer's son

would pick up farming skills from his father and be able to take over the

family farm if necessary. Even though they both fall under the same family

hierarchy, the son can replace his father if he wants to become a farmer, but

if he wants to play cricket, he most definitely cannot. A rectangle with four

edges is among the classic illustrations of this idea. Height and width of a

rectangle can both be any value. A rectangle with equal width and height is

called a square. Therefore, we can state that the properties of the rectangle

class can be extended to the square class. To achieve this, you must replace

the parent (rectangle) class with the child (square) class. However, a derived

class does not impact the behavior of the parent class, thus if you do this,

you will be in violation of the Liskov Substitution Principle.

4. Single Responsibility Principle- The single responsibility concept is

analogous to the interface segregation principle, which is the first SOLID

principle to apply to interfaces rather than classes. "Do not force any client

to implement an interface that is irrelevant to them," the statement reads.

The major objective in this situation is to give preference to numerous small

client-specific interfaces over one large interface. One general client

interface should be avoided in favor of several client interfaces, each of

which should have a distinct function. Imagine going to a restaurant as a

strict vegetarian. You received the menu card from the waiter at that

restaurant, which lists vegetarian and non-vegetarian options as well as

beverages and desserts. In this situation, as a customer, you should have a

menu card that only features vegetarian options, not anything you don't eat.

Here, the menu ought to vary depending on the customers. Instead of having

8

just one common or general menu card for everyone, there can be multiple

cards. Using this principle helps in reducing the side effects and frequency

of required changes.

5. Dependency Inversion Principle- This principle's primary goal is to

decouple dependencies so that class B doesn't need to be concerned about

or aware of changes to class A. Think about the battery in a TV remote as

an actual example. Regardless of the battery's manufacturer, the remote

needs a battery. Any XYZ brand can be used; it will function. Thus, we can

say that the brand name is only tangentially associated with the TV remote.

The code is more reusable because of dependency inversion.

1.4.3.2 C# programming language

As part of the.NET Framework project, Microsoft developed the object-oriented

programming language C# in the early 2000s. It is a well-liked option for creating

games as well as software programs for the desktop, online, and mobile platforms.

The strength of a low-level language and the simplicity of a high-level language are

combined in C#.

Figure 4- C# Logo [2]

Numerous features are supported, including automatic garbage collection, strong

typing, and concepts from object-oriented programming like inheritance,

encapsulation, and polymorphism. It also has sophisticated capabilities like

9

generics, LINQ, and asynchronous programming that make it appropriate for

creating intricate and scalable applications. One of C#'s advantages is its

adaptability, which makes it simple to learn and use for developers of all skill

levels. Because C#'s syntax is similar to that of other well-known programming

languages like Java and C++, developers can switch between them more easily.

Additionally, C# offers a vast array of resources and tools, including the Visual

Studio development environment, which gives programmers a full set of tools for

creating, testing, and deploying C# applications.

1.4.3.3 Structured Query Language

For handling relational databases, programmers frequently use SQL (Structured

Query Language). Popular databases including MySQL, Oracle, Microsoft SQL

Server, PostgreSQL, and SQLite can utilize it to store, retrieve, and edit data.

The way SQL functions are through statements that help you carry out various

activities like building and modifying database structures, adding, updating, and

removing data, and retrieving data from the database. Since SQL is a declarative

language, you only need to specify what you want to do with the data—the database

management system (DBMS) handles the specifics. This is one of the language's

main advantages. For those with little or no programming knowledge, in particular,

this makes it simpler to understand and use.

In addition to supporting numerous users and transactions, SQL also efficiently

handles big datasets and guarantees data confidentiality and integrity. Furthermore,

it is highly portable, allowing for the use of the same code with little to no

modifications on various DBMS.

10

1.4.3.4 JavaScript

For building interactive web pages and applications, developers frequently use

JavaScript, a high-level, dynamic, and interpreted programming language. When

Brendan Eich was still employed at Netscape, he introduced it in 1995. Due to the

fact that JavaScript is a client-side scripting language, it executes on the user's web

browser as instead of the web server. It is used to enhance web sites with

interaction, animations, and dynamic functionality.

Figure 5- JavaScript Logo

In addition, Node.js is employed for developing server-side programs, online apps,

and APIs. JavaScript is a powerful language that can be used for a variety of tasks,

from straightforward form validation to sophisticated online applications. It has a

big developer community that contributes to its ongoing development and is

lightweight, simple to learn, and easy to use.

1.4.4 IDE, Software

1.4.4.1 Visual studio

For creating software applications, Microsoft created the highly renowned

integrated development environment (IDE) known as Visual Studio. By offering

developers the ability to change code, debug it, test it, and deploy it all from one

platform and with a variety of features and tools, Visual Studio speeds the

development process. Numerous programming languages, including C#, VB.NET,

F#, C++, and JavaScript, as well as a number of frameworks, including the.NET

11

framework, are supported by this potent IDE. Developers can work together on

projects and effectively manage codebase changes because to its integration with

source control tools like Git.

One benefit of using Visual Studio is how adaptable it is. By utilizing its add-ons

and extensions, developers may modify the IDE to meet their unique needs. The

ability to customize one's development environment and simplify workflows is

provided by this feature.

Figure 6- Visual Studio Logo [3]

In conclusion, Visual Studio is a thorough and adaptable IDE that gives developers

the tools they need to produce high-quality software applications for a variety of

platforms and programming languages. Its variety of features and customization

choices make it an excellent tool for developers who want to streamline their

processes and strengthen their skill sets.

1.4.4.2 Microsoft Sequel Server

Due to its scalability and capability to store, manage, and retrieve data for many

industries, Microsoft SQL Server is a relational database management system that

has gained prominence. The flexible and dependable SQL Server platform allows

developers to create efficient database solutions for both modestly sized apps and

massive enterprise-level solutions. A few of the cutting-edge features that come

standard with SQL Server and aid in preserving the security, integrity, and

accessibility of crucial data are data encryption, backup and recovery, replication,

12

and high availability choices. Additionally, SQL Server supports a variety of

programming languages, including T-SQL, which provides more complex data

manipulation and querying capabilities than regular SQL.

Figure 7- Microsoft SQL Server Logo

For companies that already use Microsoft-based solutions, Microsoft SQL Server

is a desirable alternative because it interfaces well with other Microsoft products

like Visual Studio and Power BI. For companies looking for a dependable and

scalable solution, SQL Server's excellent capabilities and interoperability with a

wide range of applications make it a widely sought-after database management

system.

1.4.4.3 Git

To manage and track changes to software code, documents, and other digital items,

one can use the distributed version control system known as Git. Users can

communicate with others, keep track of changes made to files over time, and undo

or roll back changes as necessary. In 2005, it was developed by Linus Torvalds,

who also built the Linux operating system.

Figure 8- Git Logo

13

All files and their modifications are kept in a repository, which can be hosted locally

or on a distant server, in Git. Every time a change is made, a commit is made and a

message detailing the change is included. After then, these commits are categorized

into branches, enabling the concurrent development of many code versions.

1. Merging: Git allows developers to merge changes from different branches

or repositories into a single, unified codebase. This can be done

automatically or manually, depending on the level of control required.

2. Reverting: If a mistake is made, Git allows developers to revert to a

previous version of the code, undoing all changes since that point.

3. Cloning: Developers can make a copy of an existing repository, including

all its history and branches, by cloning it.

4. Forking: Forking allows developers to create a new repository based on

an existing one, which can then be modified and developed independently.

1.4.4.4 Kestrel Server

Specifically designed to execute ASP.NET Core apps, Kestrel is a cross-platform,

open-source web server. It is a speedy and lightweight web server that has low

latency and can handle thousands of requests per second because it is built on top

of the.NET Core runtime.

In order to function, Kestrel monitors a particular port for incoming HTTP requests

and routes those requests to the appropriate ASP.NET Core application for

processing. As soon as a request is received, Kestrel starts a new thread to handle

it, keeping the server responsive even when multiple requests are being processed

simultaneously. In addition to serving as a standalone web server, Figure 9 shows

how Kestrel may also be used as a reverse proxy server.

14

Figure 9- Working of Kestrel Server as Reverse Proxy [5]

Between a client and a web server, an intermediary server called a reverse proxy

relays client requests to the latter and the latter's responses back to the former. By

acting as an intermediary between the client and the web server, a reverse proxy

can provide a number of advantages, including:

1. Load balancing: Client queries can be split among several web servers

using reverse proxies, which helps to balance the load and prevents any one

server from becoming overloaded.

2. Security: Reverse proxies can provide an additional layer of security by

hiding the details of the web server from external clients and filtering out

malicious requests.

3. Caching: By caching frequently requested content, reverse proxies can

lighten the pressure on web servers and speed up response times.

4. Scalability: Reverse proxies can increase the scalability and availability of

web applications by spreading traffic across numerous web servers.

15

Kestrel is a reliable and adaptable web server that is good for hosting ASP.NET

Core apps. Its ability to function as a reverse proxy gives the hosting environment

an additional level of flexibility and scalability.

1.4.4.5 Language Integrated Query Language

With the help of .NET's LINQ (Language Integrated Query) technology, you can

build queries with a uniform syntax against a range of data sources. A range of

built-in operators can be used with LINQ queries to alter, filter, and sort the data

obtained from in-memory collections, databases, and other data sources. LINQ

queries can be created using either a fluid syntax or query expressions, which

resemble SQL queries in appearance. Here is an illustration of a LINQ query that

retrieves a list of clients from a database and sorts them according to last name:

Figure 10- Code Snippet for retrieving list of customers from database

In this illustration, figure 10, the "from" keyword is used to identify the data source,

which is the Customers table in the database, and the "orderby" clause is used to

arrange the results by the Last Name field. The "select" keyword is used to specify

the attributes that should be present in the result set.

1.5 Organization

The way in which this project report is organized is that:

1. Chapter 1 comprises of the Introduction about the project, objectives, tools

and technologies used, the frameworks and programming languages used.

16

2. Chapter 2 covers the literature survey and the study that was done before

the actual development phase. It covers a brief introduction about all the

necessary topics that are required to be studied before beginning the project.

3. Chapter 3 covers the Hardware, Software and functional Requirements of

the project. In addition, it includes the description of all phases of the project

development.

4. Chapter 4 covers the results along with the screenshots of the admin view

and store-front view that were obtained after the implementation of the tasks

assigned.

5. Chapter 5 covers the Conclusions obtained after the finishing of the project

and its future scope.

17

CHAPTER-2

 LITERATURE SURVEY

2. Literature Survey

2.1 Application Programming Interface

The acronym API stands for "Application Programming Interface." It serves as a

software bridge that permits communication between several software applications.

An API is a collection of standards, instructions, and programming languages that

specify how software components should communicate with one another and are

used to create software applications. APIs can be used to connect to third-party

services, send data to distant servers, perform activities on those servers, or obtain

data from distant servers. They enable users to communicate with remote resources

in a standardized way, enabling programmers to create applications that are more

dependable, scalable, and integrated. Finally, an API specifies a set of rules and

protocols that allow different software applications to communicate with one

another and exchange data without the programs themselves needing to do it. [12]

2.2 Working of API

When a client application wants to use an API, it sends a request with the desired

action and any additional parameters or data to the API endpoint. The API responds

with a response after processing the request, often with the client's requested data

and a status code.

The client program examines the answer and performs the required action based on

the status code, figure 11, and response data.

18

Figure 11- Status codes [11]

Many different tasks can be accomplished using APIs, including data retrieval from

distant servers, data submission to distant servers, action triggering on distant

servers, and integration with third-party services.

Access to APIs is possible through a variety of protocols by other applications,

websites, or mobile devices.

In order to connect with an API endpoint, developers often create code that makes

requests to it using a library or tool that maintains the underlying communication

protocol, such as HTTP. Although there are many different approaches to

implement APIs, they should generally be transparent, safe, and scalable.[12]

19

Figure 12- Working of API [10]

Figure 12 shows a very simple example of a restaurant to demonstrate the working

of API. Just like waiter acts a mediator between the customer and the chef and

brings the requested food to the respective customer, same does the API to process

the requests on the server. Developers may build more reliable, scalable, and

integrated applications thanks to APIs, which offer a standardized method of

interacting with external resources.

2.3 REST API

REST represents representational state transfer and uses the compact JSON format

to send data. Because of its quick performance, dependability, and capacity to scale

by reusing modular components without harming the system, the majority of public

APIs employ this [13].

20

Figure 13- REST API Architecture

Figure 13 shows the REST API structure. Using a standard and predefined set of

operations, this API provides access to data. The HTTP protocol and URLs provide

the foundation of REST APIs.

2.4 Routing

The process of mapping an incoming HTTP Request (URL) to a specific resource,

such as a controller action method, is known as routing in an ASP.NET Core Web

API application. We often set a few URLs for each resource when using the Routing

Concept in the ASP.NET Core Web API. The Route table, which contains the

mapping details between the URL and the Resource, is created when the application

is started. Therefore, the application will check the URL in the Route table when a

request is sent from the client to the server, and if it finds an exact match, it will

send the request to that specific resource; otherwise, it will throw an error saying

that the resource was not found. In the ASP.NET Core Web API Application, any

resource is accessible to us by using a specific URL. A resource could also have

several different, distinct URLs. [14] However, multiple resources cannot share the

same URL, as doing so causes the application to become confused about which

21

action method to invoke, which results in an ambiguity error. Therefore, based on

the routes that are set up for the application, the ASP.NET Core Framework maps

the incoming HTTP Requests, i.e., URLs, to the action methods of Controllers.

Multiple routes can be set up in ASP.NET Core, and each route can have its own

specific configurations such as default values, constraints, message handlers, etc.

2.5 Razor View Engine

The rendering of the view into an HTML form for the browser is done by the view

engine. Razor View (. cshtml) and web form (.aspx) are supported by ASP.NET

MVC [15].

Figure 14- Razor View Engine Principle [15]

To transform HTML + Programming language to pure HTML, a View Engine is

used, as shown in figure 14. A view may include both C# and HTML code, as seen

in the figure above. The C# code on the view is turned into plain HTML once it has

rendered on the browser. View Engine's function is to translate C# code into pure

HTML.

 2.5.1 Razor View Engine Working

The views offer the website's fundamental structure and operation, including the

page layout and data rendering. When a user accesses a page on a NopCommerce

website, the platform initially searches the "Views" folder of the active theme for

the relevant view. The page is rendered using a theme-specific view if one is

discovered. The default view from the "Views" folder in the root directory is

utilized in the absence of a theme-specific view.

22

2.6 ASP.NET Core

A well-liked web development framework for the.NET platform is ASP.NET. The

free and open-source ASP.NET Core platform is compatible with Windows, Linux,

and macOS. An updated version of older Windows-only ASP.NET versions,

ASP.NET Core was originally made available in 2016 [16].

Table 1- Difference between ASP.NET and ASP.NET Core [18]

While still offering a stable and maintained foundation for apps to run on, ASP.NET

Core is designed to allow runtime components, APIs, compilers, and languages to

evolve quickly.

The same server can host many instances of ASP.NET Core concurrently. Meaning

that one app can use the most recent version, while the other apps continue to use

the version that they were tested on. In ASP.NET Core, performance is a top

priority. Compared to other well-known web frameworks, it is quicker.

ASP.NET ASP.NET Core

Platform

Support

Windows only Windows, Linux and Mac

Architecture Based on .NET Framework Based on .NET Core

Components Web Forms, MVC and Web

API

MVC, Web API, Razor

Pages, and Blazor

Dependencies Less control over

dependencies

Strict control over

dependencies

File support WCF, WF, WPF, VB, Web

config, and more

No support for Global.asax,

Web config

Visual Studio Support of all versions Support of latest versions

from 2015

23

2.7 Cross Origin Resource Sharing

CORS, or cross origin resource sharing, is its full name. It permits a server to accept

calls from the designated domains while refusing others. Due to browser security,

a web page cannot by default make an Ajax request from one domain to another.

The software phrase for this security is "same-origin policy," and it prevents a

suspensive site assault from reading sensitive data from another site. An error

message will be returned by the AJAX request: On the requested resource, there is

no 'Access-Control-Allow-Origin' header [17].

However, we frequently use multi-domain applications that require calls to be made

from one domain to another; in this situation, we need to allow cross-origin policy.

If the browser in question is CORS-compatible, it will automatically set the headers

for cross-origin requests. If everything goes according to plan on the server,

"Access-Control-Allow-Origin" header is added to the response. This type of

request will fail if the answer does not contain the Access-Control-Allow-Origin

header.

If two URLs are on the same domain, they have the same origin.

The origin of these two URLs is the same.

https://test.com/index.html

https://test.com/about.html

The origins of the subsequent URLs are distinct from those of the prior two URLs,

https://hello.net

https://www.hello.com/foo.html

https://www.hello.com/foo.html

24

CHAPTER-3

SYSTEM DESIGN AND DEVELOPMENTS

NopCommerce is a well-known e-commerce platform that is accessible as free

software, giving companies the ability to easily launch an online store. It is built on

the Microsoft.NET framework and offers a wide range of capabilities that let

companies build fully functional e-commerce websites that can be tailored to meet

particular needs. NopCommerce is an all-in-one solution for online businesses

thanks to its capabilities, which include product administration, order processing,

payment processing, shipment management, and customer management.

NopCommerce versatility is one of its key benefits because it was created utilizing

a modular design, which enables simple addition or removal of features and

functionality to suit business requirements. NopCommerce is also very scalable, so

it can manage an increasing volume of merchandise, clients, and orders.

Furthermore, NopCommerce is equipped with a range of built-in security features

that safeguard the website from malicious attacks. Regular updates ensure that

NopCommerce stays current with the latest security threats and patches.

Overall, NopCommerce is a powerful and adaptable e-commerce platform, suitable

for businesses of all sizes looking to establish an online presence and increase sales.

Its wealth of features and customization options make it an appealing choice for

businesses seeking to build an e-commerce website.

25

Figure 15- NopCommerce Technologies [6]

Figure 15, shows different NopCommerce Technologies that are used for working

on this framework.

3.1 Hardware requirements

The size of the shop, the quantity of products, the number of concurrent users, and

the anticipated volume of traffic will all affect the hardware requirements for

hosting NopCommerce. However, the following are some general

recommendations for the hardware needed to run NopCommerce:

Table 2- Hardware Requirements for Running NopCommerce

Processor 1 GHz

RAM 512 MB

Minimum Disk space 4.5 GB

Operating system Windows, Linux, mac

26

3.2 Software Requirements

It's crucial to note that the specific software requirements may vary depending on

the version of NopCommerce being used.

Table 3- Software Requirements for Running NopCommerce

Web browser Google Chrome, Mozilla Firefox, or Microsoft

Edge (any suitable browser)

Web Server IIS, Apache, Nginx, Kestrel (any suitable server)

.NET Sdk Dotnet-sdk-3.1.426 (or higher)

Operating system Windows, Linux, mac (any)

NopCommerce framework Version 4.30 (or higher)

Software Microsoft SQL Server Management Studio 2019

and Microsoft Visual Studio

3.3 Functional Requirements

The functional requirements of NopCommerce include:

1. Product management: NopCommerce allows store owners to manage

their products efficiently by adding or removing products, updating product

descriptions, pricing, and availability, and managing inventory.

2. Order processing: NopCommerce allows store owners to manage their

orders from the admin panel, view order details, update order status, and

manage returns and refunds.

27

3. Payment processing: Numerous payment methods are supported by

NopCommerce, including credit cards, PayPal, and other payment

gateways. From the admin panel, store owners can set up payment options

and control payments.

4. Shipping management: Store owners may manage shipping choices with

NopCommerce, including setting up shipping providers, adjusting shipping

rates, and tracking orders.

5. Customer management: Numerous customer management features are

offered by NopCommerce, such as managing customer accounts, viewing

order histories, managing customer groups, and sending customers

marketing emails.

6. Marketing and promotions: NopCommerce include a range of marketing

and promotional features, including managing discounts and coupon codes,

managing product reviews, and setting up email marketing campaigns.

7. Localization: NopCommerce is appropriate for enterprises that operate in

various countries since it supports multiple languages, currencies, and tax

regulations.

8. Security: Numerous security features are already built into NopCommerce,

such as PCI compliance, SSL support, and defenses against SQL injection

and cross-site scripting attacks.

28

Figure 16- NopCommerce Store-front side [7]

Figure 17- Home page of NopCommerce website

29

Figure 18- Login page of NopCommerce Website

Figure 19- Shopping Cart page of NopCommerce Website

The figures 16 to 19, show the store-front side view of the NopCommerce Website.

Particularly the Login Page, Shopping Cart, Register form and the home page.

30

3.4 Project Development:

3.4.1 MVC Lifecycle:

MVC (Model-View-Controller) is a popular design pattern used in software

development. The lifecycle of an MVC application can be broken down into the

following steps:

1. User Interaction: In an MVC application, the user can communicate with

the View component. The View component receives user input like as

mouse clicks, keyboard inputs, and touch events and displays the user

interface, which contains items like forms, buttons, and menus.

2. Handling requests: When a user interacts with the View component, the

Controller component receives a request from the View component.

Typically, the request includes details of the user's action, such as the data

entered into a form or the button clicked. The request is received by the

Controller, who then uses the application's business logic to decide what

should happen next.

3. Model Interaction: After deciding on the best course of action, the

Controller engages with the Model component. The data and business logic

of the application are represented by the Model. Depending on the user's

action and the needs of the program, the Controller could obtain data from

the Model or modify data there. For instance, the Controller might evaluate

data entered by the user into a form before saving it to the Model.

4. View Update: After updating the Model, the Controller passes control back

to the View component. The View component then modifies how the

application's data is displayed in response to changes made to the Model.

For instance, the View might show the updated data in a table if the user

input data into a table or chart.

31

5. User Feedback: The updated View is presented to the user, and the user

may interact with the application again. The cycle begins again with the

user interacting with the View component.

Figure 20- MVC Request Life Cycle [8]

Throughout the MVC lifecycle, the three main components of the pattern work

together to create a responsive and maintainable application. Here's a closer look at

each component in figure 21:

Figure 21- Working of MVC [9]

32

1. Model: The data and business logic of the application are represented by

the Model component. It controls data storage, retrieval, and change while

defining the data's structure and behavior. The user or the View component

are not in direct communication with the Model. Instead, it gives the

Controller a way to access and alter data.

2. View: The View component shows the user interface and makes the data

from the application visible. User input is taken into account as it sends

requests to the Controller component. The View concentrates on display

and user interaction rather than application logic.

3. Controller: This component manages user input and chooses the best

course of action. In order to retrieve or update data, it communicates with

the Model component. Control is then transferred back to the View

component, which updates the user interface. The Controller is in charge of

organizing the interaction between the Model and View components and

houses the business logic for the application. MVC offers a flexible and

modular architecture for creating complex applications by decoupling

concerns in this manner.

3.4.2 Services in NopCommerce

In NopCommerce, a service is a class that implements a specific functionality of

the application. Services are typically used to perform operations such as data

access, business logic processing, and communication with external systems. There

are two main types of services in NopCommerce:

1. Application Services: The main features of the program, such as managing

products, orders, customers, and other entities, are provided by these services.

1. AddressService: Offers tools for managing addresses.

2. BlogService: Offers tools for managing blog entries and comments.

33

3. The CategoryService offers tools for managing product categories.

4. CheckoutService: Offers tools for controlling the checkout procedure.

5. CustomerAttributeService: Offers tools for managing unique customer

attributes.

6. Customer Service: Offers tools for managing customers.

7. LocalizationService: Offers tools for controlling localization

preferences.

8. ManufacturerService: Offers tools for controlling the manufacturers of

goods.

9. PictureService: Provides functionality to manage product images.

10. PictureService: Offers tools for organising product photographs.

11. ProductService: Offers tools for managing products.

12. ProductTagService: Offers tools for controlling product tags.

13. RewardPointsService: Offers tools for customers to manage their

reward points.

14. SettingService: Offers tools for controlling application settings.

34

2. Infrastructure Services: These services offer low-level features like email

sending, caching, and logging that assist application services.

1. CacheService: Offers capabilities for managing caching.

2. ContentManagementService: Offers tools for controlling content.

3. EmailSenderService: Offers tools for controlling email sending.

4. EncryptionService: Offers tools for controlling encryption.

5. ILoggerService: Offers logging management capabilities.

3.4.3 Repositories in NopCommerce

A repository is a class in NopCommerce that offers a data access layer for working

with the database. In order to hide the specifics of the underlying database

technology and to retrieve and manipulate data from the database, repositories are

typically used.

A contemporary, open-source, cross-platform object-relational mapping (ORM)

framework called Entity Framework Core enables programmers to interact with

databases using.NET objects. With support for numerous database providers, such

as SQL Server, MySQL, PostgreSQL, SQLite, and more, it is a compact and

adaptable version of Entity Framework.

Entity Framework Core has a wealth of features and a straightforward API that

make it simple to interact with databases. It is made to be flexible and simple to

use. It has the following characteristics-

35

1. Code-First Approach: Using Entity Framework Core, you may create the

database schema from scratch using your object-oriented C# or VB.NET

code as a starting point.

2. Migrations: The robust migration system in Entity Framework Core

enables you to control changes to your database structure over time.

3. LINQ Support: Language Integrated Query (LINQ) is a feature of Entity

Framework Core that enables you to write queries on your data in either C#

or VB.NET syntax.

4. Transactions: Transaction support in Entity Framework Core enables you

to carry out multiple database operations in a single transaction.

5. Change Tracking: The change tracking mechanism in Entity Framework

Core automatically identifies data changes and prepares the SQL statements

required to persist those changes to the database.

6. Lazy Loading: Lazy loading is supported by Entity Framework Core,

allowing you to defer the loading of related data until you need it.

36

Figure 22- Approaches of Entity Core Framework

Figure 22 shows the 2 approaches for Entity Framework Core. Database first

approach means to generate classes based on the database. Whereas, Code first

approach means to generate the database based on classes. It works by mapping

your model classes to database tables, and providing a simple API for querying and

manipulating data in those tables. Annotations and a fluent API can be used to

specify how a model class in Entity Framework Core should be mapped to a

database table when the class is defined. For instance, you may give the name of

the table using the [Table] element and each column's name and data type using the

[Column] attribute.

37

Figure 23- Code Snippet showing the Customer Class

Figure 23 of this example, the [Table] property instructs the database to map this

class to a table called "Customers" for this example's class. The [Key] attribute

indicates that the Id property should serve as the table's primary key, while the

[Column] attribute indicates the names and data types of each column.

Using the DbContext class, you can communicate with the database after defining

model classes. The DbContext presents a session with the database and offers a

number of methods for data manipulation and querying.

Figure 24 provides an illustration of how the DbContext can be used to fetch a list

of customers from the database:

Figure 24- Code Snippet to retrieve the list of customers from database

38

3.4.4 Razor Pages

ASP.NET Core's Razor Pages feature enables programmers to create dynamic web

pages by combining C# code and HTML content. Razor Pages adheres to the

Model-View-Controller (MVC) design but takes a more straightforward approach

that places an emphasis on code separation and user friendliness. Each web page in

Razor Pages is represented by a Razor Page file (. cshtml), which also contains the

C# code that creates the dynamic content. The Razor syntax makes it simple to

create dynamic content and manage user interactions by allowing you to integrate

C# code right into your HTML layout.

Figure 25- C# code in razor page to display product-name and product-price

Figure 25 serves as an illustration of this. The "@page" directive identifies this

file as a Razor Page, and the "@model" directive identifies the kind of model this

page employs. A foreach loop that iterates across the model's list of products is

used to create an unordered list and a heading in the HTML markup.

3.4.5 Partial Views

When a common user interface element is required on several web application

pages, a partial view is developed. A standard view with the file extension .cshtml

39

that may be used numerous times within an application is what is known as a partial

view. To divide a web page into distinct sections like the header, footer, and menu,

Layout occasionally uses partial views. Other examples include remarks made on

blogs, shipping and payment information on statements from online shops, etc.

3.4.6 Layout

The majority of online apps share a uniform layout, giving users a consistent user

experience as they move between pages. Common user interface components like

the app header, menu items, and footer are often included in the layout [19].

Many pages in an app frequently make use of scripts and stylesheets, two common

HTML building blocks as shown in figure 26.

Figure 26- Common Layout used in Web Applications [19]

Any view used by the app may then refer to the layout file that contains all these

shared elements. Layouts help views have less redundant code.

By convention, an ASP.NET Core app's default layout is called ‘_Layout.cshtml’.

40

3.4.7 Database Implementation

The database used by NopCommerce for data storage is Microsoft SQL Server. The

database is made up of numerous tables for storing different kinds of data, including

customer details, product details, order details, shipping details, and more.

NopCommerce connects to the database using Entity Framework Core, an open-

source ORM (Object-Relational Mapping) framework. Entity Framework Core

maps NopCommerce objects to the proper database tables and executes SQL

queries to read or write data. A scalable and efficient database schema has been

developed. It follows the best practises for database design, such as the need for

data integrity and normalisation. By adding or removing tables, indexes, or foreign

key constraints, NopCommerce developers can easily change the database's

organisational structure. NopCommerce also provides a database migration tool

that helps programmers to construct or modify the database schema in an organised

manner. The migration tool enables version control of the database schema, making

it simple for developers to reverse changes or apply them to other settings. The

following is a list of some of the important tables in the NopCommerce database:

1. Address: Stores shipping and billing addresses of customers.

2. Category: Contains information about the categories of products offered in

the store.

3. Customer: Contains information about registered customers such as name,

email, and password.

4. Manufacturer: Contains information about product manufacturers.

5. Order: Stores order details such as customer, product, order date, and order

status.

41

6. Product: Contains information about the products available in the store such

as name, description, price, and quantity in stock.

7. Product_Category_Mapping: Represents the many-to-many relationship

between products and categories.

8. Product_Manufacturer_Mapping: Represents the many-to-many

relationship between products and manufacturers.

3.4.8 Dependency Injection

Object-oriented programming frequently employs the design pattern known as

Dependency Injection to encourage loose coupling between components and to

make the code easier to maintain and test. Simply put, dependency injection is a

method of giving a class the objects or services it needs at the time of creation rather

to having the class establish those dependencies on its own. Here is a

straightforward example to show how Dependency Injection works:

Think about a class called "CustomerService" that must email a customer once they

place an order. We may use Dependency Injection to provide an instance of the

email service to the "CustomerService" class rather than generating a new instance

of the email service inside the "CustomerService" class.

Figure 27 shows an interface for the email service:

Figure 27- Code Snippet showing the IEmailService Interface

42

Next, the email service class implements the IEmailService Interface as shown in

Figure 28:

Figure 28- Implementation of IEmailService interface

Finally, the `CustomerService` class is modified to accept an instance of the email

service through its constructor as shown in figure 29:

Figure 29- Code Snippet for CustomerService class

Now, instance of the `CustomerService` class is created, an instance of the email

service is provided to its constructor as shown in figure 30:

43

Figure 30- Code Snippet for providing an instance of email service to its

constructor

In this approach, the 'CustomerService' class is separated from the specifics of how

the email service is implemented, increasing its flexibility and making testing

simpler. Future usage of a different email provider can be accommodated by simply

providing an alternative implementation of the 'IEmailService' interface to the

'CustomerService' class, without modifying the class's functionality.

3.4.9 Task Implementation

For my training project, I had to customize NopCommerce to extend its

functionality. The platform enables quick display or concealing of field names or

properties on the client side with only one click from the admin side. The action

method, models, or services that are relevant must be changed on both the admin

side and the front side of the store, but, if the property or field you require is missing

on the admin side. For instance, my first assignment was to expand the register

form's middle name field. In the "CustomerFormFields" model on the admin side,

this is absent.

44

Admin Side:

Figure 31- Customer form fields (admin view)

Figure 31 shows the admin view of the customer form fileds. If the fields are

enabled here, the view on the store-front is automatically updated to show the

field that is enabled.

45

Customer-Facing Store Front:

Figure 32- Register page of the store-front side (default view)

Figure 32 shows the register page of the store-front view. All the fields in the

customer-form fields of admin view that are enabled, will be displayed in this form.

1. The command to show the registration page is sent to the "Customer"

controller.

2. Calling the "PrepareRegisterModel" method of the

"CustomerModelFactory" produces a "RegisterModel".

3. The "RegisterModel" provides boolean attributes to specify which fields are

made available for viewing as well as properties to store the data entered by

the user.

4. In order to add the "Middle Name" field, a new property called

"MiddleName" is added to the "RegisterModel".

46

5. When the "PrepareRegisterModel" method is called, the properties of the

"RegisterModel" and the "CustomerSettings" model are now mapped.

6. The "RegisterValidator.cs" class has been changed to include validations

that make sure the user-provided middle name doesn't have any extra digits.

7. The "RegisterModel" is passed as a parameter to the "Register.cshtml"

Razor view, which is in responsibility of displaying the user's registration

page.

8. The "Register.cshtml" view now adds a new input field for the "Middle

Name" attribute of the registration form.

9. Once the user submits the form, data is collected from each field, including

the new "Middle Name" field, and given to the appropriate action method

to finish the registration request.

 Overall:

1. On the admin side, the "CustomerSettings" model must be enabled to add a

new field, and the "RegisterModel" on the customer-facing store front must

have a new property added.

2. When the user submits the registration form after the new field has been

enabled and added, the data can be automatically stored in the database.

3. To make the necessary adjustments, it is crucial to monitor the process and

procedures being used on both the admin and customer-facing store front

sides.

47

My next task was to store the middle name data in the customers' database and

display it on the admin side table.

Figure 33- Customers Table (default admin view)

To achieve this, I had to analyze the workflow and identify which controller and

action method are being called when the user submits the data. Figure 33 shows the

default admin view of the customers table that stores the customer details entered

during registration. In this case, the HTTP "POST" verb is used to submit the form

data, and the action method responsible for processing this data is called.

I had to use a function from the proper model factory, which in turn calls the

customer service, to store the middle name information in the database. The data is

subsequently stored in the database by the customer service using the repository

approach. The task of connecting to the SQL server and putting the data in the right

table falls on the data provider. To be more precise, the customer service class is in

charge of overseeing customer-related tasks like adding new clients, updating

current clients, erasing clients, and retrieving client-related information. The data

access functionality is abstracted from the service layer by the repository layer, with

which the service class communicates.

48

To communicate with the database, the repository class invokes the relevant data

provider methods. The "Customer" table, which contains the customer's basic

information such name, email, and password, is one of numerous tables in the

database that store the customer-related data. The "Address" field keeps track of

the billing and delivery addresses for the client, and the "Customer Role" table

keeps track of any responsibilities that have been given to them, like customer or

administrator. The custom characteristics connected to the customer, such middle

name in this instance, are kept in the "CustomerAttributeValue" table.

In conclusion, utilizing the proper service, repository, and data provider classes to

communicate with the SQL server and store the data in the proper table is necessary

for saving the middle name data in the database. As part of this training project, I

was also given a number of additional tasks to complete. For example, I had to

change the product details page so that the manufacturer's name and a link to the

product are displayed beneath the product's name. I also had to add validations to

ensure that users couldn't add products from different companies in the same order.

Figure 34- Default Product Details view for the Gift Card (without the Link)

Figure 34 shows the default product details page without the link of the product

49

CHAPTER-4

RESULTS

4.1 Results

Figure 35 shows the admin view for the customer user page. This customer user

page has used various partial views for the different sections- Common, Customer

form fields, Account, Password and Security, profile, and Address Form fields. On

enabling the properties in these fields, the corresponding store-front side view is

updated.

Figure 35- Admin view for customer form fields (with middle name property)

In case the property isn’t present in the default admin view, the steps mentioned in

the implementation are followed. The whole modification process depends on the

understanding of the MVC lifecycle and the execution workflow of NopCommerce.

New properties have to be added by modifying the code in the admin side and also

on the store front side. Here, a new property “Middle Name” is added by modifying

the “CustomerUserSettingsModel” and “CustomerModel” on the admin side and

“RegisterModel” on the store-front side. For adding validations on the store-front

side, “RegisterValidator.cs” class can be modified to add the suitable validations

50

for the corresponding form fields. The changes will be automatically reflected on

the store-front side.

The following 36 to 44 show the results that were obtained –

Figure 36- Store-front side view for the account info (with middle name field)

Figure 36 shows the Account details for the registered customer. In the default

“AccountInfo” page, the “MiddleName” field isn’t present. Here, after the changes

being made to the corresponding models, controller’s action methods, services,

“MiddleName” field has been added. When the Account button is pressed on the

navigation bar, a http get request is sent to the server and the respective action

method of the respective controller that handles the request, returns the view

required. The execution is as follows-

1. The request goes to the action method in the controller. All the public

methods in the controller class are known as action methods.

2. The action method is responsible for returning the appropriate action result.

In this case, firstly the “Info” action method is called. It calls the function

51

in the “CustomerModelFactory” by the name

“PrepareCustomerInfoModel”.

3. In this function, mapping is done between the “CustomerInfoModel” and

the “CustomerSettingsModel” so as to know which fields are enabled to be

shown on the store-front view side.

4. Also, for the properties responsible for containing the user data in this

model, they are rendered by the data with the help of the “GetAttribute”

function of the “GenericAttributeService”.

5. This service is responsible for fetching the required attribute values from

the database and returning it to the required model property with the help of

Entity Framework Core.

6. The process of fetching data from the database is as follows- Request is sent

to the respective service, service calls the respective repository, the request

is further sent to the data provider, which is further responsible for making

the connection with the database and returning the data.

52

Figure 37- Register page on store-front side (with middle name property)

Figure 37 shows the register page on the store-front side, inclusive of the

“MiddleName” property. This property isn’t initially present in the default view of

the Register Page and neither on the admin side Customer Form Fields. When the

user clicks the “Submit” button, the Register action method with the Http POST

verb, in the “Customer” Controller is called. In this method, first it checks whether

the user is already registered or not. If yes, then the following error is shown else

the user is registered successfully. In case the user is already registered, no new

registration is possible and so the user is registered as a guest customer by

“CustomerService” and the following view in figure 38 is displayed.

53

Figure 38- Store Front View showing the Register page for already registered

customer

If the customer isn’t registered before, the form details are checked for the errors.

In case of errors, Errors are shown which implies the Model State isn’t valid. On

the other hand, if the ModelState is valid, a new Customer Registration Request is

sent which contains the email, password, store id details, username, etc of the

customer which are specific to that customer. If the registration request result is

successful, then the entered values, which are stored in the register model, are

stored in the database with the help of the “SaveAttribute” function of the

“AttributeService”. The form values are also used to create other properties like the

address of the customer and are stored in the database.

54

Figure 39- Register page View on Successful Registration

Figure 39 shows the register page on successful registration of the customer.

Figure 40- Customers data table (with middle name property appended in the

Name column)

Figure 40 shows the customers data that is fetched from the database following the

same execution flow i.e., Controllers→ Action Method → Factory → Model

Preparation → Service → Repository → Data Provider → Model rendered with

55

data → View returned with Model. For the middle name, it has been appended in

the “Full Name” column as shown by the first row i.e., the most recent registration.

Figure 41- Shopping cart (with the manufacturer and link of the product (if

given))

Figure 41 shows the Shopping Cart with the manufacturers under the product name

and the link to the product (if given). The products are added at the admin side.

Under the catalog→ Products shows the products in the store. To modify the details

of the product, the edit button in the edit column is clicked for the specific product.

In case the field to be added like “Link” isn’t present on the “EditProductDetails”

Page, the execution flow has to be tracked and the corresponding view and models

have to be modified.

56

Figure 42- Admin side view of the Products Catalog page

Figure 42 shows the admin view of the Products Catalog Page which stores the

Product details in the store.

Figure 43- Edit Product Details page (admin view)

Figure 43 shows the “EditProductDetails” page (admin view) with the Link

property added in the “ProductInfo” Model via code modification. The same is

stored in the database.

57

Figure 44 - Product Details page for the Gift Card with the Link of the product

Figure 44 shows the “ProductDetailsPage” for a particular product. The

“ProductDetails” model has been modified to store the link. On clicking on the

product, the link property is fetched from the database and stored in the model. The

model is rendered to the view.

58

CHAPTER-5

CONCLUSIONS

5.1 Conclusion

The primary goal of the assigned project was to develop a thorough understanding

of server-side programming for the building of websites. Through this project, I

was able to learn in-depth information about the.NET framework, NopCommerce,

how it functions, and the various parts and services used when creating an

application. My learning experience was made much more interesting and

rewarding by getting to use the technology firsthand and work through problems

from the real world.

It was a completely new field for me, so I initially ran into some difficulties during

the project's first phase. But with time, I was able to spot and fix these issues, which

allowed me to finally begin the project. My mentor's ongoing advice and support

also had a significant impact on enhancing my skills.

The working environment was quite encouraging, and it was impressive to see how

some of the developers were able to independently complete their tasks and carry

out experiments to advance their expertise. It was also exciting to be a part of a

cooperative IT platform where many developers were actively contributing and

assisting one another to meet the short- and long-term objectives of the business.

Overall, this internship was the first step in developing my career. To elaborate, the

project gave me a thorough understanding of the significance of server-side

programming in the development of dynamic and interactive websites. The project

also demonstrated the value of customization and adaptability in web development.

The project also offered insightful information about database implementation,

particularly the data transfer between admin and client. I gained knowledge of how

to effectively manage the data and make changes as needed by studying the code

files and database structure. I also learnt how to ensure that the changes were

59

seamlessly reflected in the admin and client interfaces. My ability to solve problems

and work cooperatively in a team has improved as a result of this experience, which

will surely aid me in my future endeavors in web development.

5.2 Future Scope

Since its beginnings, NopCommerce has become a well-known e-commerce

platform. To stay relevant, it is always being updated and given new features.

NopCommerce has a bright future ahead of it, with plenty of room for expansion

and development.

1. Mobile Commerce: NopCommerce can continue to improve its mobile

commerce capabilities as more customers opt to shop online utilizing their

mobile devices to offer a smooth shopping experience across all devices.

2. Artificial Intelligence (AI) and Machine Learning (ML): Businesses can

personalize user experiences, enhance product recommendations, and

enhance marketing efforts by integrating AI and ML into NopCommerce.

3. Social Commerce: E-commerce companies are relying more and more on

social networking sites like Facebook, Instagram, and Twitter.

NopCommerce can continue to develop its social commerce features,

enabling companies to sell goods on social media.

4. Augmented Reality (AR) and Virtual Reality (VR): Customers can see

products in a virtual setting by integrating AR and VR technology into

NopCommerce, which can enhance their browsing experience and increase

their likelihood of completing a purchase.

5. Business needs: NopCommerce modular architecture and robust

administration interface make it simple and quick to make changes to the

60

website with only a few clicks. The admin, client, and database are then

immediately updated to reflect these changes, making it simple for

developers to maintain websites and keep them up to date in accordance

with client needs.

61

REFERENCES

[1]https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-

azure/common-web-application-architectures

[2]https://learn.microsoft.com/en-us/dotnet/csharp/

[3]https://en.wikipedia.org/wiki/Visual_Studio

[4]https://en.wikipedia.org/wiki/Visual_Studio

[5]https://geeksarray.com/blog/aspnet-core-application-and-kestrel-web-server-

settings

[6]https://github.com/nopSolutions/nopCommerce

[7]https://github.com/nopSolutions/nopCommerce

[8]https://feyyazacet.medium.com/asp-net-core-mvc-request-life-cycle-

ff2588a2af8f

[9]https://www.interviewbit.com/blog/mvc-architecture/

[10]https://medium.com/@ama.thanu/what-is-an-api-how-does-it-work-

f4ea552d741f

[11]https://www.semrush.com/blog/http-status-codes/

[12] https://www.ibm.com/topics/api

[13] https://towardsdatascience.com/what-is-an-api-and-how-does-it-work-

1dccd7a8219e

[14] https://dotnettutorials.net/lesson/routing-in-asp-net-core-web-api/

[15] https://www.c-sharpcorner.com/article/razor-view-engine-in-asp-net-mvc-5/

[16] https://dotnet.microsoft.com/en-us/learn/aspnet/what-is-aspnet-core

[17] https://www.c-sharpcorner.com/article/cors-in-dotnet-core/

[18]https://www.abtosoftware.com/blog/why-use-asp-net-mvc-framework-for-

web-application-development

[19]https://learn.microsoft.com/enus/aspnet/core/mvc/views/layout?view=aspnetc

ore-7.0

https://www.semrush.com/blog/http-status-codes/
https://towardsdatascience.com/what-is-an-api-and-how-does-it-work-1dccd7a8219e
https://towardsdatascience.com/what-is-an-api-and-how-does-it-work-1dccd7a8219e
https://dotnettutorials.net/lesson/routing-in-asp-net-core-web-api/
https://www.c-sharpcorner.com/article/razor-view-engine-in-asp-net-mvc-5/
https://dotnet.microsoft.com/en-us/learn/aspnet/what-is-aspnet-core
https://www.abtosoftware.com/blog/why-use-asp-net-mvc-framework-for-web-application-development
https://www.abtosoftware.com/blog/why-use-asp-net-mvc-framework-for-web-application-development

62

 PLAGIARISM REPORT

